SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of the SnS Nanoflakes/Graphene Heterostructure Material
2.2. Fabrication of the SnS Nanoflakes/Graphene Devices
2.3. Preparation of SnS Nanosheets (NSs) and SnS NSs/Graphene Device
2.4. Optoelectronic Measurements
3. Results and Discussion
Structure | R (A/W) | Response Time | Light | Reference |
---|---|---|---|---|
Au/SnS nanosheets | 635 | τON ~350 ms τOFF ~350 ms | 808 nm VDS = 1 V | [16] |
Graphene/PbS QDs | 5 × 107 | τON ~0.3 s τOFF ~1.7 s | 895 nm VDS = 5 V | [34] |
Graphene/ZnO | 1.89 × 106 | No reported | 365 nm VDS = 5 V | [35] |
Graphene/GaSe | 105 | τON ~10.0 ms τOFF ~12.8 ms | 532 nm VDS = 1 V | [44] |
Graphene/BP nanosheets | 7.7 × 103 | τON ~3.0 s τOFF ~7.9 s | 360–785 nm VDS = 5 V | [45] |
Graphene/Carbon nitride | ~103 | τON ~0.74 s τOFF ~8.21 s | 370 nm VDS = 5 V | [46] |
Graphene/Bi2Te3 | 35 | not specified, estimated τON < 0.1 s τOFF < 0.1 s | 532–1550 nm VDS = 1 V | [58] |
Graphene/Ge | 66.2 | τON ~5.6 ms τOFF ~3.5 ms | 350–1650 nm VDS = 1 V | [59] |
Graphene/graphene QDs | 5 × 107 | not specified, estimated τON < 5.0 s τOFF < 10.0 s | UV VDS = 1 V | [38] |
SnS nanoplates | 198 | τON ~40 ms τOFF ~40 ms | 405 nm–808 nm VDS = 1 V | [14] |
Graphene/SnS nanoflakes | 8.8 × 103 | τON ~24 ms τOFF ~19 ms | 375–1550 nm VDS = 1 V | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on Graphene, Other Two-dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Zhao, B.; Mao, J.; Zhao, J.; Yang, H.; Lian, Y. The Role and Challenges of Body Channel Communication in Wearable Flexible Electronics. IEEE Trans. Biomed. Circ. Syst. 2020, 14, 283–296. [Google Scholar] [CrossRef]
- Das, S.; Pandey, D.; Thomas, J.; Roy, T. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Adv. Mater. 2019, 31, 1802722. [Google Scholar] [CrossRef]
- Gao, Y.; Cansizoglu, H.; Polat, K.G. Photon-trapping Microstructures Enable High-Speed High-efficiency Silicon Photodiodes. Nat. Photonics 2017, 11, 301–308. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves. Adv. Mater. 2021, 33, e2008126. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Yu, W.Z.; Li, S.J.; Zhang, Y.P.; Ma, W.l.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. Near-infrared Photodetectors based on MoTe2/graphene Heterostructure with High Responsivity and Flexibility. Small 2017, 13, 1700268. [Google Scholar] [CrossRef]
- Ma, D.T.; Zhao, J.L.; Wang, R.; Xing, C.Y.; Li, Z.; Huang, W.; Jiang, X.; Guo, Z.; Luo, Z.; Li, Y.; et al. Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287. [Google Scholar] [CrossRef]
- Hao, L.Z.; Du, Y.J.; Wang, Z.G.; Wu, Y.; Xu, H.; Dong, S.; Liu, H.; Liu, Y.; Xue, Q.; Han, Z.; et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity. Nanoscale 2020, 12, 7358–7365. [Google Scholar] [CrossRef]
- Dong, A.; Tian, T.; Zhao, H.; Li, S.; Deng, S.; Song, X. Low-temperature Deposition of 2D SnS Nanoflakes on PET Substrates for Flexible Photodetectors with Broadband Response. Semicond. Sci. Technol. 2020, 35, 115016. [Google Scholar] [CrossRef]
- Xin, C.; Zheng, J.; Su, Y.; Li, S.; Zhang, B.; Feng, Y.; Pan, F. Few-layer Tin Sulfide: A New Black-phosphorus-analogue 2D Material with Sizeable Band Gap, Odd-even Quantum Confinement Effect, and High Carrier Mobility. J. Phys. Chem. C 2016, 120, 22663. [Google Scholar] [CrossRef]
- Rath, C.; Gury, L.; Sanchez-Molina, I.; Martinez, L.; Haque, S.A. Formation of Porous SnS Nanoplate Networks from Solution and Their Application in Hybrid Solar Cells. Chem. Commun. 2015, 50, 10198. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wei, A.X.; Lu, J.T.; Tao, L.L.; Yang, Y.B.; Luo, D.X.; Liu, J.; Xiao, Y.; Zhao, Y.; Li, J. Synthesis of Submillimeter-Scale Single Crystal Stannous Sulfide Nanoplates for Visible and Near-Infrared Photodetectors with Ultrahigh Responsivity. Adv. Electron. Mater. 2018, 4, 1800154. [Google Scholar] [CrossRef]
- Jethwa, V.P.; Patel, K.; Som, N.; Pathak, V.M.; Jha, P.K. Temperature-dependent Vibrational Properties of DVT Grown Orthorhombic SnS Single Crystals and Their Application as a Self-powered Photodetector. Appl. Surf. Sci. 2020, 531, 147406. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Kai, Z.; Shuai, C.; Mei, F.; Shen, G. Anisotropic Photoresponse of Layered 2D SnS-based near infrared Photodetectors. J. Mater. Chem. C 2017, 5, 11288. [Google Scholar] [CrossRef]
- Krishnamurthi, V.; Khan, H.; Ahmed, T.; Zavabeti, A.; Tawfik, S.A.; Jain, S.K.; Spencer, M.J.S.; Balendhran, S.; Crozier, K.B.; Li, Z.; et al. Liquid-Metal Synthesized Ultrathin SnS Layers for High Performance Broadband Photodetectors. Adv. Mater. 2020, 32, 2004247. [Google Scholar] [CrossRef]
- Selamneni, V.; Anand, P.P.; Singh, A.; Sahatiya, P. Hybrid 0D–2D WS2-QDs (n)/SnS (p) as Distributed Heterojunctions for Highly Responsive Flexible Broad-Band Photodetectors. ACS Appl. Electron. Mater. 2021, 3, 4105–4114. [Google Scholar] [CrossRef]
- Aji, A.S.; Izumoto, M.; Suenaga, K.; Yamamoto, K.; Nakashima, H.; Ago, H. Two-step Synthesis and Characterization of Vertically Stacked SnS–WS2 and SnS–MoS2 P–N Heterojunctions. Phys. Chem. Chem. Phys. 2018, 20, 889. [Google Scholar]
- Chang, Y.; Wang, J.; Wu, F.; Tian, W.; Zhai, W. Structural Design and Pyroelectric Property of SnS/CdS Heterojunctions Contrived for Low-temperature Visible Photodetectors. Adv. Funct. Mater. 2020, 30, 2001450. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Li, T.; Lin, Y.; Cai, H.; Li, S.; Ding, H.; Pan, N.; Wang, X. One-step CVD Fabrication and Optoelectronic Properties of SnS2/SnS Vertical Heterostructures. Inorg. Chem. Front. 2018, 5, 1828–1835. [Google Scholar] [CrossRef]
- Amirmazlaghani, M.; Raissi, F. Feasibility of Room-Temperature GHz-THz Direct Detection in Graphene Through Hot-Carrier Effect. IEEE Trans. Dev. Mater. Reliab. 2018, 18, 429–437. [Google Scholar] [CrossRef]
- Xu, H.; Hao, L.; Liu, H.; Dong, S.; Yan, K. Flexible SnSe photodetectors with Ultrabroad Spectral Response up to 10.6 um Enabled by Photobolometric Effect. ACS Appl. Mater. Interfaces 2020, 12, 35250–35258. [Google Scholar] [CrossRef]
- Raveena, G.; Bonny, D.; Jesús, C.; Chandan, B. Thermoelectric Properties of the SnS Monolayer: Fully ab Initio and Accelerated Calculations. J. Appl. Phys. 2021, 130, 054301. [Google Scholar]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Low, T.; Avouris, P. Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano 2014, 8, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Echtermeyer, T.J.; Britnell, L.; Jasnos, P.K.; Lombardo, A.; Gorbachev, R.V.; Grigorenko, A.N.; Geim, A.K.; Ferrari, A.C.; Novoselov, K.S. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.Y.; Liu, Z.; Wang, Y.M.; Ajayan, P.M.; Nordlander, P.; Halas, N.J. Graphene-Antenna Sandwich Photodetector. Nano Lett. 2012, 12, 3808–3813. [Google Scholar] [CrossRef]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-Integrated Graphene Photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef]
- Khan, M.F.; Ahmed, F.; Rehman, S.; Akhtar, I.; Rehman, M.A.; Shinde, P.A.; Khan, K.; Kim, D.-K.; Eom, J.; Lipsanen, H.; et al. High Performance Complementary WS2 Devices with Hybrid Gr/Ni Contacts. Nanoscale 2020, 12, 21280–21290. [Google Scholar] [CrossRef]
- Lee, I.; Kang, W.T.; Ji, E.K.; Kim, Y.R.; Won, U.Y.; Lee, Y.H.; Yu, W.J. Photoinduced Tuning of Schottky Barrier Height in Graphene/MoS2 Heterojunction for Ultrahigh Performance Short Channel Phototransistor. ACS Nano 2020, 14, 7574–7580. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Roy, K.; Kakkar, S.; Pradhan, A.; Ghosh, A. Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures. 2D Mater. 2020, 7, 025043. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Lau, S.-P.; Yan, F. Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.H.; Liu, Z.K.; Li, J.H.; Tai, G.A. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater. 2012, 24, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Dang, V.Q.; Trung, T.Q.; Duy, L.T.; Kim, B.Y.; Siddiqui, S.; Lee, W.; Lee, N.E. High-Performance Flexible Ultraviolet (UV) Phototransistor Using Hybrid Channel of Vertical ZnO Nanorods and Graphene. ACS Appl. Mater. Interfaces 2015, 7, 11032–11040. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.Y.; Ma, L.L.; Du, S.C.; Xu, Y.; Yuan, M.; Fang, H.H.; Wang, Z.; Xu, M.; Li, D.; Yang, J.; et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano 2017, 11, 9854–9862. [Google Scholar] [CrossRef]
- Chen, X.Q.; Shehzad, K.; Gao, L.; Long, M.S.; Guo, H.; Qin, S.C.; Wang, X.M.; Wang, F.Q.; Shi, Y.; Hu, W.D.; et al. Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Adv. Mater. 2020, 32, 1902039. [Google Scholar] [CrossRef]
- Cheng, S.H.; Weng, T.M.; Lu, M.L.; Tan, W.C.; Chen, J.Y. All carbon-based photodetectors: An eminent integration of graphite quantum dots and two-dimensional graphene. Sci. Rep. 2013, 3, 2694. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bhattacharya, D.; Patra, S.; Paul, S.; Mitra, R.K.; Mahadevan, P.; Pal, A.N.; Ray, S.K. High Responsivity Gate Tunable UV-Visible Broadband Phototransistor Based on Graphene-WS2 Mixed Dimensional (2D-0D) Heterostructure. ACS Appl. Mater. Interfaces 2022, 14, 5775–5784. [Google Scholar] [CrossRef]
- Liu, S.; Shao, G.; Ding, L.; Liu, J.; Xiang, W.; Liang, X. Sn-doped CsPbBr3 QDs Glasses with Excellent Stability and Optical Properties for WLED. Chem. Eng. J. 2019, 361, 937–944. [Google Scholar] [CrossRef]
- Wang, Y.; Vinh, X.H.; Prashant, P.; Michael, P.C.; Nguyen, Q.V. Interfacial Photogating Effect for Hybrid Graphene-based Photodetectors. ACS Appl. Nano Mater. 2021, 4, 8539–8545. [Google Scholar] [CrossRef]
- Yu, D.; Li, Q.; Wei, A.; Zhao, Y.; Liu, J.; Xiao, Z. Synthesis and Characterization of the Ultra-thin SnS Flakes and The Micron-thick SnS Crystals by Chemical Vapor Deposition. J. Mater. Sci. Mater. Electron. 2019, 30, 10879–10885. [Google Scholar] [CrossRef]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef]
- Lu, R.; Liu, J.; Luo, H.; Chikan, V.; Wu, J.Z. Graphene/GaSe-nanosheet Hybrid: Towards High Gain and Fast Photoresponse. Sci. Rep. 2016, 6, 19161. [Google Scholar] [CrossRef]
- Zhou, G.; Li, Z.; Ge, Y.; Zhang, H.; Sun, Z. A Self-encapsulated Broadband Phototransistor Based on the Hybrid of graphene and Black phosphorus Nanosheets. Nanoscale Adv. 2020, 2, 1059–1065. [Google Scholar] [CrossRef]
- Lai, S.K.; Xie, C.; Teng, K.S.; Li, Y.; Tan, F.; Yan, F.; Lau, S.P. Polymeric Carbon Nitride Nanosheets/Graphene Hybrid Phototransistors with High Responsivity. Adv. Opt. Mater. 2016, 4, 555–561. [Google Scholar] [CrossRef]
- Wang, L.; Jie, J.; Shao, Z.; Zhang, X.; Wang, Y.; Sun, Z. MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visible-Near Infrared Photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, Z.; Zhu, M.; Weng, Z.; Jia, X. High-responsivity solar-blind ultraviolet photodetectors based on carbon nanodots/graphene hybrids. IEEE Trans. Electron. Dev. 2021, 99, 1101–1106. [Google Scholar] [CrossRef]
- Zheng, D.; Fang, H.; Long, M.; Feng, W.; Peng, W.; Fan, G. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano 2018, 12, 7239–7245. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Liu, C.; Lee, S.T.; Jie, J. High-responsivity, High-detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors. ACS Nano 2016, 10, 5113–5122. [Google Scholar] [CrossRef]
- Kang, J.; Sangwan, V.K.; Lee, H.S.; Liu, X.; Hersam, M.C. Solution-processed Layered Gallium Telluride Thin-film Photodetectors. ACS Photonics 2018, 5, 3996–4002. [Google Scholar] [CrossRef]
- Itkis, M.E.; Borondics, F.; Yu, A. Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films. Science 2006, 312, 413–416. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Zhou, L.; Lei, S.; Joyner, J.; Yang, Y. Characterization of Tin(ii) Sulfide Defects/Vacancies and Correlation with Their Photocurrent. Nano Res. 2017, 10, 218–228. [Google Scholar] [CrossRef]
- Malone, B.D.; Gali, A.; Kaxiras, E. First principles study of point defects in sns. Phys Chem Chem Phys 2014, 16, 26176–26183. [Google Scholar] [CrossRef]
- Wu, J.Y.; Chun, Y.T.; Li, S.; Zhang, T.; Wang, J.; Shrestha, P.K.; Chu, D. Broadband MoS2 Field-Effect Phototransistors: Ultrasensitive Visible-Light Photoresponse and Negative Infrared Photoresponse. Adv. Mater. 2018, 30, 1705880. [Google Scholar] [CrossRef]
- Yang, J.; Yu, W.; Pan, Z.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y.; Sun, T.; Bao, Q.; Zhang, K. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. Small 2018, 14, 1802598. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297. [Google Scholar] [CrossRef]
- Hong, Q.; Jian, Y.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894. [Google Scholar]
- Yang, F.; Cong, H.; Yu, K.; Zhou, L. Ultrathin broadband germanium–graphene hybrid photodetector with high performance. Acs Appl. Mater. Interfaces 2017, 9, 13422–13429. [Google Scholar] [CrossRef]
- Brent, J.R.; Lewis, D.J.; Lorenz, T.; Lewis, E.A.; Savjani, N.; Haigh, S.J.; Seifert, G.; Derby, B.; O’Brien, P. Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV-VI Main Group Two-Dimensional Atomic Crystals. J. Am. Chem. Soc. 2015, 137, 12689–12696. [Google Scholar] [CrossRef]
- Wu, L.M.; Xie, Z.J.; Lu, L.; Zhao, J.; Wang, Y.; Jiang, X.; Ge, Y.; Zhang, F.; Lu, S.; Guo, Z.; et al. Few-layer Tin Sulfide: A Promising Black-Phosphorus-Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion. Adv. Opt. Mater. 2018, 6, 1700985. [Google Scholar] [CrossRef]
- Xie, C.; Yan, F. Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region. ACS Appl. Mater. Interfaces 2017, 9, 1569–1576. [Google Scholar] [CrossRef]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ruan, S.; Zhu, H. SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse. Nanomaterials 2022, 12, 2777. https://doi.org/10.3390/nano12162777
Li X, Ruan S, Zhu H. SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse. Nanomaterials. 2022; 12(16):2777. https://doi.org/10.3390/nano12162777
Chicago/Turabian StyleLi, Xiangyang, Shuangchen Ruan, and Haiou Zhu. 2022. "SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse" Nanomaterials 12, no. 16: 2777. https://doi.org/10.3390/nano12162777
APA StyleLi, X., Ruan, S., & Zhu, H. (2022). SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse. Nanomaterials, 12(16), 2777. https://doi.org/10.3390/nano12162777