Fabrication of Dimensional and Structural Controlled Open Pore, Mesoporous Silica Topographies on a Substrate
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Mesoporous Silica Thin Films
2.3. Synthesis of Mesoporous Silica Channels Using Lithographic Masks
2.4. Synthesis of Mesoporous Silica Channels Using In Situ Hard Mask BCP Approach
2.5. Plasma Etch Pattern Transfer
2.6. Characterization
3. Results and Discussion
3.1. Silica Mesoporous Thin Films Formation Using Different Pluronics
3.2. Morphological Study of Mesoporous Silica Thin Films by SEM
3.3. Fabrication of MPS Channels Using Lithographic Masks
3.4. Fabrication of Mesoporous Silica Channels Using In Situ Hard Mask BCP Approach
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419. [Google Scholar] [CrossRef]
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Stein, A. Advances in microporous and mesoporous solids-Highlights of recent progress. Adv. Mater. 2003, 15, 763–775. [Google Scholar] [CrossRef]
- Qi, Z.M.; Honma, I.; Zhou, H. Ordered-mesoporous-silica-thin-film-based chemical gas sensors with integrated optical polarimetric interferometry. Appl. Phys. Lett. 2006, 88, 053503. [Google Scholar] [CrossRef]
- Yang, C.M.; Cho, A.T.; Pan, F.M.; Tsai, T.G.; Chao, K.J. Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Adv. Mater. 2001, 13, 1099. [Google Scholar] [CrossRef]
- Coleman, N.R.B.; O’Sullivan, N.; Ryan, K.M.; Crowley, T.A.; Morris, M.A. Spalding, Synthesis and characterization of dimensionally ordered semiconductor nanowires within mesoporous silica. J. Am. Chem. Soc. 2001, 123, 7010–7016. [Google Scholar] [CrossRef]
- Petkov, N.; Platschek, B.; Morris, M.A.; Holmes, J.D.; Bein, T. Oriented growth of metal and semiconductor nanostructures within aligned mesoporous channels. Chem. Mater. 2007, 19, 1376–1381. [Google Scholar] [CrossRef]
- Lu, Y.F.; Ganguli, R.; Drewien, C.A.; Anderson, M.T.; Brinker, C.J.; Gong, W.L. Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature 1997, 389, 364–368. [Google Scholar] [CrossRef]
- Moulik, S.P. Micelles: Self-organized surfactant assemblies. Curr. Sci. 1996, 71, 368–376. [Google Scholar]
- Ha, T.J.; Im, H.G.; Yoon, S.J.; Jang, H.W.; Park, H.H. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants. J. Nanomater. 2011, 11, 2011. [Google Scholar] [CrossRef]
- Andreou, I.; Amenitsch, H.; Likodimos, V.; Falaras, P.; Koutsoukos, P.G.; Leontidis, E. Organized Silica Films Generated by Evaporation-Induced Self-Assembly as Hosts for Iron Oxide Nanoparticles. Materials 2013, 6, 1467–1484. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, L.; Koodali, R.T. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials 2014, 7, 2697–2746. [Google Scholar] [CrossRef] [Green Version]
- Innocenzi, P.; Kidchob, T.; Falcaro, P.; Takahashi, M. Patterning techniques for mesostructured films. Chem. Mater. 2008, 20, 607–614. [Google Scholar] [CrossRef]
- Dattelbaum, A.M.; Amweg, M.L.; Ecke, L.E.; Yee, C.K.; Shreve, A.P.; Parikh, A.N. Photochemical pattern transfer and enhancement of thin film silica mesophases. Nano Lett. 2003, 3, 719–722. [Google Scholar] [CrossRef]
- Fan, H.Y.; Lu, Y.F.; Stump, A.; Reed, S.T.; Baer, T.; Schunk, R. Rapid prototyping of patterned functional nanostructures. Nature 2000, 405, 56–60. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, L.; Wang, X.; Li, X.; Zeng, X. MicroPen direct-write deposition of polyimide. Microelectron. Eng. 2009, 86, 1989–1993. [Google Scholar] [CrossRef]
- Su, M.; Liu, X.G.; Li, S.Y.; Dravid, V.P.; Mirkin, C.A. Moving beyond molecules: Patterning solid-state features via dip-pen nanolithography with sol-based inks. J. Am. Chem. Soc. 2002, 124, 1560–1561. [Google Scholar] [CrossRef]
- Liu, G.; Petrosko, S.H.; Zheng, Z.; Mirkin, C.A. Evolution of Dip-pen nanolithoraphy (DPN): From molecular patterningtomaterials discovery. Chem. Rev. 2020, 120, 6009–6047. [Google Scholar] [CrossRef]
- Hozumi, A.; Kojima, S.; Nagano, S.; Seki, T.; Shirahata, N.; Kameyama, T. Surface design for precise control of spatial growth of a mesostructured inorganic/organic film on a large-scale area. Langmuir 2007, 23, 3265–3272. [Google Scholar] [CrossRef] [PubMed]
- Jumbert, G.; Placidi, M.; Alzina, F.; Sotomayor Torres, C.M.; Sledzinska, M. Electron beam lithography for direct patterning of MoS2 on PDMS substrates. RSC Adv. 2021, 11, 19908–19913. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, A.; Kimura, T. Rapid micropatterning of mesoporous silica film by site-selective low-energy electron beam irradiation. Langmuir 2008, 24, 11141–11146. [Google Scholar] [CrossRef] [PubMed]
- Mougenot, M.; Lejeune, M.; Baumard, J.F.; Boissiere, C.; Ribot, F.; Grosso, D. Ink jet printing of microdot arrays of mesostructured silica. J. Am. Ceram. Soc. 2006, 89, 1876–1882. [Google Scholar] [CrossRef]
- Park, M.; Harrison, C.; Chaikin, P.M.; Register, A.; Adamson, D.H. Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 1997, 276, 1401–1404. [Google Scholar] [CrossRef]
- Park, M.; Chaikin, P.M.; Register, R.A.; Adamson, D.H. Large area dense nanoscale patterning of arbitrary surfaces. Appl. Phys. Lett. 2001, 79, 257–259. [Google Scholar] [CrossRef]
- Bates, F.S.; Fredrickson, G.H. Block Copolymer Thermodynamics—Theory and Experiment. Ann. Rev. Phys. Chem. 1990, 41, 525–557. [Google Scholar] [CrossRef]
- Bolger, C.T.; Farrell, R.A.; Hughes, G.M.; Morris, M.A.; Petkov, N.; Holmes, J.D. Pore Directionality and Correlation Lengths of Mesoporous Silica Channels Aligned by Physical Epitaxy. ACS Nano 2009, 3, 2311–2319. [Google Scholar] [CrossRef]
- Lee, K.Y.; LaBianca, N.; Rishton, S.A.; Zolgharnain, S.; Gelorme, J.D.; Shaw, J. Micromachining applications of a high resolution ultrathick photoresist. J. Vac. Sci. Technol. B 1995, 13, 3012–3016. [Google Scholar] [CrossRef]
- Kang, K.K.; Rhee, H.K. Synthesis and characterization of novel mesoporous silica with large wormhole-like pores: Use of TBOS as silicon source. Micropor. Mesopor. Mater. 2005, 84, 34–40. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Zhao, X.S.; Zhang, L. Pore size control of mesoporous silicas from mixtures of sodium silicate and TEOS. Micropor. Mesopor. Mater. 2007, 106, 62–67. [Google Scholar] [CrossRef]
- Bae, J.Y.; Ranjit, K.T.; Luan, Z.; Krishna, R.M.; Kevan, L. Photoionization of N-Alkylphenothiazines in Mesoporous Metal Silicoaluminophosphate Molecular Sieves. J. Phys. Chem. B 2000, 104, 9661–9669. [Google Scholar] [CrossRef]
- Luan, Z.; Bae, J.Y.; Kevan, L. Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines. Chem. Mater. 2000, 12, 3202–3207. [Google Scholar] [CrossRef]
- Sakai, T.; Alexandridis, P. Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions. J. Phys. Chem. B 2005, 109, 7766–7777. [Google Scholar] [CrossRef]
- Fendler, J.H.; Bronstein, L.M.; Antonietti, M.; Valetsky, P.M. Metal Colloids in Block Copolymer Micelles: Formation and Material Properties. Nanopart. Nanostruct. Films 2007, 145–171. [Google Scholar] [CrossRef]
- Rice, R.L.; Arnold, D.C.; Shaw, M.T.; Iacopina, D.; Quinn, A.J.; Amenitsch, H. Ordered Mesoporous Silicate Structures as Potential Templates for Nanowire Growth. Adv. Func. Mater. 2007, 17, 133–141. [Google Scholar] [CrossRef]
- Wu, C.W.; Ohsuna, T.; Edura, T.; Kuroda, K. Orientational Control of Hexagonally Packed Silica Mesochannels in Lithographically Designed Confined Nanospaces. Angew. Chem. Int. Ed. 2007, 46, 5364–5368. [Google Scholar] [CrossRef]
- Segalman, R.A.; Yokoyama, H.; Kramer, E.J. Graphoepitaxy of Spherical Domain Block Copolymer Films. Adv. Mater. 2001, 13, 1152–1155. [Google Scholar] [CrossRef]
- Bita, I.; Yang, J.K.W.; Jung, Y.S.; Ross, C.A.; Thomas, E.L.; Berggren, K.K. Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates. Science 2008, 321, 939–943. [Google Scholar] [CrossRef] [Green Version]
- Campo, A.D.; Greiner, C. S-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81–R95. [Google Scholar] [CrossRef] [Green Version]
- Semiconductor Industry Association. Emerging Research Devices. In The International Technology Roadmap for Semiconductors; Semiconductor Industry Association: New York, WA, USA, 2011; p. 1. [Google Scholar]
- Ghoshal, T.; Shaw, M.T.; Bolger, C.T.; Holmes, J.D.; Morris, M.A. A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform. J. Mater. Chem. 2012, 22, 12083–12089. [Google Scholar] [CrossRef]
- Ghoshal, T.; Senthamaraikannan, R.; Shaw, M.T.; Holmes, J.D.; Morris, M.A. “In situ” hard mask materials: A new methodology for creation of vertical silicon nanopillar and nanowire arrays. Nanoscale 2012, 4, 7743–7750. [Google Scholar] [CrossRef] [PubMed]
- Farrell, R.A.; Kinahan, N.T.; Hansel, S.; Stuen, K.O.; Petkov, N.; Shaw, M.T.; West, L.E.; Djara, L.E.; Dunne, R.J.; Varona, O.G.; et al. Large-scale parallel arays of silicon nanowires via block copolymer directed sel asembly. Nanoscale 2012, 4, 3228. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, T.; Maity, T.; Godsell, J.F.; Roy, S.; Morris, M.A. Large Scale Monodisperse Hexagonal Arrays of Superparamagnetic Iron Oxides Nanodots: A Facile Block Copolymer Inclusion Method. Adv. Mater. 2012, 24, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Kim, D.H.; Knoll, W.; Xuan, Y.; Li, B.Y.; Han, Y.C. Morphologies in solvent-annealed thin films of symmetric diblock copolymer. J. Chem. Phys. 2006, 125, 064702. [Google Scholar] [CrossRef]
- Tsvetanov, C.B.; Stamenova, R.; Dotcheva, D.; Doytcheva, M.; Belcheva, N.; Smid, J. Intelligent networks based on poly(oxyethylene). Macromol. Symp. 1998, 128, 165–182. [Google Scholar] [CrossRef]
Precursor | 2θ (Degree) (Main Peak) | Film Thickness (nm) | Average Pore Diameter (nm) |
---|---|---|---|
0.01 M TEOS + P-123 | 1.54 | 100 | 14 |
0.005 M TEOS + P-123 | 2.99 | 42.2 | 11 |
0.0033 M TEOS + P-123 | 3.78 | 25.6 | 10 |
P-123 + 0.01 M TEOS | 1.54 | 100 | 14 |
P-85 + 0.01 M TEOS | 1.86 | 95 | 7 |
P-65 + 0.01 M TEOS | 1.85 | 87 | Not measurable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoshal, T.; Thorat, A.; Prochukhan, N.; Morris, M.A. Fabrication of Dimensional and Structural Controlled Open Pore, Mesoporous Silica Topographies on a Substrate. Nanomaterials 2022, 12, 2223. https://doi.org/10.3390/nano12132223
Ghoshal T, Thorat A, Prochukhan N, Morris MA. Fabrication of Dimensional and Structural Controlled Open Pore, Mesoporous Silica Topographies on a Substrate. Nanomaterials. 2022; 12(13):2223. https://doi.org/10.3390/nano12132223
Chicago/Turabian StyleGhoshal, Tandra, Atul Thorat, Nadezda Prochukhan, and Michael A. Morris. 2022. "Fabrication of Dimensional and Structural Controlled Open Pore, Mesoporous Silica Topographies on a Substrate" Nanomaterials 12, no. 13: 2223. https://doi.org/10.3390/nano12132223
APA StyleGhoshal, T., Thorat, A., Prochukhan, N., & Morris, M. A. (2022). Fabrication of Dimensional and Structural Controlled Open Pore, Mesoporous Silica Topographies on a Substrate. Nanomaterials, 12(13), 2223. https://doi.org/10.3390/nano12132223