Perovskite-Based Memristor with 50-Fold Switchable Photosensitivity for In-Sensor Computing Neural Network
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Synthesis and Characterization
2.2. Device Fabrication and Mensuration
2.3. The Image Preprocessing Method
2.4. The Neural Network Construction Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagras, H.; Alghazzawi, D.; Aldabbagh, G. Employing type-2 fuzzy logic systems in the efforts to realize ambient intelligent environments [application notes]. IEEE Comput. Intell. Mag. 2015, 10, 44–51. [Google Scholar] [CrossRef]
- Murase, H.; Nishiura, Y.; Mitani, K. Environmental control strategies based on plant responses using intelligent machine vision technique. Comput. Electron. Agric. 1997, 18, 137–148. [Google Scholar] [CrossRef]
- Radcliffe, J.; Cox, J.; Bulanon, D.M. Machine vision for orchard navigation. Comput. Ind. 2018, 98, 165–171. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, T.; Zhou, H.A.; Cai, L.; Wu, H.; Tang, J.; Jiang, W. Electrically Reconfigurable 3D Spin-Orbitronics. Adv. Funct. Mater. 2021, 31, 2007485. [Google Scholar] [CrossRef]
- Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R.C.; Chen, Y.; Lenander, M.; Lucero, E.; O’Connell, A.D.; Sank, D. Implementing the quantum von Neumann architecture with superconducting circuits. Science 2011, 334, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yu, H.; Chen, S.H.Y.; Zhou, Y.; Han, S.T. The strategies of filament control for improving the resistive switching performance. J. Mater. Chem. C 2020, 8, 16295–16317. [Google Scholar] [CrossRef]
- Chen, L.; Gong, C.; Li, C.; Huang, J. Low Power Convolutional Architectures: Three Operator Switching Systems Based on Forgetting Memristor Bridge. Sustain. Cities Soc. 2021, 69, 102849. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Zhang, X.; Ma, S.; Gao, W. Just Recognizable Distortion for Machine Vision Oriented Image and Video. Coding Int. J. Vision 2021, 129, 2889–2906. [Google Scholar] [CrossRef]
- Ran, W.; Wang, L.; Zhao, S.; Wang, D.; Yin, R.; Lou, Z.; Shen, G. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 2020, 32, 1908419. [Google Scholar] [CrossRef]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Iwai, H. Future of nano CMOS technology. Solid-State Electron. 2015, 112, 56–67. [Google Scholar] [CrossRef]
- Elmezayen, M.R.; Wu, B.; Ay, S.U. Single-slope look-ahead ramp ADC for CMOS image sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4484–4493. [Google Scholar] [CrossRef]
- Meng, J.L.; Wang, T.Y.; He, Z.Y.; Chen, L.; Zhu, H.; Ji, L.; Sun, Q.Q.; Ding, S.J.; Bao, W.Z.; Zhou, P. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 2021, 8, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Dai, Q. Artificial intelligence accelerated by light. Nature 2021, 589, 25–26. [Google Scholar] [CrossRef]
- Yang, J.Q.; Wang, R.; Ren, Y.; Mao, J.Y.; Wang, Z.P.; Zhou, Y.; Han, S.T. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems. Adv. Mater. 2020, 32, 2003610. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Z.; Chen, J.; Choy, T.H.; Wang, J.; Zhang, N.; Lin, Z.; Yu, S.; Kang, J.; Wong, H.S.P. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782. [Google Scholar] [CrossRef]
- Tan, H.; Liu, G.; Yang, H.; Yi, X.; Pan, L.; Shang, J.; Long, S.; Liu, M.; Wu, Y.; Li, R.W. Light-gated memristor with integrated logic and memory functions. ACS Nano 2017, 11, 11298–11305. [Google Scholar] [CrossRef]
- Ling, H.; Tan, K.; Fang, Q.; Xu, X.; Chen, H.; Li, W.; Liu, Y.; Wang, L.; Yi, M.; Huang, R. Light-Tunable Nonvolatile Memory Characteristics in Photochromic RRAM. Adv. Electron. Mater. 2017, 3, 1600416. [Google Scholar] [CrossRef]
- Adinolfi, V.; Peng, W.; Walters, G.; Bakr, O.M.; Sargent, E.H. The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance. Adv. Mater. 2018, 30, 1700764. [Google Scholar] [CrossRef]
- Ahmed, T.; Tahir, M.; Low, M.X.; Ren, Y.; Tawfik, S.A.; Mayes, E.L.; Kuriakose, S.; Nawaz, S.; Spencer, M.J.; Chen, H. Fully Light-Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus. Adv. Mater. 2021, 33, 2004207. [Google Scholar] [CrossRef]
- Guan, X.; Hu, W.; Haque, M.A.; Wei, N.; Liu, Z.; Chen, A.; Wu, T. Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions. Adv. Funct. Mater. 2018, 28, 1704665. [Google Scholar] [CrossRef]
- Wang, T.; Meng, J.; Li, Q.; He, Z.; Zhu, H.; Ji, L.; Sun, Q.; Chen, L.; Zhang, D.W. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 2021, 89, 106291. [Google Scholar] [CrossRef]
- Jeon, S.; Ahn, S.; Song, I.; Kim, C.J.; Chung, U.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Han, T.; Tang, M.; Zhang, Z.; Zheng, X.; Liu, G. Improving the recognition accuracy of memristive neural networks via homogenized analog type conductance quantization. Micromachines 2020, 11, 427. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MINST: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Boix, P.P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S.G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 2014, 17, 16–23. [Google Scholar] [CrossRef]
- Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S.M.; Röthlisberger, U.; Grätzel, M. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656–662. [Google Scholar] [CrossRef]
- Li, D.; Liao, P.; Shai, X.; Huang, W.; Liu, S.; Li, H.; Shen, Y.; Wang, M. Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Adv. 2016, 6, 89356–89366. [Google Scholar] [CrossRef]
- Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T.C.; Lam, Y.M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Eperon, G.E.; Leijtens, T.C.; McMeekin, D.; Saliba, M.; Zhang, W.; de Bastiani, M.; Petrozza, A.; Herz, L.M. Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz. 2015, 2, 315–322. [Google Scholar] [CrossRef]
- Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, E.L.; Hoke, E.T.; Bailie, C.D.; Nguyen, W.H.; Bowring, A.R.; Heumüller, T.; Christoforo, M.G.; McGehee, M.D. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690–3698. [Google Scholar] [CrossRef]
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.T.W.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Zhang, Y.; Liu, S.; Han, T.; Chen, X.; Xu, Y.; Meng, Z.; Zhang, G.; Zheng, X.; Zhao, J. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst. 2020, 2, 2000122. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Yu, R.; Li, E.; Yan, Y.; Huang, J.; Wu, S.; Chen, H.; Guo, T. A full transparent high-performance flexible phototransistor with an ultra-short channel length. J. Mater. Chem. C 2021, 9, 1604–1613. [Google Scholar] [CrossRef]
- Mahyavanshi, R.D.; Kalita, G.; Ranade, A.; Desai, P.; Kondo, M.; Dewa, T.; Tanemura, M. Photovoltaic Action with Broadband Photoresponsivity in Germanium-MoS2 Ultrathin Heterojunction. IEEE Trans. Electron. Dev. 2018, 65, 4434–4440. [Google Scholar] [CrossRef]
- Zhang, Y.; Basak, D.; Pun, K. A highly linear multi-level SC DAC in a power-efficient Gm-C continuous-time delta-sigma modulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4592–4605. [Google Scholar] [CrossRef]
- Durandetto, P.; Sosso, A. Non-Conventional PJVS Exploiting First and Second Steps to Reduce Junctions and Bias Lines. IEEE Trans. Instrum. Meas. 2019, 69, 1294–1301. [Google Scholar] [CrossRef]
- Chong, W.; Shen, X.; Fan, X.; Lu, S.; Sun, W. A Novel Digital Control Method for Improving Dynamic Responses of Multimode Primary-Side Regulation Flyback Converter. IEEE Trans. Power Electron. 2016, 32, 1457–1468. [Google Scholar]
- Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, R.; Vasenko, A.S.; Long, R.; Prezhdo, O.V. Edge influence on charge carrier localization and lifetime in CH3NH3PbBr3 perovskite: Ab initio quantum dynamics simulation. J. Phys. Chem. Lett. 2020, 11, 9100–9109. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Shi, Z.; Yin, S.; Li, Y.; Li, S.; Liang, W.; Wu, D.; Tian, Y.; Li, X. Photovoltaic broadband photodetectors based on CH3NH3PbI3 thin films grown on silicon nanoporous pillar array. Sol. Energy Mater. Sol. Cells 2020, 204, 110230. [Google Scholar] [CrossRef]
- Daivasagaya, D.S.; Yao, L.; Yung, K.Y.; Hajj-Hassan, M.; Cheung, M.C.; Chodavarapu, V.P.; Bright, F.V. Contact CMOS imaging of gaseous oxygen sensor array. Sens. Actuators B Chem. 2011, 157, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Ullman, S. Artificial intelligence and the brain: Computational studies of the visual system. Annu. Rev. Neurosci. 1986, 9, 1–26. [Google Scholar] [CrossRef]
- D’Angelo, R.; Wood, R.; Lowry, N.; Freifeld, G.; Huang, H.; Salthouse, C.D.; Hollosi, B.; Muresan, M.; Uy, W.; Tran, N. A computationally efficient visual saliency algorithm suitable for an analog CMOS implementation. Neural Comput. 2018, 30, 2439–2471. [Google Scholar] [CrossRef]
- Chu, M.; Kim, B.; Park, S.; Hwang, H.; Jeon, M.; Lee, B.H.; Lee, B.G. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. Ind. Electron. 2014, 62, 2410–2419. [Google Scholar] [CrossRef]
- Zhou, F.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Chen, X.; Xiong, Y. Convergence of BP algorithm for product unit neural networks with exponential weights. Neurocomputing 2008, 72, 513–520. [Google Scholar] [CrossRef]
- Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342v1. [Google Scholar]
- Prabhakaran, P.; Goyal, Y.; Agarwal, V. A Novel Communication-Based Average Voltage Regulation Scheme for a Droop Controlled DC Microgrid. IEEE Trans. Smart Grid 2019, 10, 1250–1258. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Han, T.; Zeng, J.; He, Z.; Liu, Y.; Sun, J.; Tang, M.; Zhang, Z.; Gao, P.; Liu, G. Perovskite-Based Memristor with 50-Fold Switchable Photosensitivity for In-Sensor Computing Neural Network. Nanomaterials 2022, 12, 2217. https://doi.org/10.3390/nano12132217
Chen Q, Han T, Zeng J, He Z, Liu Y, Sun J, Tang M, Zhang Z, Gao P, Liu G. Perovskite-Based Memristor with 50-Fold Switchable Photosensitivity for In-Sensor Computing Neural Network. Nanomaterials. 2022; 12(13):2217. https://doi.org/10.3390/nano12132217
Chicago/Turabian StyleChen, Qilai, Tingting Han, Jianmin Zeng, Zhilong He, Yulin Liu, Jinglin Sun, Minghua Tang, Zhang Zhang, Pingqi Gao, and Gang Liu. 2022. "Perovskite-Based Memristor with 50-Fold Switchable Photosensitivity for In-Sensor Computing Neural Network" Nanomaterials 12, no. 13: 2217. https://doi.org/10.3390/nano12132217
APA StyleChen, Q., Han, T., Zeng, J., He, Z., Liu, Y., Sun, J., Tang, M., Zhang, Z., Gao, P., & Liu, G. (2022). Perovskite-Based Memristor with 50-Fold Switchable Photosensitivity for In-Sensor Computing Neural Network. Nanomaterials, 12(13), 2217. https://doi.org/10.3390/nano12132217