Fabrication of Durable Superhydrophobic Surface for Versatile Oil/Water Separation Based on HDTMS Modified PPy/ZnO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Superhydrophobic Coating
2.3. Oil/Water Separation
2.4. Characterization
3. Results and Discussion
3.1. Surface Morphology and Wettability
3.2. Formation Mechanism
3.3. Oil/Water Separation
3.4. Durability Evaluation
3.5. Comparison of the As-Prepared Fabric with Other Reported Superhydrophobic Fabrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, J.; Shi, L.; Wang, Y.; Zhao, H.; Yao, H.; Zhu, Y.; Zhang, Y.; Zhu, H.; Wu, H.; Yu, S. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 2017, 12, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Huang, L.; Pan, W.; Wu, S.; Feng, X.; Song, J.; Xing, Y. Facile preparation of durable superhydrophobic-superoleophilic mesh using simple chemical oxidation for oil-water separation under harsh conditions. Colloid Surf. A 2021, 624, 126777. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, S.; Qing, Y.; Luo, S.; Liu, M. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. J. Mater. Chem. A 2016, 4, 14111. [Google Scholar] [CrossRef]
- Liu, H.; Feng, L.; Zhai, J.; Jiang, L.; Zhu, D. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 2004, 20, 5659–5661. [Google Scholar] [CrossRef]
- Passoni, L.; Bonvini, G.; Luzio, A.; Facibeni, A.; Bottani, C.E.; Fonzo, F.D. Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface. Langmuir 2014, 30, 13581–13587. [Google Scholar] [CrossRef]
- Wang, Y.; An, Q.; Zhou, Y.; Niu, Y.; Akram, R.; Zhang, Y.H.; Shi, F.; Mater, J. Post-infiltration and subsequent photo-crosslinking strategy for layer-by-layer fabrication of stable dendrimers enabling repeated loading and release of hydrophobic molecules. Chem. B 2015, 3, 562–569. [Google Scholar] [CrossRef]
- Mosayebi, E.; Azizian, S.; Noei, N. Preparation of robust superhydrophobic sand by chemical vapor deposition of polydimethylsiloxane for oil/water separation. Macromol. Mater. Eng. 2020, 305, 2000425. [Google Scholar] [CrossRef]
- Fresnais, J.; Chapel, J.; Poncin-Epaillard, F. Synthesis of transparent superhydrophobic polyethylene surfaces. Surf. Coat. Technol. 2006, 200, 5296–5305. [Google Scholar] [CrossRef]
- Sarkar, D.K.; Farzaneh, M.; Paynter, R.W. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces. Mater. Lett. 2008, 62, 1226–1229. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.M.; He, J.H. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces. Langmuir 2009, 25, 11822–11826. [Google Scholar] [CrossRef]
- Xue, C.H.; Ji, P.T.; Zhang, P.; Li, Y.R.; Jia, S.T. Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation. Appl. Surf. Sci. 2013, 284, 464–471. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Z.; Yang, H.; Hou, K.; Zeng, X.; Zheng, Y.; Cheng, J. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 9184–9194. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, M.; Duan, G.; Gong, X. One-step fabrication of eco-friendly superhydrophobic fabrics for high-efficiency oil/water separation and oil spill cleanup. Nanoscale 2022, 14, 1296–1309. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Li, F.; Pan, Y.; Zhao, X. Hygro-responsive, photo-decomposed superoleophobic/superhydrophilic coating for on-demand oil−water separation. ACS Appl. Mater. Interfaces 2021, 13, 35142–35152. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, N.; Li, J.; Cao, Y.; Cao, H. Facile fabrication of highly hydrophobic onion-like candle soot-coated mesh for durable oil/water separation. Nanomaterials 2022, 12, 761. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Su, X.; Wu, W.; Chen, S.; Zhang, X.; Wu, Y.; Xie, H.; Li, K. Superhydrophobic PDMS@TiO2 wood for photocatalytic degradation and rapid oil-water separation. Surf. Coat. Technol. 2022, 434, 128182. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Nie, L. Preparation of fluorine-free and superhydrophobic SiO2 film with high transmittance. Chemistryselect 2020, 5, 10220–10227. [Google Scholar] [CrossRef]
- Mahsa, K.; Soheila, J. Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water. Chem. Eng. J. 2021, 408, 127369. [Google Scholar]
- Lyu, J.; Xing, S.; Meng, Y.; Wu, N.; Yin, C. Flexible superhydrophobic ZnO coating harvesting antibacterial and washable properties. Mater. Lett. 2022, 314, 131730. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, H.; Wang, L.; Wang, Z.; Du, C.; Li, X.; Zhang, D. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying. Surf. Coat. Technol. 2018, 341, 15–23. [Google Scholar] [CrossRef]
- Rostami, A.; Pirsaheb, M.; Moradi, G.; Derakhshan, A.A. Fabrication of durable superhydrophobic nanofibrous filters for oil-water separation using three novel modified nanoparticles (ZnO-NSPO, AlOO-NSPO, and TiO2-NSPO). Polym. Advan. Technol. 2020, 31, 941–956. [Google Scholar] [CrossRef]
- Barthwal, S.; Barthwal, S.; Singh, B.; Singh, N.B. Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloid Surf. A 2020, 597, 124776. [Google Scholar] [CrossRef]
- Wei, J.; Nian, P.; Wang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wei, Y. Preparation of superhydrophobic-superoleophilic ZnO nanoflower@SiC composite ceramic membranes for water-in-oil emulsion separation. Sep. Purif. Technol. 2022, 292, 121002. [Google Scholar] [CrossRef]
- Sun, R.; Yu, N.; Zhao, J.; Mo, J.; Pan, Y.; Luo, D. Chemically stable superhydrophobic polyurethane sponge coated with ZnO/epoxy resin coating for effective oil/water separation. Colloid Surf. A 2021, 611, 125850. [Google Scholar] [CrossRef]
- Pal, A.K.; Chandra, G.K.; Umapathy, S.; Mohan, D.B. Ultra-sensitive, reusable, and superhydrophobic Ag/ZnO/Ag 3D hybrid surface enhanced Raman scattering substrate for hemoglobin detection. J. Appl. Phys. 2020, 127, 164501. [Google Scholar] [CrossRef]
- Cao, M.; Luo, X.M.; Ren, H.J.; Feng, J.Y. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation. J. Colloid Interface Sci. 2018, 512, 567–574. [Google Scholar] [CrossRef]
- Li, J.; Kang, R.M.; Tang, X.H.; She, H.D.; Yang, Y.X.; Zha, F. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity driven oil/water separation. Nanoscale 2016, 8, 7638–7645. [Google Scholar] [CrossRef]
- Du, Z.P.; Ding, P.; Tai, X.M.; Pan, Z.H.; Yang, H.Q. Facile preparation of Ag-coated superhydrophobic/superoleophilic mesh for efficient oil/water separation with excellent corrosion resistance. Langmuir 2018, 34, 6922–6929. [Google Scholar] [CrossRef]
- Pang, B.; Liu, H.; Liu, P.W.; Zhang, H.; Avramidis, G.; Chen, L.Q.; Deng, X.; Viöl, W.; Zhang, K. Robust, easy-cleaning superhydrophobic/superoleophilic copper meshes for oil/water separation under harsh conditions. Adv. Mater. Interfaces 2019, 6, 1900158. [Google Scholar] [CrossRef]
- Saha, P.K.; Mia, R.; Zhou, Y.; Ahmed, T. Functionalization of hydrophobic nonwoven cotton fabric for oil and water repellency. SN Appl. Sci. 2021, 3, 586. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, M.; Liu, Y.; Zhang, J.; Gao, Y.; Yan, C. Preparation of highly hydrophobic sepiolite for efficient oil removal. Micropor. Mesopor. Mat. 2022, 338, 111952. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Dai, M.; Wu, Y.; Ali, I.; Peng, C. Preparation of super-hydrophobic/super-oleophilic quartz sand filter for the application in oil-water separation. J. Water Process Eng. 2022, 46, 102561. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Huang, G.; An, C.; Feng, R.; Yao, Y.; Huang, W.; Weng, S. Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation. Front. Env. Sci. Eng. 2022, 16, 153. [Google Scholar] [CrossRef]
- Zhang, H.; Li, K.; Yao, C.; Gu, J.; Qin, X. Preparation of zinc oxide loaded polyurethane/polysulfone composite nanofiber membrane and study on its waterproof and moisture permeability properties. Colloid Surf. A 2021, 629, 127493. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Pan, C.; Si, P.; Huang, P.; Zhou, J. Morphology-dependent electrochemical stability of electrodeposited polypyrrole/nano-ZnO composite coatings. Mater. Chem. Phys. 2022, 279, 125775. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Yunus, S.; Hashim, M.A. Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. Int. J. Eng. Sci. 2013, 4, 1–12. [Google Scholar]
- Chougule, M.A.; Pawar, S.G.; Godse, P.R.; Mulik, R.N.; Sen, S.; Patil, V.B. Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Let. 2011, 1, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, Y.; Huang, P. Preparation and tribological properties of organically modified graphite oxide in liquid paraffin at ultra-low concentrations. RSC Adv. 2015, 5, 90525. [Google Scholar] [CrossRef]
- Xie, A.; Cui, J.; Yang, J.; Chen, Y.; Lang, J.; Li, C.; Yan, Y.; Dai, J. Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Sep. Purif. Technol. 2020, 236, 116273. [Google Scholar] [CrossRef]
- Sam, E.K.; Ge, Y.; Liu, J.; Lv, X. Robust, self-healing, superhydrophobic fabric for efficient oil/water emulsion separation. Colloid Surf. A 2021, 625, 126860. [Google Scholar] [CrossRef]
- Xie, A.; Wang, B.; Chen, X.; Wang, Y.; Zhu, X.; Xing, T.; Chen, G. Facile fabrication of superhydrophobic polyester fabric based on rapid oxidation polymerization of dopamine for oil-water separation. RSC Adv. 2021, 11, 26992. [Google Scholar] [CrossRef] [PubMed]
Substrate | WCA | SA | Air Fraction (1−fs) |
---|---|---|---|
corn stalk/PPy/ZnO/HDTMS | 152.7 ± 1.6 | 2.0 ± 0.6 | 0.88 |
sawdust/PPy/ZnO/HDTMS | 153.9 ± 2.3 | 3.5 ± 1.5 | 0.89 |
cotton/PPy/ZnO/HDTMS | 153.3 ± 1.1 | 3.0 ± 1.7 | 0.88 |
fabric/PPy/ZnO/HDTMS | 157.6 ± 4.5 | 3.8 ± 1.8 | 0.92 |
sponge/PPy/ZnO/HDTMS | 163.1 ± 4.6 | 2.3 ± 0.8 | 0.95 |
copper mesh/PPy/ZnO/HDTMS | 162.1 ± 3.3 | 3.9 ± 2.3 | 0.95 |
Molecule | Wavelength (cm−1) | Attribution of the Characteristic Peaks |
---|---|---|
PPy | 3522 | N–H bonding in the molecule |
1685 | C=N bonds in the molecule | |
1558 1437 | C=C bonds in the molecule | |
1315 | C-N bonds in the molecule | |
811 920 | Bonding of C–H in the molecule | |
HDTMS | 2921 | Asymmetric stretching vibration of –CH2 |
2851 | Symmetric stretching vibration of –CH2 | |
1000–1100 | Bending vibration of Si–O–C | |
781 | Stretching vibration of Si–C |
Oils | Ethyl Acetate | Liquid Paraffin | Benzene | Engine Oil | Corn Oil |
---|---|---|---|---|---|
Raw fabric | 4.83 | 6.75 | 3.92 | 5.98 | 5.83 |
Fabric/PPy/ZnO/HDTMS | 9.61 | 11.38 | 6.25 | 10.33 | 9.65 |
Materials | Fabrication Method | Efficiency (%) | Harsh Environment | References |
---|---|---|---|---|
Tetraethoxysilane/1,1,1,3,3,3-hexamethyl disilazane@PET textiles | sol–gel | none | none | [11] |
Phytic acid-metal/ polydimethylsiloxane@ fabric | dip-coating | above 95.0 | immersion in ethanol, n-hexane, xylene, and acetone | [12] |
Polydopamine/ZIF-8@cellulose membrane | self-assembly | Above 99 | immersion in water | [40] |
Polydimethylsiloxane/ZIF-90/fluoroalkyl silane@linen fabric | dip-coating | 99.5 | immersion in 0.1 M H2SO4, 0.1 M NaOH, and salt solution | [41] |
Polydopamine/Fe/hexadecyltrimethoxysilane@PET fabric | impregnation | above 95 | immersion in organic reagents, seawater, HCl, and NaOH solution with pH of 1, 3, 5, 7, 9, 11, 13 | [42] |
Fabric/PPy/ZnO/HDTMS | impregnation | above 98.4 | Immersion in hot water (100 °C), 1M of HCl solution, 1M of NaOH solution, and 1M of NaCl solution | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Jiang, S.; Wang, Z.; Liang, P.; Fan, W.; Zhuo, K.; Xu, G. Fabrication of Durable Superhydrophobic Surface for Versatile Oil/Water Separation Based on HDTMS Modified PPy/ZnO. Nanomaterials 2022, 12, 2510. https://doi.org/10.3390/nano12142510
Fan S, Jiang S, Wang Z, Liang P, Fan W, Zhuo K, Xu G. Fabrication of Durable Superhydrophobic Surface for Versatile Oil/Water Separation Based on HDTMS Modified PPy/ZnO. Nanomaterials. 2022; 12(14):2510. https://doi.org/10.3390/nano12142510
Chicago/Turabian StyleFan, Shumin, Sujie Jiang, Zhenjie Wang, Pengchao Liang, Wenxiu Fan, Kelei Zhuo, and Guangri Xu. 2022. "Fabrication of Durable Superhydrophobic Surface for Versatile Oil/Water Separation Based on HDTMS Modified PPy/ZnO" Nanomaterials 12, no. 14: 2510. https://doi.org/10.3390/nano12142510
APA StyleFan, S., Jiang, S., Wang, Z., Liang, P., Fan, W., Zhuo, K., & Xu, G. (2022). Fabrication of Durable Superhydrophobic Surface for Versatile Oil/Water Separation Based on HDTMS Modified PPy/ZnO. Nanomaterials, 12(14), 2510. https://doi.org/10.3390/nano12142510