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Abstract: Light scattering and turbidimetry techniques are classical tools for characterizing the
dynamics and structure of single nanoparticles or nanostructured networks. They work by analyzing,
as a function of time (Dynamic Light Scattering, DLS) or angles (Static Light Scattering, SLS), the light
scattered by a sample, or measuring, as a function of the wavelength, the intensity scattered over the
entire solid angle when the sample is illuminated with white light (Multi Wavelength Turbidimetry,
MWT). Light scattering methods probe different length scales, in the ranges of ∼5–500 nm (DLS), or
∼0.1–5 µm (Wide Angle SLS), or ∼1–100 µm (Low Angle SLS), and some of them can be operated in
a time-resolved mode, with the possibility of characterizing not only stationary, but also aggregating,
polymerizing, or self-assembling samples. Thus, the combined use of these techniques represents a
powerful approach for studying systems characterized by very different length scales. In this work,
we will review some typical applications of these methods, ranging from the field of colloidal fractal
aggregation to the polymerization of biologic networks made of randomly entangled nanosized
fibers. We will also discuss the opportunity of combining together different scattering techniques,
emphasizing the advantages of a global analysis with respect to single-methods data processing.

Keywords: dynamic light scattering; static light scattering; turbidimetry; colloidal aggregation;
fractal morphology

1. Introduction

Light Scattering (LS) techniques refer to a family of experimental optical methods
based on the phenomenon of scattering, which occurs whenever a beam of light impinging
onto an optically inhomogeneous sample produces radiation that is diffused away from
the incident direction. Since the advent of the laser in the 1960s, LS has been increasingly
used for studying a large variety of so-called soft-matter systems, with applications both
in fundamental and applied science. Examples include the fields of colloidal aggregation,
polymer blends, gel formation, and, in general, the chemical physics of complex fluids and
critical phenomena [1–5].

LS techniques have the great advantage of being non-invasive and providing infor-
mation almost in real time. They are also highly reliable from a statistical point of view
because they are applied to samples made of a high number of particles. Among the various
LS techniques, the most popular ones are Dynamic Light Scattering (DLS), Static Light
Scattering (SLS), and Multi-Wavelength Turbidimetry (MWT or, simply, turbidimetry).

Static Light Scattering (SLS) is based on the measure of the time-averaged angular
distribution of light intensity elastically scattered by a sample. SLS provides information
on molecular weight, average size (gyration radius), and morphological structure of the
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scatterers dispersed in a suspension. SLS techniques can also be operated in a time-resolved
mode, with the possibility of characterizing not only stationary but also aggregating,
polymerizing, or self-assembling samples. In principle, the angular range accessible to SLS
can be very wide, from ∼0.1◦ (or even smaller) to ∼180◦, but there is no single instrument
capable of covering such a wide range, and quite different experimental approaches must
be used: in the ∼0.1–10◦ range (Low Angle SLS, LA-SLS) bi-dimensional detectors, such as
CCD or array of photodiodes are exploited, whereas at larger angles, in the∼10–170◦ range
(Wide Angle SLS, WA-SLS) highly sensitive point-like detectors such as photomultipliers
or avalanche photodiodes must be used. Depending on the angular range, the length
scales (or typical particle sizes) probed by SLS vary between ∼0.1–5 µm (WA-SLS) or
∼ 1–100 µm (LA-SLS).

Dynamic Light Scattering (DLS) measures the time correlation function of the fluctua-
tions of the intensity scattered by the investigated sample at a given angle and provides
information on the decay or relaxation time (or times) that characterizes its underlying
dynamics. Examples of applications of DLS are countless, the most prominent ones proba-
bly being particle sizing of nanosized particles via the measurement of the translational
diffusion coefficient associated with their Brownian motion. DLS is routinely utilized in
many laboratories worldwide, with applications ranging from industrial production control
to the fundamental study of interacting particle systems. Typical diameters recoverable
with DLS are in the ∼5–500 nm range.

Multi-Wavelength Turbidimetry (MWT) consists of the measurement of the sample
extinction coefficient as a function of the wavelength of the incident radiation, typically in
a spectral range that covers the UV-VIS NIR region (300–1000 nm). MWT is not properly
a scattering technique because it does not directly measure the scattered light at various
angles but only the overall power transmitted by the sample. In general, the transmitted
power is attenuated (with respect to the incident one) because of absorption and scattering,
but for non-absorbing samples or in the spectral regions where there is no absorption, the
attenuation is due only to scattering and, therefore, the MWT technique can be considered
a truly (integrated) scattering technique, probing length scales typical of WA-SLS.

In this mini-review, we will recall the fundamentals of these three techniques and
report some examples of the experimental setups necessary to implement them. Then,
we will review a few typical applications of these methods, ranging from the field of
colloidal fractal aggregation to the polymerization of biologic networks made of randomly
entangled (nanosized) fibers. Finally, we will discuss the advantages of coupling together
some of these techniques, emphasizing the benefits of a global analysis with respect to
single-methods of data processing. As this review deals with light scattering techniques, we
have not included other well-established techniques such as Small-Angle X-ray or Neutron
Scattering (SAXS and SANS), which clearly can provide additional important information
and extend the type and range of sample analysis.

2. Theoretical Background

In the theory of Light Scattering (LS), the light scattered away from the incident beam
is due to the presence of local fluctuations of the dielectric constant of the medium ε over
the entire scattering volume V. In many cases, such as for colloidal, macromolecular, or
gel systems, these fluctuations are due to the presence of particulate scatterers that have a
refraction index different from that of the medium.

Let us suppose to have an optically inhomogeneous, non-absorbing, non-magnetic,
non-conductive, and isotropic medium characterized by a time-dependent dielectric con-
stant ε(r, t). Let the medium be illuminated with a linearly polarized incident monochro-
matic electric field of amplitude E0, oscillating at a frequency ω0 with a vacuum wavelength
λ0 = 2πc/ω0. If the fluctuations δε(r, t) = ε(r, t)− 〈ε〉 are small with respect to the average
dielectric constant of the medium 〈ε〉, i.e., when δε(r, t) � 〈ε〉, the Born approximation
applies and at a very large distance R � r(t) (far-field limit), and the amplitude of the
scattered field reads [2].
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E(q, t) =
π

λ2
0

E0e−iω0t eikR

R
sin(φ)

∫
V

δε(r, t)eiq·rdr (1)

where q is the scattering wavevector defined as q = k− k0, and k and k0 are the scattered
and the incident wavevectors. The angle between k and k0 defines the scattering angle θ. In
Equation (1) eikR/R is a spherical wave term, φ is the angle between k and the polarization
direction of the incident electric field, V is the scattering volume and eiq·r is a phase term
that describes the interference between the electric fields scattered as spherical waves by all
the infinitesimal sub-volumes dr.

Note that when the fluctuations are frozen [δε(r, t) = δε(r)], the integral does not
depend on time, and the scattered field oscillates at the same frequency of the incident
radiation (Elastic or Static Light Scattering, ELS, or SLS). Consequently, |k| = |k0| and the
magnitude of q is related to the scattering angle θ by the relation q = (4π/λ0)n0 sin θ/2.
Conversely, when δε(r, t) moves at velocity |v| � c, the scattered field undergoes a Doppler
shift of the order of ∆ω ∼ |v|/c � ω0 and, therefore, oscillates at almost the same
frequency as the incident field (Quasi Elastic Light Scattering or Dynamic Light Scattering,
QELS, or DLS). Finally, it is worth recalling that Einstein was the first one, in late 1910 [6],
to describe the scattering as the result of the local fluctuations of the medium dielectric
constant, exactly as reported in Equation (1).

Discrete scatterers

Let us now suppose that the medium is a suspension of particles with an index of
refraction different from that of the solvent. Let N be the number of particles in the
scattering volume V and indicate with Rk(t) (k = 1, . . . , N) the positions of their centers of
mass at time t, whereas rk indicates the position of each particle element with respect to the
corresponding center of mass. Under the assumption that the scattering from the solvent is
negligible with respect to that of the particles (see Appendix A), Equation (1) becomes:

E(q, t) =
π

λ2
0

E0e−iω0t eikR

R
sin(φ)

N

∑
k

eiq·Rk(t)
∫
vk

∆εk(rk, t)eiq·rk drk (2)

where now ∆εk(rk, t) = ε(rk, t)− 〈ε0〉 is the optical mismatch between the particles and
the solvent, which is characterized by the average dielectric constant 〈ε0〉. Note that the
integral is not extended anymore to the entire scattering volume but to all the particle
volumes vk, with eiq·Rk(t) being the time-dependent phase terms that depend on particle
positions. By squaring Equation (2), we obtain the scattered intensity:

I(q, t) =
π2

λ4
0

I0

R2 sin2(φ)
N

∑
k,j=1

ak(q)a∗j (q)e
iq·[Rk(t)−Rj(t)] (3)

where ak(q) =
∫

vk
∆εk(rk, t) eiq·rkdrk is the amplitude of the field scattered by the k-th particle.

A direct physical insight into Equation (3) can be gained if we make the simplifying
assumption of homogeneous non-absorbing identical particles. Thus, if ε1 indicates the
(real) dielectric constant of the particles, ∆ε(rk, t) = ∆ε = ε1 − ε0 and

a(q) = ∆ε
∫
v

eiq·rdr (4)

By inserting Equation (4) into Equation (3), we get

I(q, t) =
A2

R2 v2 I0 sin2(φ)P(q)S(q, t) (identical homogeneous particles) (5)
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where
A =

π

λ2
0

∆ε (6a)

P(q) =
1
v2

∣∣∣∣∫v
eiq·rdr

∣∣∣∣2 (6b)

S(q, t) =
N

∑
k,j=1

eiq·[Rk(t)−Rj(t)] (6c)

P(q) is called form factor and is normalized to unity (P(0) = 1), whereas S(q, t) is called
structure factor and is normalized so that S(0, t) = N2. Equation (5) is valid under the
so-called Rayleigh-Debye-Gans (RDG) approximation [1], which is the equivalent of the
Born approximation for discrete scatterers. RDG approximation requires that (i): the opti-
cal mismatch ∆ε between particles and medium is small enough so that (n1/n0 − 1)� 1
(n0 =

√
ε0, n1 =

√
ε1) and (ii): the particle is “optically thin”, implying that phase dif-

ference between the light travelling in the medium and inside the particle is negligible.
Quantitatively, the latter condition corresponds to 2πa(n1 − n0)/λ0 � 1, where a is the
particle radius. Note that, when the particle is physically very small (a� λ0), P(q)→ 1
for any q. This is so called Rayleigh (or dipole) scattering when all the sub-volumes dr
oscillate in phase, and the particle behaves as a single dipole. Under these conditions, the
scattered intensity distribution is isotropic and proportional to λ−4

0 .
In conclusion, Equation (5) describes the essence of the LS technique: the scattered

intensity is proportional to the product P(q)S(q, t) in which P(q) provides information on
particle size, structure, and morphology, whereas S(q, t) depends on the particle’s motion
and provides information on particle dynamics.

2.1. Static Light Scattering (SLS)

Static Light Scattering (SLS) is based on the measure of the time-averaged angular
distribution of the light intensity scattered by a sample. Thus, Equation (5) must be
averaged over a measuring time T much larger than the typical fluctuation time due to
particle motions so that we can define I(q) ≡ 〈I(q, t)T〉. Thus, under the assumption that
the suspension is so dilute that particles do not interact, the averaging of Equation (5) reads:

I(q) = A2

R2 v2 I0 sin2(φ)P(q)

[
N +

N
∑

k 6=j
〈eiq·[Rk(t)−Rj(t)]〉T

]
= A2

R2 v2 I0 sin2(φ)P(q)N (identical noninteracting homogeneous particles)

(7)

where the sum term inside the square parenthesis vanishes because of statistical inde-
pendence between positions of particles k and j. Thus, Equation (7) tells us that the
time-average scattered intensity of a dilute suspension is simply given by the sum of the
intensities scattered by all the particles inside the scattering volume.

Orientational averaging

It is worth pointing out that when the sample is made of a collection of randomly
oriented anisotropic particles (such as ellipsoids, cylinders, platelets, etc.) Equation (5)
must be averaged not only over time but also over all the possible orientations. For this
purpose, we rewrite Equation (6b) as:

P(q) =
1
v2

∣∣∣∣∫ φ(r)eiq·rdr
∣∣∣∣2 (8)

where the integral has been extended to the entire space, and we have introduced the
local volume fraction φ(r), which is equal to 1 inside the particle and 0 outside, so that∫

φ(r)dr = v. The integral appearing in Equation (8) represents the Fourier transform of
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φ(r). Thus, by using a well-known property of the Fourier transform, we can equivalently
rewrite Equation (8) as:

P(q) =
1
v2

∫
Gφ(r)eiq·rdr (9)

where
Gφ(r) =

∫
φ(x)φ(x + r)dx (10)

is the spatial correlation integral of φ(x). Gφ is normalized so that Gφ(0) = v and
∫

Gφ(r)dr = v2.
Equation (9) states that the form factor P(q) is the Fourier transform of the (volume fraction)
density-density correlation function. We can now average Equation (9) over orientations.
By indicating with Gφ(r) ≡ 〈Gφ (r)〉or, we obtain

P(q) ≡ 〈P (q)〉or =
1
v2

∫
Gφ(r)eiq·rdr (11)

and consequently

P(q) =
1
v2

∫
4πr2Gφ(r)

sin(qr)
qr

dr (12)

showing that the form factor is a function only of the modulus of the wavevector q = |q|.
The function p(r) = 4πr2Gφ(r) is called the “pair distribution function” and is proportional
to the probability density of finding two infinitesimal sub-volumes inside the particle at a
distance r.

A clear physical insight into the meaning of Gφ(r) and p(r) can be gained if we make
the assumption that the particle is a rigid assembly of Na identical subunits or monomers
of size a and volume va, so that Nava = v. Thus the local volume fraction reads

φ(r) = va

Na

∑
i

φa(r− ri) (13)

where φa(r) is the monomer volume fraction. If the monomer is so small that it can be
considered a point-like particle (a� λ), we have φa(r) = vaδ3(r) and the overall volume
fraction reads

φ(r) =
Na

∑
i

δ3(r− ri) (14)

where δ3 indicates the three-dimensional Dirac’s delta and ri are the atoms’ coordinates. By
inserting Equation (14) into Equation (10), we get:

Gφ(r) = v2
a

Na

∑
i,j

δ3
[
r− (ri − rj)

]
(15)

and its orientational average reads:

Gφ(r) =
v2

a
4πr2

Na

∑
i,j

δ1
(
r− dij

)
(16)

where δ1 indicates the one-dimensional Dirac’s delta and dij =
∣∣ri − rj

∣∣ is the distance
between the i-th and j-th atoms. In Equation (16), we have used the identity δ3(r−R)or =
δ1(r− R)/4πr2. Finally, by inserting Equation (16) into Equation (12), we obtain:

P(q) =
1

N2
a

Na

∑
i,j

sin
(
qdij
)

qdij
(17)

which is the famous Debye equation, worked out in 1915 [7] for the interpretation of X-ray
powder diffraction data.
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Low-angle regime

Whereas the form factor P(q) depends on the overall structure and shape of the
scattering particle, its profile at low q’s depends only on its average size. Indeed, by
recalling that for x → 0 , sin(x)/x ∼ 1− x2/6, we can expand Equation (17) in powers of
q obtaining:

P(q) = 1−
q2R2

G
3

+ O
(

q4
)

(18)

where

R2
G =

1
N2

a

Na

∑
i 6=j

(
dij
)2 (19)

is called the gyration radius of the particle. Equation (19) can be rewritten [8] as:

R2
G =

1
Na

Na

∑
i
|ri − rc.m.|2 (20)

where rc.m. is the center of mass of the particle. Thus, R2
G is a measure of the quadratic

size of the particle, independent of its shape and structural morphology. Equation (18) is
the basis of the so-called Guinier analysis [9], which provides a quantitative estimate of
the particle size from the low-q behavior of the scattered intensity, without necessity of
modelling its overall structure.

Absolute units

Equation (9) or its orientation averaged version, Equation (12), can be rewritten in
absolute units, i.e., in terms of the scattered power per unit solid angle (dP/dΩ) = I R2.
Thus, by indicating with P0 the incident power and with L the length of the scattering
volume, we obtain (see Appendix B):

dP(q)
dΩ

= R(q) sin2(φ)P0L (21)

where
R(q) = KoptcMP(q) (22)

is called the Rayleigh Ratio [cm−1] and represents the time-averaged scattered power per
unit solid angle, per unit incident power, and per unit length of the scattering volume. In
Equation (22) c [g cm−3] is the sample concentration, M [g] the particle’s molecular weight,
and Kopt [cm2 g−2] an optical constant given by

Kopt =
1

NA

4π2

λ4
0

n2
0

(
dn
dc

)2
(23)

where NA is the Avogadro number, n0 the refraction index of the solvent and dn/dc
its increment with respect to the sample concentration. Since the latter two parameters
are usually known (or easily measurable), Kopt is easily determined. Typical values for
Kopt in the visible range are ∼ 5 × 10−7 cm2 g−2 (polystyrene in organic solvents) or
∼ 4× 10−7cm2 g−2 (proteins in aqueous solvents).

Equation (22) is the basis for the determination of the particle’s molecular weight M,
which can be recovered from the zero-q extrapolation of R(q).

Polydispersity

In the presence of sample polydispersity characterized by a number distribution PN(R)
it is easy to show [3] that Equation (22) becomes

R(q) = Koptc〈M〉wt〈P(q)〉z (24)
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where

〈Mw〉 =
∫ ∞

0 [PN(R)M(R)]M(R)dR∫ ∞
0 PN(R)M(R)dR

(25)

〈P(q)〉z =
∫ ∞

0

[
PN(R)M2(R)

]
P(q)dR∫ ∞

0 PN(R)M2(R)dR
(26)

〈Mw〉 is the weight-average molecular weight of the particles, averaged by using the
weight distribution Pw(R) = PN(R)M(R). 〈P(q)〉z is the z-average form factor, averaged
by using the z-distribution Pz(R) = PN(R)M2(R). Note that the z-distribution is often
called Intensity distribution because for very small particles (a � λ0), the intensity is
proportional to M2(R).

2.2. Dynamic Light Scattering (DLS)

Dynamic Light Scattering (DLS) is based on the determination of the translational
diffusion coefficient D of particles freely moving in a fluid. This task can be tackled
by measuring the normalized Intensity-Intensity auto-correlation function g2(q, τ) =

〈I(q, t)I(q, t + τ)〉/〈I(q)〉2 of the light scattered by the sample at a given q. If the sam-
ple is made of a dispersion of a large number N of non-interacting particles undergo-
ing a Brownian motion, the scattered electric field is described by a complex Gaussian
stochastic process and g2(q, τ) is related to the normalized field-field correlation function
g1(q, τ) = 〈E(q, t)E∗(q, t + τ)〉/〈I(q)〉 by the Siegert relation

g2(q, τ) = 1 + β|g1(q, τ)|2 (27)

where β is known as the spatial coherence factor that depends on the number Nca of
coherence areas detected by the collection optics ( β ∼ 1/Nca for Nca � 1). Under the
further ideal condition of a sample made of monodisperse particles, we have:

g1(q, τ) = exp(−τ/τc) (28)

g2(q, τ) = 1 + β exp(−2τ/τc) (29)

where τc =
(

Dq2)−1 is the field-field correlation time. Thus g2(q, τ) decays at a rate
which is double with respect to g1(q, τ) with a decay time equal to τc/2. By fitting the
intensity correlation data to Equation (29), one can recover D, and in turn, by using the
Stokes-Einstein relation, the hydrodynamic diameter

dh =
kBT

3πηD
(30)

where kB is the Boltzmann constant, T the absolute temperature, and η the viscosity.
Under typical working conditions in aqueous solvents (T = 25C, η = 0.01g/s cm),
λ = 532 nm, n = 1.33, θ = 90◦, we have q = 22 µm−1 and the relation between τc and dh is
τc[s] = 4.6394× 10−6dh[nm].

Polydispersity

In the presence of polydispersity, it is easy to show that Equation (28) becomes:

g1(q, τ) =
∫ ∞

0
Pz(τc) exp(−τ/τc)dτc (31)

where Pz(τc) is the Intensity- or z-weighted distribution of the correlation times τc. Equation (31)
is a linear integral equation, which is a classic example of an ill-posed problem. Thus,
its solution (i.e., the recovery of Pz(τc)) is not a trivial task and is commonly worked out
by using iterative regularized inversion methods, such as the one based on the CONTIN
algorithm is adopted in many commercial DLS instruments. However, due to the heavy
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ill-posedness of the problem together with the fact that g1(q, τ) is not directly measured
but recovered by inverting Equation (27), the solution of Equation (31) might be unreliable,
as it may happen in the case of noisy g2 data, or when the sample contains particles of very
different sizes.

A partial alternative approach is to use the classical cumulants analysis [10], which,
however, works only for narrow distributions (στc /〈τc〉 � 1). By writing τ = 〈τc〉+ δτc,
where 〈δτc〉 =

∫ ∞
0 δτcPz(τc)dτc = 0, we can expand up to the second order the exponential

term appearing in Equation (31) obtaining:

exp(−τ/τc) = exp(−τ/〈τc〉)
[

1 +
δτc

〈τc〉2
τ +

1
2

δτc
2

〈τc〉4
τ2
]

(32)

by inserting Equation (32) into Equation (31) and in turn into Equation (27), by recalling
that 〈δτc〉 = 0 and maintaining only terms up to the second order, we get:

g2(q, τ) = 1 + β exp(−2τ/〈τc〉)
[

1 +
δτc

2

〈τc〉4
τ2
]

(33)

which depends on 〈τc〉 and στc . Thus Equation (33) can be used as a fitting function
for recovering the z-average decay time and standard deviation of the distribution that
characterizes the (narrow) sample polydispersity.

2.3. Multi Wavelength Turbidimetry (MWT)

The technique MWT is based on the measurement of the power PT(λ0) transmitted by
a sample that is illuminated with a white source of incident power P0(λ0). For an absorbing
and scattering sample, under the assumption that there is no multiple scattering, PT and P0
are related by the Lambert-Beer law [11]

PT(λ0) = P0(λ0)e−τ(λ0)L (34)

where L is the cell optical path and τ(λ0) is the extinction coefficient, customarily measured
in cm−1. In the case of non-absorbing samples or in the spectral regions where there are no
absorption bands, the light extinction is only due to scattering. In this case, τ(λ0) takes the
name of turbidity coefficient that can be computed by integrating Equation (22) over the
entire solid angle dΩ:

τ(λ0) =
∫

4π
R(q) sin2(φ)dΩ (35)

where sin2(φ) = 1− sin2(θ) cos2(ϕ) and dΩ = sin(θ)dθdϕ, being θ and ϕ the common
polar and azimuthal angles used in spherical coordinates. Note that the polar angle θ
coincides with the scattering angle, being the z axis defined as the direction of the incident
beam. Equation (35) can be conveniently rewritten (after some calculation) as:

τ(λ0) = 8π
∫ 1

0
R′(x)x

[
1− 2x2 + 2x4

]
dx (36)

where x = q/qmax = sin(θ/2) and R′(x) = R[x(q)]. As an example, we can compute
the turbidity of Rayleigh scatterers (a � λ0) for which P(q) = 1 and consequently
R(x) = KoptcM. The integration of Equation (36) gives τ(λ0) = (8π/3)KoptcM, imply-
ing that if one neglects the (typically known) lambda dependence of n0 and dn/dc, the
turbidity scales as τ(λ0) ∼ λ−4

0 . This power-law behavior with an exponent of −4 is
specific to Rayleigh (or point-like) scatterers and provides no information about the size
and morphology of the scatterers.

Conversely, when the size of the scatterers becomes comparable to or larger than λ0
quite useful information about the particle structure and morphology can be extracted from
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the MWT technique. For example, for very long and thin rigid, straight cylinders of length
L and diameter d (d� λ0 � L), the form factor is P(q) = π/qL leading to

τ(λ0) ∼ n0

(
dn
dc

)2
cµλ−3

0 (37)

where µ is the mass/length ratio of the cylinder, which provides information on the cylinder
cross-section (µ = (π/4)ρd2, with ρ being the cylinder density). Equation (37) is the basis
of the so-called Carr-Herman method [12], commonly used for the characterization of
macromolecular solutions of linear polymers.

Equation (37) can be generalized to the case of large fractal aggregates (or clusters)
made of an assembly of many small monomers [13,14]. Under the assumption that the
cluster gyration radius RG, the monomer diameter d and the wavelength fulfill the condition
d� λ0 � RG, the form factor scales as P(q) ∼ (qRG)

−Dm leading to

τ(λ0) ∼ n0

(
dn
dc

)2
cρd1−Dm λ−4+Dm

0 (38)

where Dm is the mass fractal dimension that characterizes the structural morphology of the
aggregate. Therefore, Equation (38) shows that the MWT technique can be quite useful for
investigating the structural properties of fractal systems.

3. Materials and Methods

The two instruments described in this section and used for the measurements reported
below have been realized by combining homemade and commercial mechanical, optical
and electronic components.

3.1. LA-SLS + MWT Instrument

The apparatus for the coupled Low Angle Static Light Scattering (LA-SLS), and Multi
Wavelength turbidimetry (MWT) consists of a homemade LA-SLS setup, which has been
implemented with a commercial fiber optic spectrophotometer for MWT measurements in
the IR-VIS-UV range. As shown in Figure 1a, by using two PC-controlled shutters, the sam-
ple cell can alternatively be illuminated with a focused laser beam (10 mW, λ = 532 nm) or
with a collimated white source beam. The LA-SLS sensor (Figure 1b) is made of 31 annular
quarters of photodiode rings centered around the optical axis, where a 200 µm pinhole
allows the beam to pass clear. The detector is placed on the Fourier plane, i.e., the plane
where the beam is focused. On this plane, each radial position r corresponds to the same
scattering angle via the relation θ = tg−1(r/z), where z is the distance between the cell and
the sensor. Thus, since the minimum and maximum radii of the rings are rmin = 180 µm
and rmax = 17 mm, the range of the detectable scattering angles is ∼ 0.1–10◦ (z = 100 mm).
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The MWT setup is based on the use of two identical commercial fiber optics spec-
trophotometers (Ocean Optics, mod. HR2000+). The sample cell is illuminated by a white
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light source (Ocean Optics, mod. DH2000) made of a deuterium and a halogen lamp
coupled together onto a 600 µm core optical fiber, which is then split into two 200 µm core
optical fibers by a 50–50 fiber-optics beam splitter. The light from one fiber is sent directly
to the reference spectrophotometer, which is used for normalizing the turbidimetry data
as usually done in a standard double-beam spectrophotometer. The light from the other
fiber is collimated and shined onto the sample, approximately in the same spot where the
laser beam hits the sample. The light beam, after having passed through the sample, is
reflected by a mirror placed in the blind zone of the Fourier plane (the one not occupied by
the LA-SLS sensor) onto a collecting lens (identical to the collimating one), that is coupled
to a 600 µm core optical fiber, whose end face is placed in the focal plane of the lens. In this
way, the fiber core acts as a spatial filter collecting only the transmitted light and rejecting
most of the light scattered at low angles [15]. A detailed description of the LA-SLS+MWT
setup can be found in Ref. [14].

3.2. WA-SLS and DLS Instrument

The Wide Angle (WA-SLS) and DLS instrument is a non-conventional LS photometer
capable of performing both SLS and DLS measurements. This instrument was developed
a long time ago at the University of California, Santa Barbara, by the group of D.S. Can-
nell [16] and recently donated to our laboratory. Differently from most commercial LS
instruments that work by using a mechanical goniometer for changing the angles at which
the scattered light is collected, this photometer employs 18 fixed angles, a feature that
guarantees high mechanical and optical stability. As sketched in Figure 2, the instrument
works by shining a mildly focused 25 mW CW He-Ne Laser operating at λ = 632.8 nm
onto a cylindrical cell placed at the center of a round tank filled with dust-free water. The
scattered light coming from the central portion of the beam is collected by 18 lenses (placed
on the side of the tank) and brought to the entrance face of 18 optical fibers. All fibers
are then bundled together onto the photocathode of a photomultiplier. A set of 18 PC-
controlled shutters placed in front of each fiber allows the opening of one channel at a time,
ensuring that intensities scattered at the various angles do not mix up onto the detector.
The angular range covered by this instrument is ∼3− 160◦. Since the optical fibers used in
this instrument collect a few coherence areas, each channel can operate both in the static
and dynamic mode. A detailed description of this instrument can be found in Ref. [16].
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4. Results

In this section, we report three examples of applications of the LS techniques for charac-
terizing non-stationary systems, such as aggregation of colloidal suspensions, aggregation
of hydroxyapatite nanoparticles, and formation of fibrin gels.
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4.1. Colloidal Aggregation (LA-SLS and MWT)

The colloidal aggregation of small monomers (such as gold, silica, or polystyrene
latex nanospheres) represents a paradigmatic example of how the LS techniques can be
fruitfully exploited for characterizing the kinetics of non-stationary systems undergoing an
irreversible growth process.

Water-based colloidal suspensions are usually stabilized against aggregation by the
presence of charges on the surface of the colloidal particles. Indeed, the interaction potential
between colloidal particles can be schematized as the sum of two opposing terms: short-
range Van der Waals attraction and long-range screened Coulomb repulsion. In normal
conditions, repulsion is stronger than attraction, but upon the addition of salt to the
suspension, the surface charges are screened out, and particles brought to contact by
Brownian motion can irreversibly stick together and start forming aggregates (or clusters).

When the activation barrier is so low that every particle’s (or clusters’) encounter
leads to an irreversible sticking, the aggregation process is termed Diffusion Limited
Cluster Aggregation (DLCA), indicating that the aggregation process is limited by the
clusters’ diffusion. Under DLCA conditions, the cluster size distribution is expected to be
rather monodisperse, the cluster mass M grows linearly with time ( M ∼ t), whereas the
cluster gyration radius RG grows as a power law ( RG ∼ t1/Dm), where Dm is the cluster
mass fractal dimension. On the contrary, in the presence of a small but non-negligible
activation barrier, two particles or clusters may need to meet many times before sticking to
each other, and the process is said to be a Reaction Limited Cluster Aggregation (RLCA).
Clusters grown under RLCA conditions are characterized by broad distributions, with both
M and RG growing exponentially in time. In both cases (DLCA and RLCA), the structure
of the aggregates exhibit a fractal morphology implying that M scales with RG according to

M ∼ ma

(
RG
a

)Dm

(39)

where a is the monomer radius and ma its mass. Under the conditions of DLCA or RLCA,
most of the structural features of the fractal aggregates do not depend on the microscopic
and/or chemical details of the colloid system, and, therefore, fractal aggregation behaves
like a universal process [17]. DLCA aggregates have a fractal dimension Dm ∼ 1.7,
independent on the fact that the colloidal particles are made of gold, polystyrene or silica.
In a similar way, RLCA leads to more compact objects having dimension Dm ∼ 2.1.
Figure 3 shows a pictorial description of the growth of a fractal colloidal aggregate.
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Figure 3. Pictorial description of the growth of a fractal colloidal aggregate. The mass M and the
gyration radius RG of the aggregate both increase with time, and they scale as M ∼ (RG)

Dm , where
Dm is the mass fractal dimension of the aggregate. Picture reproduced with permission from Ref. [18].

SLS is a perfect tool for studying the fractal morphology of a fractal aggregate grown
from polystyrene latex nanospheres dispersed in water. Indeed, their density (1.05 g/cm3)
matches quite closely the density of water and, therefore, fairly large monomers (∼100 nm),
providing a high scattering signal, and can be used as building blocks of the aggregating
cluster without sedimentation effects altering their aggregation kinetics.

In our experiment, we used latex spheres 70 nm in diameter (Thermo-Fisher Sci-
entific Co.) at a concentration number c0 = 5.6× 1010 cm−3 (volume fraction concentra-
tion = 10−5), and the aggregation was induced by adding the divalent salt [MgCl2] = 15 mM.
The scattered intensities taken at different times after the addition of salt are shown in
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Figure 4 (open symbols) as a log-log plot. The figure shows the typical behavior expected
for the evolution of the scattered intensities in a colloidal aggregation experiment: a strong
(~2.5 decades) increase in the zero-q scattered intensity, accompanied by a remarkable
change in the shape of I(q), with the curve roll-off moving towards small q and the large-q
data laying on the same asymptote. The latter one is the signature of the aggregate’s
fractal morphology and represents a measure of their mass fractal dimension Dm because
asymptotically ( q→ ∞ )→ I(q) ∼ q−Dm . The data in Figure 4 were fitted to the so-called
Fisher-Burford function [19].

I(q) =
I(q = 0)[

1 + 2
3Dm

q2R2
G

] Dm
2

(40)

in which the fitting parameters were the zero-q intensity I(q = 0), the fractal dimension Dm
and the cluster gyration radius RG. The fittings, reported in Figure 4a as solid curves, are
quite satisfactory and allow to estimate Dm = 1.62± 0.02, a figure that, although somewhat
smaller than expected, is consistent with a DLCA growth modality.
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(a) Scattered intensity I(q) data (symbols) and fits (continuous lines) as a function of q for different
times after addition of salt to the colloidal suspension; (b) behavior of the turbidity as a function of
wavelength at different times for the same sample of panel (a).

A further check that the aggregation followed a DLCA growth modality was found
by studying the time behavior of M and RG, which were recovered from data fitting (note
that I(q = 0) is proportional to M, see Equation (22)). Indeed, Figure 5a shows that RG
grows as a power-law characterized by an exponent of 0.62, which is consistent with
Dm = 1/0.62 = 1.62. Similarly, Figure 5b shows that M grows linearly with time, as
expected for DLCA. Figure 5c shows that the fractal dimension of the clusters is consistent
with Dm ∼ 1.62 during the entire aggregation process, but its recovery becomes rather
accurate only when the clusters grow to sizes RG & 5 µm. Finally, Figure 5d shows that the
scaling between M and RG follows Equation (39), which is a key signature of the clusters’
fractal morphology.

The growth kinetics of a colloidal aggregation process can also be fruitfully investi-
gated by using the MWT technique implemented via commercial fiber optics spectropho-
tometers, as described in Section 3.1. Figure 4b reports the behavior of the sample turbidity
as a function of the wavelength λ0 for different times after addition of salt. The sample was
the same as Figure 4a. The figure shows that at the beginning when the suspension is made
of single monomers, the turbidity is relatively low and scales as τ(λ0) ∼ λ−4.4

0 . Afterward,
its amplitude constantly increases, and the decay exponent grows up to the final behavior
τ(λ0) ∼ λ−2.8

0 .
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of the cluster gyration radius RG. The three slopes reported in panels (a,b,d) are consistent with a
DLCA growth modality characterized by a mass fractal dimension Dm = 1.62.

As described in Section 2.3, we can use the behavior of τ(λ0) for estimating the mass
fractal dimension of the aggregates via Equation (38), but this method apparently leads
to a wrong value of Dm = 4− 2.8 = 1.2. However, due to the wavelength dispersion of
the refraction indexes of both polystyrene and water [14,15], the exponent −4 expected
from Rayleigh scattering is modified into an effective exponent of −4.4. Thus, from the
slope measured at the latest time, we recover a value of Dm = 4.4− 2.8 = 1.6, which is in
excellent agreement with the fractal dimension recovered from the LA-SLS measurements.

4.2. Hydroxyapatite Polymerization (SLS at Wide Angle + DLS)

Hydroxyapatite (Ca10(PO4)6(OH)2) nanoparticles (nHAs) are among the main con-
stituents of hard tissues in living organisms, such as shell, bone, and teeth [20]. The size,
morphology, and crystalline structure of nHAs determine the mechanical and biofunctional
properties of these tissues, opening the way to exploit synthetic biomimetic nHAs in many
biomedical and biotechnological applications, from regenerative medicine for bone repair
and growth to tissue engineering and drug delivery [21]. However, the spectrum of nHAs
applications goes well beyond the field of biomedicine. For example, nHAs are used as
coatings, catalysts, water purification, chromatography, and, in general, in the field of
material science, for the design and fabrication of new composite nHA-based materials
with high mechanical strength and elasticity, similar to those of bone [21]. Very recently,
the use of (properly doped) nHAs and congeners have also been proposed in the field of
green agriculture as non-toxic, low-cost, and efficient nanofertilizers [22,23].

One of the still highly debated issues about nHAs is related to their crystallization
mechanism and, in particular, how the growth kinetics and the structural-morphological
properties of the final nHA nanoparticles depend on the chemical-physical properties of
their starting solutions and intermediate nanosized solid precursors. Indeed, precipitation
of poorly soluble calcium orthophosphates is highly dependent on precursor concentra-
tions, medium acidity, temperature, the presence of complexing agents, and ionic strength.
Altogether, these conditions drive the formation of different amorphous calcium phosphate
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(ACP) precursors, later transforming into nHAs. While kinetics plays a fundamental role
in controlling such transformation, the thermodynamic stability of (bulk) apatite makes
the formation of nHAs highly probable if enough time is allotted for ion exchange and
nanoparticle maturation. These aspects have been beautifully discussed in a number of
review papers [24,25] and books [26,27].

One of the most established mechanisms leading to nHAs during precipitation from
an aqueous solution is the pristine formation of tiny amorphous calcium phosphate (ACP)
nanoparticles, which, upon maturation (within minutes or hours if the reaction is kept at a
physiological temperature of 37 ◦C) slowly transform into nHAs. How fast ACP transforms
into nHAs when the ion concentrations are kept very low and complexing agents (such as
citrate) are added to follow the process en relenti, is still an underexplored field of study,
which we then tackled by the abovementioned WA-SLS and DLS techniques.

Specifically, nAPs were synthetized by mixing three solutions: (a) calcium chloride
(CaCl2, 0.2 M), (b) sodium carbonate + potassium phosphate (Na2CO3, 0.1 M + HK2PO4,
0.12 M) and (c) citrate (tribasic) (C2H5Na3O7, 0.2 M). The three solutions were mixed in
equal volumes (40 µL) and diluted in water up to a final volume of 12 mL, producing a
final nHAs concentration of 6.7× 10−5 M.

Upon mixing, we observed a slow but constant increase in the scattering signal
accompanied by the formation of growing fractal clusters, as monitored both by SLS and
DLS. Figure 6 shows the time evolution of the scattered intensity distribution from the
beginning of aggregation when I(q) is almost flat with a slight curvature at high q, up
to ∼21 h, when it attains a full power-law decay behavior, I(q) ∼ q−Dm over the entire
q-range. Thus the data in Figure 6 resemble very closely the behavior reported in Figure 4a
for the growth kinetics of fractal colloids. Similarly, the I(q) data were nicely fitted with the
same fitting function (Equation (40)) obtaining for the fractal dimension Dm = 1.88± 0.03,
which is a figure in between the DLCA and RLCA expected fractal dimensions.
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Figure 6. Aggregation of HAPs studied by WA-SLS: behavior of the scattered intensity I(q) data
(symbols) and fits (continuous lines) as a function of q for different times after mixing of the three
solutions described in the text. The slope indicates that the clusters have a mass fractal dimension
Dm ∼ 1.88.

As done for the colloidal aggregation experiment, we can analyze the time evolution
of the various cluster parameters for distinguishing between the two growth modalities.
Figure 7a,b (lin-log plots) show that both M and RG exhibit an exponential growth typical
of an RLCA aggregation process. Figure 7c shows that the determination of Dm becomes
accurate only when the clusters grow to sizes RG & 100 nm, and finally, Figure 7d confirms
that the entire data analysis is self-consistent because the power-law scaling (Equation (39))
between M and RG is characterized (at later times) by the exponent 1.88, which matches
quite accurately the value of Dm found from the asymptotic decay of scattered intensity
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distribution, namely I(q) ∼ q−Dm . To summarize, Figure 7 suggests that the aggrega-
tion process is consistent with an RLCA growth modality, in spite of the fact that the
value found for Dm is intermediate between DLCA and RLCA. This is not so surprising
because, although universal values for the fractal dimensions have been proposed (and
experimentally confirmed for ideal systems such as small colloids undergoing irreversible
aggregation), in many situations, the conditions for a pure DLCA or RLCA do not exist, or
they do change during the course of time. Thus intermediate regimes in which a transition
RCLA→ DLCA may be observed [28] or a restructuring of the cluster morphology leading
to a transformation DCLA→ RLCA may take place [29,30]. In all these situations, Dm can
assume values between DLCA and RLCA.
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the same aggregation clusters of Figure 6a; (d) behavior of zero-q intensity I(q = 0) as a function of
the cluster gyration radius RG. The three slopes reported in panels (a,b,d) are consistent with an
RLCA growth modality characterized by a mass fractal dimension Dm = 1.88.

The results of Figures 6 and 7 obtained via the WA-SLS technique can be compared
(and possibly) validated by means of the DLS measurements taken on the same nHAs
sample. Figure 8 shows such a comparison, where the RG data taken with WA-SLS are
reported as equivalent diameter, i.e., dh = 2

√
5/3RG (solid black circles), whereas the dh

recovered with DLS at three different angles are reported as open symbols. As one can
notice, the DLS data are all consistent with each other and consistent with the static data
only at the beginning of the aggregation process, when dh ∼ 100–200 nm. Later on, the
DLS sizes become progressively smaller than the WA-SLS sizes, suggesting that the solvent
can drain away from the loose and flexible structure of the clusters, resulting in an effective
hydrodynamic radius smaller than its equivalent gyration radius. As for kinetics, both data
sets are compatible with exponential growth (although at different rates), suggesting once
again that the aggregation process is consistent with an RLCA growth modality.
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4.3. Fibrin Polymerization (SLS at Low Angle and Wide Angle + MWT)

Fibrin gels are biological networks of fundamental importance in the process of blood
coagulation [31,32]. Indeed, following an injury, they start to grow around the damaged
tissue forming a network that traps platelets and other blood components, eventually
forming the blood clot that stops bleeding. Fibrin gels also play important roles in other
pathological and physiological situations, such as thrombosis and cancer [33], but they
are also used in many biotechnological applications, from surgery (adhesives and sealants
called fibrin glues) to tissue engineering and drug delivery. A thorough review on fibrin
gels and their biotechnological applications can be found in [34].

Fibrin gels are grown from the polymerization of the macromolecule fibrinogen (FG)
after activation by the enzyme thrombin (THR). According to the classic theory of fibrin for-
mation [34], the activated monomers aggregate, forming half-staggered, double-stranded
fibrils that initially grow in length and, only when they are long enough to interact with
each other, start to branch and aggregate laterally and eventually a 3D network is obtained.
The polymerization kinetics and the final structure of the gel depend on the physical-
chemical conditions of the solution in which the gel is grown, such as the FG and THR
concentrations, pH, ionic strength, or presence of Ca++ ions [35–38]. As a consequence,
kinetics and structure are intimately related to each other, implying that the growth modal-
ity determines the final aged gel structure. The latter one depends on physical properties
(such as fiber diameter and length, fiber elasticity and pore size) that are directly linked to
their mechanical and biological functions [39]. For example, the fibers of a fibrin gel are
very soft (if compared with equal diameter fibers of other biopolymer networks such as
F-actin or collagen) and can be deformed or stretched to a quite large extent [40], a feature
which is essential for the gel functioning as an efficient hemostatic plug and a wound
healing matrix.

Figure 9a shows a typical rendering obtained from a stack of confocal images taken
on an aged fibrin gel: the network is made of a collection of randomly oriented straight
fibers joined together at some nodal points and separated by an average distance that is
much larger than their diameters [41,42]. The fibers are almost monodisperse in size, but
their density is not uniform, giving rise to correlated spatial density fluctuations that are
characterized by a long-range spatial order, whose length scale is comparable with the
distance between fibers.
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Figure 9. (a) Rendering of confocal optical microscope images taken on an aged fibrin gel. The yellow
ellipses indicate regions of higher fiber density; (b) 3D representation of an (in-silico) fibrin gel, where
in red are shown the spheres with the largest diameters that can be optimally fit (tangent to the fibers)
in the pore zones of the gel. Their average diameter corresponds to the gel pore size. Pictures adapted
with permission from Refs. [41,42].

Early LA-SLS and WA-SLS studies [35–37,41] have shown that the structure of these
gels can be modeled as an assembly of densely packed fractal “blobs” of mass fractal
dimension 1 < Dm < 2, size ξ, placed at an average distance ξ0 ∼ ξ. Each blob, which
corresponds to the regions of higher density in Figure 9a (yellow ellipses), is made of
different-length straight fibers of diameter d, density ρ, joined at randomly distributed
nodal points. We were also able to demonstrate that the parameter ξ0 gives a correct
estimate of the gel mesh or pore size, which can be quantitatively defined as the average
diameter of the largest spheres that can be accommodated in the pores of the gel and are
tangent to the surrounding fibers (see Figure 9b).

Static light scattering techniques can provide reliable estimates of all the above pa-
rameters (Dm, ξ0, d, $), but this is a rather difficult task because of the huge range of
length scales to be probed, which goes from fiber diameters ( d ∼ 50–100 nm) to gel pore
sizes ( ξ0 ∼ 10 µm or larger). Thus, a very wide range of q-vectors must be accessed, a
requirement that can be accomplished by coupling LA-SLS and WA-SLS techniques.

In the past, we have performed this task [35], but always independently, i.e., by using
different instruments that operate on different specimens (although prepared under the
same conditions), different scattering cells, different laser sources, etc. The consequences
are a rather low reproducibility and reliability of the results, also deepened by the fact that
biological samples are themselves prone to be somewhat irreproducible. A way out of this
problem is to perform measurements with different techniques on the same specimen at
the same time, as done with the LA-SLS+MWT setup in Figure 1 [14].

Figure 10 reports log-log plots of LA-SLS and MWT data (and corresponding fits) taken
on a polymerizing fibrin solution (FG 0.45 mg/ml in TBE, THR:FG molar ratio 1÷ 100) at
different, relatively long times after adding thrombin to the FG solution. As shown, both
the LA-SLS and MTW signals increase with time up to t ∼ 1000 s, when the gel attains its
steady-state structure.

The data were fitted with two functions (developed according to the blob model
described above, see Ref. [14]). For R(q) we used the fitting function given by Equation (C.1)
reported in the Supporting Information of Ref. [41] (with errata), whereas for τ(λ0) we
used the numerical integration given by Equation (36). Both functions depend on the
four parameters Dm, ξ0, d and $, some of which are highly correlated if recovered from
individual fits. For example, from LA-SLS we can reliably recover Dm (from the high-q
region slope) and ξ0 (from the peak position), but not d and $ because the scattering
amplitude depends on both ( I ∼ $d2). At the same time, the slope of the power-law
behavior of the MWT depends not only on Dm but also on d and to a lesser extent on ξ0
because the conditions of Equation (38) are only partially fulfilled. Similarly the amplitude
of MWT depend on d and $.
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procedure described in the text. Panels (c,d) report the corresponding relative residuals for each fit.
Pictures reproduced with permission from Ref. [14].

We solved the problem by adopting a global fitting strategy, in which LA-SLS and
MWT data are fitted simultaneously; this means that the two data sets are fitted with the
two fitting functions described above, both controlled by the same floating parameters,
namely Dm, ξ0, d and $. In this case, the χ2 minimization is carried out by taking into
account the (weighted squared) deviations of each data set from its corresponding fitting
function. Equivalently, the combined fitting of the two data sets can be performed by
following a two-step procedure in which we first fit LA-SLS data and recover Dm and ξ0;
then, we fit the MWT data (by keeping fixed Dm and ξ0 to the values found above) and
recover d and $. We have shown [14] that the two methods (global and two-step procedure
fits) are fairly equivalent, with the first one being more robust because not affected by
systematic errors introduced by the fixed parameters used in the two-step procedure. On
the other hand, the second method is somewhat more flexible because the fixed parameters
Dm and ξ0 can be estimated by using different techniques (other than LA-SLS), such as
confocal microscopy [42] and rheometry [43].

By applying the two-step procedure to the data in Figure 10 corresponding to the aged
gel (t > 1000 s), we obtained Dm = 1.37± 0.01, ξ0 = 13.2± 0.1 µm, d = 90± 5 nm, and
ρ = 0.44± 0.03 g/cm3.

As to the kinetic aspect of the data presented in Figure 10, one may notice that, in the
time range of the figure, both LA-SLS and MWT data exhibit a remarkable growth of their
amplitudes, with only slight changes in their shape distributions. This feature implies that
the fibrin network has already formed and attained its final structure after ∼230 s. Later on,
up to the final aged gel formation, the growth kinetics consist mainly of an increase in the
fibers’ mass/length ratio (which is responsible for the amplitude increase), with almost no
change in the gel pore size ξ0 (constant peak position, Figure 10a) and the fractal dimension
Dm.

The data in Figure 10 are consistent with a very simple growth mechanism: initially,
the fibrinogen monomers polymerize into double-stranded linear fibrils [35] until these are
so long that they interact and start linking to each other. At this time, the onset of gelation
takes place, and the scaffold for the building up of the final gel network is outlined. As
shown in Ref. [35], the fibrinogen concentration necessary for building up the scaffold
is only a small fraction of the overall fibrinogen concentration (∼10–20%) so that all the
remaining free monomers or fibrils can diffuse around and bind to the frozen fibers that
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grow thicker and thicker (or denser and denser, or both) until no monomers are around.
Thus, during this thickening phase, the gel structure remains unchanged, and the scattering
amplitude constantly increases without almost no change in shape.

Noticeably, this growth mechanism appears to be quite suitable for letting the fibrin gel
accomplish its main physiological task very efficiently, i.e., the process of blood coagulation.
Indeed, a network made of thin fibrils is formed rather quickly and starts to trap blood
components, followed by a phase in which the network strengthens its fibers (making them
thicker) so that it can withstand the blood pressure when the blood clot is fully formed, and
there is no more bleeding. During the entire process, the fibers need to be rather soft and
very elastic (so as to bear local stresses and avoid breakage), a feature that is guaranteed by
their low density ( ρ ∼ 0.4 g/cm3), implying that the fibrils inside the fibers are not densely
packed but intertwined with solvent molecules.

The growth model described above was further refined by carrying out coupled
measurements of Small Angle X-ray Scattering (SAXS) and WA-SLS data on the early phases
of the polymerization process (data not reported, see [38]) where we found out that the
branching also takes place at the level of single fibrils. Thus, the formation of the initial
scaffold is even more rapid, and the thickening phase also includes the collapse of the
branched fibril on the frozen fibers.

5. Conclusions

In this work, we have reviewed and discussed the main features of the classical
light scattering techniques, such as Static Light Scattering (SLS), Dynamic Light Scattering
(DLS), and Multi Wavelength Turbidimetry (MWT). We have shown how these techniques
can be very useful for characterizing the structure and the dynamics of various complex
systems, both in their stationary states at thermodynamic equilibrium and when they un-
dergo irreversible aggregating, polymerizing, or self-assembling kinetics. Three examples
were reported:

1. Aggregation of 70 nm latex colloids that, when the suspension is destabilized by the
addition of salt, aggregate to form fractal clusters characterized by a Diffusion Limited
Cluster Aggregation (DLCA) growth kinetics. The final cluster was RG ∼ 20–30 µm
in size with a fractal dimension with Dm ∼ 1.62. This study was performed by using
the LA-SLS + MWT techniques.

2. Polymerization of hydroxyapatite nanoparticles starting from solutions of calcium
chloride, potassium phosphate, and citrate reagents. In this case, the kinetics follow a
Reaction Limited Cluster Aggregation (RLCA) growth modality, with aggregates as
large as RG ∼ 1–2 µm, characterized by a final fractal dimension Dm ∼ 1.88. This
study was performed by using the WA-SLS + DLS techniques.

3. Formation of fibrin gels starting from the polymerization of a fibrinogen solution
destabilized by the addition of thrombin. The late stages of this kinetic process
revealed that the growing mechanism consists of a quick formation of a network
made of thin fibrils, followed by a thickening phase during which the fibers become
thicker and thicker and make the network increasingly stronger to withstand the
blood pressure. This study, which was performed by using the LA-SLS + MWT
techniques, provided a clear example of the benefits of coupling together different
techniques. Indeed, by combining LA-SLS + MWT, we were able to recover the four
parameters characterizing the gel structure (pore size, fractal dimension, fiber size,
and density), which could not be recovered from single-methods data analysis.

Finally, we would like to point out that in this mini-review, we (deliberately) reported
only some examples taken from our research group activity. We are perfectly aware that
these examples are quite limited, and they are not at all fully representative of the wide
spectrum of experimental implementations and applications of the LS techniques. However,
thanks to them, we had the possibility of entering into the details of the various methods
and discussing both their potentialities and limitations. Similarly, when presenting the
advantages of coupling different methods, we limited ourselves to only LS techniques,
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without discussing the possibility of combining LS with SAXS and SANS techniques, but
only mentioning an application [38]. This example already highlights that the combined
use of LS and SAXS/SANS techniques would clearly enlarge the types of samples (and
the q-range) investigable with scattering techniques, but this was beyond the purpose of
this article.
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Appendix A

In this Appendix, we will work out Equation (2) starting from Equation (1) and from
the assumption that the sample is composed of a suspension of N (not overlapping) particles
with their centers of mass located at the time-dependent positions Rk(t) (k = 1, . . . , N).
If we indicate with rk(t) the position of each particle element with respect to its center of
mass (rk(t) = r−Rk(t)) and define the volume fraction of each particle as φk(rk) (equal to
1 inside and 0 outside the particle), the local dielectric constant reads

ε(r, t) =
N

∑
k=1

φk(r−Rk(t))[εk(rk, t)− ε0(r, t)] + ε0(r, t) (A1)

where ε0(r, t) is the local dielectric constant of the solvent. Equation (A1) correctly predicts
that inside the k-th particle, the dielectric constant is εk(rk, t), whereas the solvent (outside
any particle) is equal to ε0(r, t).

By using Equation (A1), we can express the fluctuations of the dielectric constant

ε(r, t) =
N
∑

k=1
φk(r−Rk(t))[εk(rk, t)− ε0(r, t)] + ε0(r, t)

+[〈ε0〉(r, t)− 〈ε0〉]
(

1−
N
∑

k=1
φk(r−Rk(t))

)
+[〈ε0〉 − 〈ε〉]

(A2)

where 〈ε0〉 is the average dielectric constant of the solvent and ∆εk(rk, t) = [εk(rk, t)− 〈ε0〉].
Equation (A2) shows that δε(r, t) is the result of three contributions. The first one is due to
the optical mismatch between the particles and the solvent; it is equal to ∆εk(rk, t) inside
the k-th particle, whereas it is zero outside any particle. The second one is due to the
fluctuations of the solvent dielectric constant that may derive from density fluctuations
if the solvent is a pure fluid or from concentration fluctuations if the solvent is a mixture
of liquids; it is equal to [〈ε0〉(r, t)− ε0] when r is in the solvent, whereas vanishes inside
any particle. Note that this term represents a scattering background for the measurement,
which can often be neglected or properly subtracted. Finally, the last term is a constant term
that contributes only to the zero-angle scattering and, therefore, will not be considered.
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Under the assumption that the dominant term is the first one, Equation (A2) can be
conveniently rewritten as

δε(r, t) =
N

∑
k=1

[φk(r)∆εk(r, t)]⊗ δ(r−Rk(t)) (A3)

where the operator ⊗ denotes convolution. Upon substitution of Equation (A3) into
Equation (1) and using the well-known convolution theorem of the Fourier transform,
Equation (2) can be easily worked out.

Appendix B

In this Appendix, we will work out Equations (22) and (23) of the main text, which
describe how the scattered intensity distribution can be expressed in absolute units.
Starting from Equation (7) and recalling that the scattered power per unit solid angle
(dP/dΩ) = I R2, we can write

dP(q)
dΩ

= A2v2 I0 sin2(φ)P(q)N (B1)

where A = π∆ε/λ2
0. By indicating with S the square cross-section of the incident beam and

with L the length of the scattering volume (V = SL), the incident intensity can be written
as I0 = P0/S, where P0 is the average power of the incident beam. Thus:

dP(q)
dΩ

=

(
π2∆ε2

NAρ2λ4
0

)
cM sin2(φ)P0LP(q) (B2)

where ρ
[
g cm3] is the particle density, c

[
g cm3] the sample concentration, M [g] the

particle molecular weight (M = ρvNA, being NA the Avogadro number) and we have used
Equation (6a). The term inside the parenthesis is an optical constant Kopt

[
cm2 g2] that

depends on the optical mismatch ∆ε.
However, the determination of ∆ε is not straightforward, and a much simpler method

for determining Kopt can be adopted by exploiting the dependence of the medium refraction
index upon increasing particle concentration.

By recalling that for a dilute suspension of particles with volume fraction φ� 1, the
average dielectric constant of the medium can be found via the Lorentz-Lorenz relation [44]

〈ε〉 = 〈ε0〉+ ∆ε φ (B3)

and using 〈ε0〉 = n2
0 (n0 is the average refraction index of the solvent), we can easily

find that

∆ε =

(
d〈ε〉
dφ

)
= 2n0

(
dn
dφ

)
= 2n0

(
dn
dc

)
ρ (B4)

where we have used c = ρφ and
(

dc
dφ

)
= ρ. By substituting Equation (B4) into the term

inside the parenthesis of Equation (B2), the optical constant reads

Kopt =
1

NA

4π2

λ4
0

n2
0

(
dn
dc

)2
(B5)

which is equal to Equation (23) of the main text.
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