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Abstract: A technology for the formation and bonding with a substrate of hybrid carbon nanos-
tructures from single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) by
laser radiation is proposed. Molecular dynamics modeling by the real-time time-dependent density
functional tight-binding (TD-DFTB) method made it possible to reveal the mechanism of field emis-
sion centers formation in carbon nanostructures layers. Laser radiation stimulates the formation of
graphene-nanotube covalent contacts and also induces a dipole moment of hybrid nanostructures,
which ensures their orientation along the force lines of the radiation field. The main mechanical
and emission characteristics of the formed hybrid nanostructures were determined. By Raman
spectroscopy, the effect of laser radiation energy on the defectiveness of all types of layers formed
from nanostructures was determined. Laser exposure increased the hardness of all samples more
than twice. Maximum hardness was obtained for hybrid nanostructure with a buffer layer (bl) of
rGO and the main layer of SWCNT—rGO(bl)-SWCNT and was 54.4 GPa. In addition, the adhesion
of rGO to the substrate and electron transport between the substrate and rGO(bl)-SWCNT increased.
The rGO(bl)-SWCNT cathode with an area of ~1 mm2 showed a field emission current density of
562 mA/cm2 and stability for 9 h at a current of 1 mA. The developed technology for the formation
of hybrid nanostructures can be used both to create high-performance and stable field emission
cathodes and in other applications where nanomaterials coating with good adhesion, strength, and
electrical conductivity is required.

Keywords: carbon nanomaterials; carbon nanotubes; graphene oxide; hybrid nanostructures; laser
formation; field emission; cathode; adhesion; welding; mechanical properties; defects

1. Introduction

The cathode is the main element of systems generating electron flows. The key
performance indicators of cathodes are the values of emission current and threshold voltage,
as well as stability during long-term operation. Thermionic emission devices demonstrate
the highest emission current values at the low threshold voltage and time stability. Field
emission is an actively developing area, which, because of the principle of operation, is
resistant to fluctuations in the temperature of the medium, does not require warm-up
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time, and has a monochromatic electron energy spectrum. However, the problem with
the time current stability has not been solved at present [1]. A wide range of materials
have been studied as a field emission cathode material: nanowires (GaN [2], ZnO [3],
GaAs [4]), nanoparticles (In2O3 [5], GeSn [6], InP [7]), one-dimensional materials—carbon
nanotubes (CNT) [8–11], two-dimensional materials (graphene [12–14], MoS2 [15]). Carbon
nanomaterials have outstanding characteristics of high strength, good electrical and thermal
conductivity, and low work function and are the most promising materials for the formation
of field emission cathodes [16].

CNT have outstanding emission properties due to their excellent electrical conductiv-
ity and high aspect ratio. Together with the unique thermal and mechanical properties, this
makes it possible to use them as additives to improve the characteristics of piezoresistive ele-
ments [17,18], solar energy converters [19], conductive and biocompatible polymers [20–22],
and energy storage devices [23]. One of the promising applications of CNT is the creation
of electronic devices with CNT cathodes as electron sources with a low threshold voltage
of field emission cathodes [24–26]. Graphene and its derivatives are also widely used
in the creation of electronic devices. High values of a specific area and high electrical
conductivity make it possible to create supercapacitors [27–31], sensors [32–34], and other
devices based on them [35–37]. The high electrical conductivity of graphene gives excellent
shielding properties to composites based on it [38]. In combination with biopolymers, the
toxicity of graphene can decrease, so graphene-based biocomposites and biosensors can be
created [39]. Graphene structures are also widely used in the creation of electronic emit-
ters [40–42]. Composites based on rGO have great potential for creating field emitters [43].
In the case of both CNT and graphene, the emission is provided by the presence of atoms
at the edges of CNTs and graphene flakes that form a distorted sp3-hybridized geometry
instead of a planar sp2-hybridized configuration. As a result, localized states are formed at
the edges, and, consequently, potential barriers to electron emission are reduced [44].

The first description of emission from individual CNTs is known, where the emission
current was from 0.1 to 1 µA/cm2 at a bias voltage of less than 80 V [45]. One of the
first works describing CNT film cathodes showed that the field emission current density
was about 0.1 mA/cm2 at an applied voltage of 200 V and 100 mA/cm2 at 700 V [46].
In most works describing CNT-based emission cathodes, vertical arrays of CNT grown
by the chemical vapor deposition (CVD) method on substrates are used as an electron
source [47–49]. The advantages of such vertically grown CNT arrays are a high degree of
adhesion to the substrate and low-resistance contacts between nanotubes and substrate [50].
However, because of the high temperature and active environment of the CVD process, a
limited range of substrate materials can be used. Additionally, the features of this method
for vertical arrays of CNTs synthesis include significant resource costs and complexity
in implementation [51]. In this regard, more accessible transfer methods for creating
emission cathodes based on disordered films of carbon nanomaterials are being actively
developed [52]. Point emitters with films of randomly oriented CNTs can demonstrate
high current densities up to 105 A/cm2 [53]. Such point emitters provide a localized beam
of electrons and are applicable in the creation of microwave amplifiers and microfocus
X-ray sources [54,55]. CNT film emitters can show stable uniform emissions from a large
area with a current density of several mA/cm2 [56,57]. Graphene-based emitters are also
capable of delivering current densities of several mA/cm2 [58,59].

Significant progress has been achieved in the creation of emission materials based
on CNT and graphene/graphene oxide. These two modifications of nanocarbon can
advantageously complement each other’s structural and electrophysical properties, which
makes it possible to demonstrate emission current values that exceed those for CNT and
graphene separately [60,61]. When creating such hybrid CNT/graphene nanostructures,
the methods of growing CNT on graphene flakes [62,63] and growing graphene on CNT
arrays [60] are mainly used. When CNT/graphene nanostructures are grown by various
methods, stable bonds of CNT with graphene are formed [64–66]. However, the high
cost and complexity of such methods do not allow producing efficient CNT/graphene
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emitters on an industrial scale. Another disadvantage of CNT/graphene growth methods,
as it was mentioned above, is a limited range of materials that can be used as substrates.
More affordable film deposition methods are used to create CNT/graphene emission
films, including electrophoretic deposition [67], plasma deposition [68], filtration with
optical influence [69], vacuum filtration [70], drying and reduction [71]. When synthesizing
emission structures based on graphene, Microwave Plasma Enhanced CVD can be used [58].
When synthesizing emission structures based on graphene oxide, the Hummers method can
be used [59]. Both methods involve the use of high temperatures, which significantly limits
the choice of substrates, especially for biomedicine [21,72]. In addition, when synthesizing
carbon nanomaterials on substrates, it is difficult to select the synthesis parameters that
critically affect the characteristics of the obtained nanomaterials. The use of studied and
commercially available carbon nanomaterials with their subsequent spray deposition on
arbitrary substrates makes it possible to select the parameters of nanomaterials after their
synthesis. SWCNT can be separated according to the conductivity type, which will allow
the formatting of effective structures for various applications based on semiconducting or
metallic SWCNT [73,74].

Spray deposition is an effective and extremely simple film deposition method for
creating films from carbon nanomaterials. Multiwalled CNT films deposited by this method
can demonstrate high field emission current density of 13 mA/cm2 [75]. However, the
key parameter of the field emission of cathodes, the stability of the emission over time,
was confirmed. During spray deposition of dispersions based on SWCNT, an emission
current density of 60 µA/cm2 was achieved. However, in this case, the stability of the
current over time was verified. The stability of emission from carbon nanomaterials over
time is positively affected by the addition of a polymer to the composition of the sprayed
dispersion [76]. In this case, high stability of emission over time can be achieved, but
at a low emission current density of 1 mA/cm2. Thus, when creating field emission
cathodes by the spray deposition method, there is a need to further improve their emission
properties. This can be achieved both by improving the structural characteristics of carbon
nanomaterials with external influences and by searching for an advantageous combination
of different carbon nanomaterials.

To improve the emission properties of materials based on nanocarbon modifications,
various methods of structural modification are used. There are a large number of chemical
methods for structuring carbon nanomaterials [77–79]. However, preference is given to elec-
tromagnetic methods because of their availability and simplicity. Directed electromagnetic
radiation makes it possible to structure nanotubes by increasing the angle of their orienta-
tion relative to the substrate [80]. Laser exposure makes it possible to change the structure
and shape of nanomaterials by localizing high-energy electromagnetic radiation on the
surface of nanomaterials [81–86]. The laser beam positioning system allows setting the
required geometry of the laser exposure area. During exposure, laser energy is absorbed by
electrons and transferred to CNT atoms. In its turn, the appearance of high-energy phonons
leads to the formation of defects such as vacancies and interstices in the walls of nanotubes.
This stimulates the formation of new bonds on the contact surfaces of the nanotubes.

Previously, it was demonstrated that under high-intensity laser exposure with an en-
ergy density of 0.3–0.5 J/cm2 on nanomaterials containing single-walled carbon nanotubes
(SWCNT), multiwalled carbon nanotubes (MWCNT), and rGO flakes to nanotubes and
nanotubes with each other are welded forming branched CNT/rGO networks. Contacts
were formed between the regions at the rGO flakes ends and the defective side surfaces
and ends of the nanotubes. In this case, the maximum electrical conductivity of 22.6 kS/m
was achieved for the MWCNT/rGO hybrid nanostructure [87].

In addition to improving the emission properties of carbon nanomaterials by external
action, it is necessary to take into account the presence of contact resistance between
the emitting layer and the substrate. The contact resistance of the CNT substrate has a
significant effect on the field emission efficiency in CNT cathodes. In the field emission
process, electrons tunnel through two potential barriers: first, the electrons cross the barrier
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between the CNT and the substrate, and then they emit into the vacuum from the CNT. A
buffer layer is often used to reduce the contact resistance between the CNTs and substrate.
The material of such a layer can be made of metals, for example, silver [88]. Materials such
as Ti, TiN, W, and Mo are often used as a sublayer, and Ni, Co, and Fe—as catalysts for the
CNT synthesis. In addition to participating in the chemical process of CNT synthesis, they
are able to reduce the contact resistance between CNT and the substrate [50,89,90]. The
presence of a buffer layer can increase the maximum field emission current; for example,
in the article [91], the achievement of a stable current density of 30 mA/cm2 is shown.
Thus, buffer layer formation before the main cathode structure formation can solve the
main problem of field emission cathodes—the current time stability. To ensure the best
match between the buffer layer morphology and the field emission structure itself, it is most
advantageous to use a buffer layer that consists directly of carbon nanomaterials and can
provide high adhesion to the substrate. Thus, in work [92], the authors used the welding
of carbon nanotubes to a silicon substrate using continuous laser radiation. Based on the
above, there is a need for a universal method for creating hybrids of carbon nanomaterials,
which makes it possible to control their parameters.

This paper presents the results of the formation of the nanostructures based on SWCNT,
rGO, and hybrids of SWCNT and rGO on silicon substrates using pulsed laser radiation. It
was demonstrated that different types of carbon nanomaterials could complement each
other because of their different morphologies. Thus, hybrid nanostructures with excellent
mechanical and electrical properties can be created. When using labor-intensive synthesis
methods, it is difficult to simultaneously control the complex parameters of the resulting
nanomaterials. The main advantage of the created hybrid nanostructures using SWCNT
and rGO laser welding is the possibility of using commercially available and well-studied
carbon nanomaterials with specified parameters. In addition, the list of materials that can
be used as substrates for the formation of nanostructures using laser radiation is expanding.
Using molecular dynamics modeling and electron microscopy, laser induction of rotational
moment in graphene flakes is shown. The effect of the rGO buffer layer on improving
the mechanical properties of hybrid nanostructures and their field emission, including the
stability of emission in time, were also demonstrated.

2. Materials and Methods
2.1. Method for Modeling the Carbon Nanomaterials Behavior under the Influence of
Electromagnetic Field of Laser Radiation

Self-consistent density functional tight-binding (SCC-DFTB) and real-time time-
dependent density functional tight-binding (RT TD-DFTB) implemented in the DFTB+
Version 20.2 software package (Free Software Foundation Ltd., Boston, MA, USA) meth-
ods were used to build atomistic models of layers from graphene flakes and hybrids of
nanotubes with graphene flakes, as well as to simulate the response of the atomic and
electronic structure of layers to laser radiation [93]. Searching for an energetically favorable
configuration and size of the atomic structure of supercells was determined through pre-
liminary optimization, which comprised varying coordinates and dimensions of all atoms
of the supercell in order to achieve a global minimum of the total energy.

The response to laser action was simulated using the RT TD-DFTB method, which
implements Ehrenfest quantum semiclassical molecular dynamics. The solution of the
wave equation for electrons is

jè
∂ψ

∂t
= He(ri, RI(t))·ψ(ri, RI(t)) (1)

together with the classical equation of nuclei motion

MI
..

RI(t) = −∇I

∫
dr ψ∗Heψ. (2)
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In Equations (1) and (2) He(ri, RI(t))—electronic part of Hamiltonian, determined by
electron coordinates ri and coordinates of the nuclei RI , changing over time, j—imaginary
unit, MI—nucleus mass with number I, ψ—electron wave function, which is written as a
linear combination of atomic orbitals

ψ(r; t) = ∑
k

ak(t)ϕk(r; R(t)). (3)

The fundamental difference between Ehrenfest’s molecular dynamics lies in the time
dependence of the weight coefficients ak(t). Nuclei move in accordance with classical
mechanics in the effective potential VE

e created by electrons. Here E indicates that the
potential field is created by electrons at a specific value E (one of the possible energy
values). This potential is calculated as the average value of the electronic part of the
Hamiltonian at the coordinates of the nuclei RI(t), fixed at the moment t (in the framework
of Self-consistent field (SCF)—mean field theory) [94,95].

The laser field is
F(t) = F0 f (t) sin(ωt + ϕ), (4)

where ω—laser pulse frequency, ϕ—phase, F0—maximum value of laser field, the function
f (t) determines the shape of the laser pulse. In this work, the Gaussian form is used in the
modeling, as in the experimental part:

f (t) = exp

{
− (t− tm)

2

β2

}
, β =

τ

2
√

π
, (5)

where tm is the time at which the pulse is centered, and τ is the duration of the pulse.

2.2. Method for Creating Carbon Nanomaterials Dispersions and Applying Them to Substrate

To form layers of carbon nanomaterials, it was necessary to prepare liquid dispersed
media. SWCNT Tuball (OCSiAl Ltd., Moscow, Russia) was synthesized by the gas phase
method. The SWCNT diameter was 1–2.5 nm, the length was about 5 µm, and the specific
surface was 420 m2/g. rGO was synthesized using a modified Hummers method. For this,
1 g of graphite powder was mixed with 6 g of potassium permanganate KMnO4, and 14 mL
of 85% phosphoric acid H3PO4 was added to the mixture. The whole mixture was mixed
with 120 mL of 95% sulfuric acid H2SO4. The resulting dispersion was settled for 12 h at
a temperature of 50–60 ◦C. Further, the dispersion was mixed with 140 mL of water, and
30% hydrogen peroxide H2O2 of ~20 mL was added to the resulting aqueous dispersion
until foaming ceased. Deionized water with a resistance of at least 16.5 MΩ × cm was used.
Then, the sediment was separated from the dispersion by centrifugation using an Avanti
J-30I centrifuge with JA-30.50Ti rotor (Beckman Coulter Inc., Brea, CA, USA) at 12,000× g
for 30 min. Next, the remaining dispersion without sediment was washed with water to
pH 5. The reduction of graphene oxide was carried out by annealing in a muffle furnace
at a temperature of 200 ◦C for 1 h and subsequent annealing in the argon and hydrogen
atmosphere at 1000 ◦C with a volume ratio of 1:1 for 1 h. The number of rGO graphene
layers did not exceed 4. It was found that rGO contained C–H bonds in its structure [96].

Preparing dispersions for the formation of layers on a substrate was carried out
by mixing carbon nanomaterials with solvent. Dimethylformamide (DMF) was used
as a solvent. The dispersion compositions were as follows: 1 dispersion—SWCNT with
concentration 0.1 mg/mL, 2 dispersion—rGO with concentration 0.1 mg/mL, 3 dispersion—
rGO + SWCNT with weight ratio 1/1 and with concentrations 0.05/0.05 mg/mL. Table 1
presents the dispersion compositions. After mixing, the dispersions were processed with
the immersion ultrasonicator Q700 Sonicator (Qsonica Ltd., Newtown, CT, USA) within
10 min at a power of 150 W/cm2. The dispersions were then subjected to ultrasonic
treatment in the bath Elmasonic S30H (Elma Ltd., Singen, Germany) (power 80 W) within
60 min. Separation of dispersions was carried out using the centrifuge at 20,000× g for
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30 min at 15 ◦C. After centrifugation, the sediment was removed, and the remainder of the
resulting dispersion was taken from each tube.

Table 1. Dispersions compositions.

Dispersion Number Composition Concentration (mg/mL)

1 SWCNT 0.1
2 rGO 0.1
3 rGO + SWCNT 0.05/0.05

Thin films of carbon materials from dispersions 1, 2, and 3 were deposited by the spray
deposition method. Substrates of heavily doped silicon (Si substrate), divided into chips
7 × 7 mm in size, which had a high thermal conductivity and good electrical conductivity,
were chosen as substrates. Then substrates were laundered in the standard manner in
Piranha, washed with deionized water, and dried in isopropyl vapor. For film deposition,
the E2V dispensing system (Nordson EFD, Westlake, OH, USA) was used, which was a
spray module mounted on a three-coordinate positioning system. The pressure for the air
flow supply was 20 bar. The pressure for dispersions supplying was 0.05 bar. The nozzle
diameter was 0.5 mm. The substrates were mounted on a heating stage for accelerated
evaporation of the solvent from the formed layer. The stage was heated to a temperature
of 120 ◦C. The layer formation with a thickness of ~500 ± 100 nm was carried out in
800–1000 passes, depending on the type of carbon nanomaterial. The indicated deviation
of ±100 nm was the maximum deviation of the layer thickness, which was equivalent to
3σ. The standard deviation (σ) did not exceed 30 nm. The spread in thickness was due to
the peculiarity of applying carbon nanomaterials by the spray deposition method, which
was made by means of multiple passes of the nozzle over the sample. The duration of
the layer deposition process could reach 1 h. During this time, partial decantation of the
carbon nanomaterials dispersion took place. As a result, inhomogeneity was formed over
the layer thickness.

For research, five groups of film samples were initially obtained from dispersions 1, 2,
and 3. Each group contained 10 samples to get statistical results in studies.

2.3. Method of Laser Formation of Hybrid Nanostructures

The obtained samples of Si substrates with deposited layers of carbon nanomaterials
were subjected to laser exposure. A laser setup was used, the main element of which was a
Yb laser. The laser generated radiation at the main harmonic in the IR range of 1064 nm and
operated in a pulsed mode with a pulse duration of 100 ns. The laser pulsed radiation mode
is necessary for the local transfer of high energy in a short period of time to achieve the
effect of nanowelding because it is known that short-duration pulsed radiation generates
nonlinear optical effects in carbon nanotubes and graphene [97,98]. Since problems of
emission electronics have demanded forming cathodes with a given area in certain regions
of the topology, the laser radiation is directed using an accurate galvanometric scanning
system along the X and Y coordinates (on the area). It is known that changing the pulse
frequency of a laser beam scanning the sample also changes the spot overlap of consecutive
laser pulses [99]. Thus, to achieve a uniform laser exposure of the carbon nanomaterials
film area, the frequency of laser pulses was selected. At a beam positioning speed of
500 mm/s and laser beam diameter of 35 µm, a laser pulse frequency of 30 kHz was chosen.
As a result, the laser pulses were superimposed on each other with a 17 µm overlap. This
provided a uniform exposure of the film’s given area. The size of the formed treated area
was 3 × 3 mm. The beam was focused using an object lens that provided a diffraction
length greater than the film thickness. The laser beam profile had a Gaussian shape.

For sample rGO(bl)-SWCNT, the rGO layer was deposited and then exposed to laser
radiation (0.8 J/cm2). It allowed the creation of a buffer layer that provides a high degree
of adhesion of subsequent layers of carbon nanomaterials to the substrate. After that, the
main layer of SWCNT was deposited and exposed to laser radiation (0.5 J/cm2).
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To eliminate the influence of the atmosphere on the morphology of carbon nanoma-
terials layers, processed by laser radiation, two approaches were used. In the first case,
a chamber with an Ar inert gas was used [100]. In the second case, a vacuum chamber
with quartz glass was used, where the residual pressure was 0.1 mbar. A schematic repre-
sentation of the setup for laser exposure of samples using a vacuum chamber is shown in
Figure 1. The laser exposure on the specified areas was carried out according to the scheme
described below. One of the square areas was left untouched as a reference sample. All
samples from three groups were subjected to this effect.
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Figure 1. Scheme of laser setup for the formation of carbon nanomaterials layers.

2.4. Scanning Electron Microscopy

The study of the carbon nanomaterials structure on Si substrates was carried out using
Helios G4 (FEI Ltd., Hillsboro, OR, USA) scanning electron microscope. The accelerating
voltage of the electron column was 5 kV, and the electron probe current was 50 pA. The
pressure in the vacuum chamber was 3.9 × 10−4 Pa.

2.5. Raman Spectroscopy

Raman Spectroscopy is an efficient nondestructive tool for analyzing the morphology
of various nanomaterials, especially carbon nanostructures such as carbon nanotubes,
graphene, etc. [101]. Based on the data on the intensity and frequency of Raman active
vibrational modes, one can draw conclusions about the purity of the material, the presence,
and types of defects, and also analyze the functionalization by various groups [102,103].

Raman measurements of carbon nanomaterial layers on Si substrate were obtained
using inVia Qontor (Renishaw plc, New Mills, UK) in the backscattering geometry. Spectra
were collected using 1200 1/mm grating and a semiconductor laser with a wavelength
of 532 nm as an excitation source. Focusing of the laser beam on the sample surface
was performed using a built-in microscope with a ×50 objective. The microscope output
power was 0.6 mW. Each sample was measured three times (at a random location on the
sample surface) to obtain statistically correct data. Calibration was performed before the
measurement of each sample by recording Raman spectra of single crystal silicon.

2.6. Mechanical Characteristics

The stability of structures is important for the field emission cathode’s formation, as
well as for studying the effect of welding structures. Thus, the hardness of the formed
carbon nanomaterials nanostructures on Si substrates was measured before and after laser
exposure. For measurements, a NanoScan-4D Compact nanohardness tester (TISNUM Ltd.,
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Moscow, Russia) with a Berkovich pyramid-shaped indenting tip was used. The sample
hardness was measured by smoothly immersing the indenter to a depth of 200 nm. To
prevent imprints from overlapping, the distance between the measurement points was
100 µm. The time to reach the required depth (Load time) was 10 s, and the time to hold
the achieved load (Hold time) was 1 s. For each sample, five measurements were carried
out, then the average hardness values were calculated.

The degree of nanostructures adhesion was assessed by the sclerometer method. This
method consisted in applying a scratch to the film surface to establish the force with which
the coating will be detached from the substrate. For the experiment, the above-described
nanohardness tester was used. Scratching was carried out by smoothly immersing the
indenter with a varying load from 10 to 60 mN. The length of the applied scratch was
500 µm. The tip speed was 100 nm/s, the load time was 10 s, and the hold time was 1 s.

2.7. Field Emission Characteristics

The study of field emission homogeneity over the samples surfaces was carried out in
a vacuum chamber at a pressure of at least 1 × 10−6 mbar using the MCS-3D positioning
system based on linear stages SLC-17 (SmarAct GmbH, Oldenburg, Germany) with an
accuracy at least 50 nm along the X, Y, and Z axes. To record the current characteristics, an
anode with a curvature radius of 350 µm was installed on the positioning system. Figure 2
shows a schematic representation and external view of the experimental setup.
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Figure 2. Experimental setup for measuring field emission, containing an anode positioning system
relative to the sample in a vacuum chamber (1—SLC-17, 2—fluoroplastic plate, 3—contact plate,
4—anode, 5—sample): (a) Scheme and (b) External view.

Evaluation of emission homogeneity for each sample was carried out for at least
five points. The anode was placed above the sample surface. Further, the anode smoothly
moved down along the Z-axis. When the anode was moving, the resistance between the
anode and cathode was controlled. The anode shifting continued until a value of less than
10 MΩ was obtained. This point was taken as 0 along the Z-axis. Then the anode was
moved up by 5 µm, and the current–voltage characteristic was measured.

To measure the integral field emission, a highly doped 7 × 7 mm2 silicon chip was
used as an anode. The cathode was a highly doped 7× 7 mm2 silicon chip with a deposited
layer of selected carbon nanomaterials. The layer was formed through a metal mask with
a 1.1 mm round hole. A 10 × 10 mm2 mica plate was used as a dielectric between the
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cathode and anode. A plate was 100 µm thick, with a 3 mm round hole in the center. A
2410C (Keithley Inc, Cleveland, OH, USA) high-voltage source-measurement device was
used to measure field emission values.

3. Results
3.1. Modeling of Laser Formation of Hybrid Nanostructures from Carbon Nanomaterials

Initially, the influence of laser pulses on the atomic network of the layer surface, which
was a diverse combination of graphene flakes, was established. For this purpose, a supercell
of a thin 2D layer of ~4.2 nm thick (size along the Z-axis) containing 3874 atoms was built.
The dimensions of the periodic box X × Y were 4.83 and 4.13 nm, respectively.

Figure 3a shows a general view of a layer fragment. Atoms of one supercell, which are
formed by several supercells, are shown in blue. Figure 3b,c shows two types of supercells,
demonstrating the features of the atomic structure of the constructed model of the quasi-2D
layer. One view shows the topological structure and the presence of various graphene
fragments, including flakes of different shapes, covalently attached to each other (Figure 3b).
Another view shows the presence of nonhexagonal elements: five in red, seven in blue, and
eight in green squares (Figure 3c).
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Figure 3. Atomic structure of a supercell of graphene nanoflakes layer: (a) General view of a layer
fragment, (b,c) Two types of supercells; energy characteristics of the carbon atom detachment process
under the action of the laser pulse: (d) Kinetic energy of the nuclei, (e) Repulsive energy.

The constructed atomistic supercell model included 24 octagons, 75 pentagons, and
72 heptagons. The surface of the film was represented by clearly visible graphene flakes,
which formed a relief that was most suitable for the field emission of the cathode since each
nanoflake can act as an electron nanoemitter in strong electric fields.
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The modeling of the laser pulse action implied using a 1064 nm laser wavelength.
The pulse duration (τ) varied from several tens of femtoseconds to several hundred (the
minimum value was 30 fs, and the maximum was 250 fs). First, the detachment process
of one carbon atom, which was the edge atom of a graphene nanoflake and had only
two bonds with neighboring atoms, was investigated. The intensity of F0 was 0.001, 0.01,
and 0.1 V/Å. The direction of the intensity vector was set as (0,0,−1). Thus, a large series of
molecular dynamics studies was carried out with different energy values (E0) and τ, while
in each case, the energy characteristics were recorded in increments of 0.01 fs: total energy,
non-SCC energy, SCC energy, spin energy, external field energy, repulsive energy, nuclear
kinetic energy, and dispersion energy.

As a result, it was found that, regardless of the value of F0 and τ, the detachment
of the edge atom from the moment the laser pulse began already occurred at ~15 fs; at
least after ~15 fs, the C–C bond length increased to ~1.8 Å, and then it increased until the
complete detachment of the atom from the initial graphene structure. Figure 3d shows the
profile of the kinetic energy of the nuclei (the curve is highlighted in green) during the
first 40 fs at τ = 30 fs. The shape of the laser pulse is also shown in red in this figure. The
kinetic energy of nuclei is one of the most important energy characteristics of the interaction
process of the atomic system with laser radiation since it very accurately reflects the process
of transferring the energy absorbed by electrons to the nuclei.

It can be seen that the kinetic energy of the nuclei profile was characterized by
five local maxima over the indicated time interval. It should be noted that a similar
profile was observed for all variations of the molecular dynamics modeling. This indicated
the truth of the detachment process of the carbon atom established in the field of in sil-
ico research. Thus, it was found that when the second local maximum was reached, the
mechanism of carbon atom detachment was “launched”. This happened at ~13th fs. The
third local maximum indicated the restructuring of the atomic structure after the one atom
detachment; the following maxima, smaller in magnitude, showed further minor changes
in the structure. Another important energy characteristic of the nuclear system response
process to external influences is repulsive energy. The profile of its change is shown in
Figure 3e, during the first 40 fs against the background of a laser pulse. This graph well
confirmed the previous conclusion: the mechanism of atom detachment began at ~13 fs.
Primarily, there was an increase in the repulsive energy of the pulse, then a sharp decrease.
The next noticeable maximum of the kinetic energy of the nuclei was observed during the
restructuring of the atomic system after the atom separation.

Based on the data obtained, the response of surface fragments of the quasi-2D layer
surface to incident laser radiation with a 1064 nm wavelength was studied. The purpose of
this in silico study was to determine whether and to what extent fragments of graphene
nanoflake would be destroyed under the influence of laser radiation. Figure 4 shows
two cases of a layer fragment before and after laser exposure. In the first case, the atomic
structure of the surface was characterized by a branched structure with graphene nanoflakes
clearly visible above the surface of the layer (Figure 4a). It is seen that after laser exposure,
some of the atoms and some small fragments broke away from the original structure. The
dynamics of the change in the number of non-hexagonal elements of the graphene structure
after laser exposure in the second case (Figure 4b) is also shown. Prior to the application
of the laser pulse, the atomic grid contained 1 octagon, 11 pentagons, and 5 heptagons.
After the exposure, the number of pentagons and heptagons decreased by one. Based
on the results of a large number of numerical experiments, it was found that graphene
nanoflakes, which were clearly visible above the surface of the film, did not collapse, but
only individual edge atoms of graphene fragments were torn off.
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Another important point of the in silico research was to identify the influence of strong
electric fields on the surface of graphene and the nanotubes layer. For this purpose, an
atomistic model of a supercell layer of graphene and nanotubes containing 4098 atoms was
constructed. There were 4 SWCNT supercells with chirality (6,5). A hybrid of graphene
nanoscale covalently bonded to a short nanotube was placed in one of the cavities. This
hybrid contained 714 atoms and was not covalently bound to the environment. This
predetermined the freedom of the hybrid under external influence. The junction of the
graphene flake with the nanotube was formed by nonhexagonal elements: 11 pentagons
and 16 heptagons (in Figure 5a, the elements are marked in red and blue, respectively).
Next, an electric field was applied in the direction (−1,0,0), as shown in Figure 5a. Molecular
dynamic modeling established the nature of the behavior of such a structure to an electric
field with a strength of F = 0.1 V/Å. As a result of the electron charge density redistribution,
the structure received a dipole moment, which caused the structure to be positioned so
that the dipole moment vector was oriented along the electric lines of the external field.
The time during which this happened was 5.5 ps (under these conditions). The induced
magnitude of the electric dipole moment was 2424.8 Debye. Thus, as a result of the external
field influence, the formation of new emitting centers was likely. The partial destruction
of the edge areas can also be seen. Figure 5b shows the distribution of the electron charge
density at the initial moment and at the moment when the dipole moment lines up along
the force line of the external electric field. The view of the layer with the unfolded hybrid is
shown in Figure 5c (highlighted in green).
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Thus, pulsed laser exposure can contribute to the formation of a surface from graphene
flakes and from hybrids based on graphene and SWCNT, which is accompanied by partial
destruction of the edge fragments of graphene.
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3.2. Deposition of Carbon Nanomaterials on Si Substrate

Initially prepared liquid dispersions of 1, 2, and 3 carbon nanomaterials (SWCNT,
rGO, rGO + SWCNT) were deposited by spray deposition method on Si substrates, forming
the corresponding layers. Despite the homogeneity of the dispersion, the formed layers on
the substrate had a significant difference in height. This was clearly seen in SEM images for
the rGO + SWCNT layer (Figure 6a,b). It is a well-known fact that agglomerates are present
in liquid dispersions with carbon nanotubes and graphene, which are formed under the
action of Van der Waals forces [104,105]. The morphology of the layer consisted of SWCNT
with inclusions of large rGO particles, which led to the formation of an inhomogeneous
layer in height with a spread of more than 10 microns. The inhomogeneity of the emission
centers distribution along the height will lead to inhomogeneity of the emission current
along the surface and, as a consequence, to rapid degradation of the cathode due to the
destruction of individual centers.
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Figure 6. SEM image of the deposited layer of rGO + SWCNT: (a) top view and (b) view at 52◦ angle;
(c,d) after centrifugation of SWCNT layers, (e,f) rGO, (g,h) rGO + SWCNT.

Since the formation of homogeneous layers of carbon nanomaterials was hindered
by the presence of large SWCNT and rGO agglomerates, the dispersions were purified
from them by centrifugation. After the process of decanting large agglomerates, the height
difference of the layers from all dispersions was minimal and calculated in nanometers;
this was demonstrated in SEM images of layers from dispersion 1 based on SWCNT
(Figure 6c,d), dispersion 2 based on rGO (Figure 6e,f), and dispersion 3 based on rGO and
SWCNT (Figure 6g,h).

3.3. Laser Formation of Hybrid Nanostructures Based on SWCNT and rGO on Si Substrate

After the formation of homogeneous layers, the surface of the silicon chip was divided
into four square areas, which were exposed to laser radiation in the scanning mode. Initially,



Nanomaterials 2022, 12, 2812 14 of 27

the first method of laser processing in the Ar gas environment was applied. The external
view of SWCNT, rGO, and rGO + SWCNT layer samples after laser exposure with an
energy density of 0, 0.3, 0.5, and 0.8 J/cm2 is shown in Figure 7a–c. It can be seen from the
figure that with an increase in the energy density of laser radiation, a color change occurred,
which was caused by oxidation and a corresponding change in the morphology of carbon
nanomaterials. This indicated that it was impossible to completely replace the atmosphere
with an inert gas even in a specialized chamber; during laser exposure, a significant
amount of oxygen and water was present in the chamber and nanomaterials. This fact
was confirmed by SEM images of the surfaces of SWCNT (Figure 7d), rGO (Figure 7e),
and rGO + SWCNT (Figure 7f) samples obtained after exposure to laser radiation with an
energy density of 0.5 J/cm2 in an Ar gas environment. The presented results demonstrate
the importance of controlling the concentration of oxygen and water vapor when exposed
to pulsed laser radiation on layers of carbon nanomaterials in order to prevent damage to
the latter. To minimize the presence of oxygen and water vapor, the samples were then
subjected to laser exposure in a vacuum chamber.
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Figure 7. External view of (a) SWCNT, (b) rGO, and (c) rGO + SWCNT layers after laser exposure
with energy densities of 0, 0.3, 0.5, and 0.8 J/cm2 in an Ar gas environment; (d–f) Corresponding
SEM images obtained when exposed to an energy density of 0.5 J/cm2.

In accordance with the modeling results, it was found that laser radiation induced
the destruction of carbon bonds in carbon nanomaterials—the detachment of atoms at
the edges, the formation of new bonds between nanotubes, graphene flakes, and their
hybrids—due to the formation of nonhexagonal carbon rings. In addition, an external
electric field affected the orientation of the dipole moment vector of hybrids as a result of
the redistribution of the electron charge density of the structure. Therefore, it is necessary to
experimentally determine how the morphology of nanostructures based on SWCNT, rGO,
and rGO + SWCNT can change under the influence of laser radiation. For this purpose,
three of the four regions on the surfaces of samples from dispersions 1, 2, and 3 were
exposed to radiation energy densities of 0.3, 0.5, and 0.8 J/cm2. These values were chosen
as extreme ones that clearly demonstrate the degree of influence of a given energy density
value. In the case of exposure to laser radiation with a threshold energy density of 0.5 J/cm2

on the SWCNT layer, the effect of SWCNT orientation at a certain angle relative to the
Si substrate was obtained in combination with minor local damage to the SWCNT at the
vertices (Figure 8a,b). Exposure to laser radiation with an energy density of 0.3 J/cm2

did not significantly change the surface morphology of the SWCNT layer, and the energy
density of 0.8 J/cm2 led to severe damage to the layer.
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Figure 8. SEM images of layer structures based on: (a,b) SWCNT, (c,d) rGO/SWCNT hybrids after
laser exposure with an energy density of 0.5 J/cm2; (e,f) rGO layer after laser exposure with an energy
density of 0.8 J/cm2, and (g,h) rGO(bl)-SWCNT hybrid nanostructure with a buffer layer of rGO after
laser exposure with an energy density of 0.8 J/cm2 and a main layer of SWCNT after laser exposure
with an energy density of 0.5 J/cm2.

When laser exposure was applied to an rGO + SWCNT layer, the effect of hybrid
rGO/SWCNT nanostructures formation was observed. SWCNT were welded to each
other and to rGO flakes, forming strong bonds (Figure 8c,d). In addition to the binding
of carbon nanomaterials, the effect of orientation at an angle of hybrid rGO/SWCNT
nanostructures relative to the substrate under the laser radiation exposure was observed.
The rGO flakes with SWCNT welded to them were lifted above the substrate, with one end
of the flake fragments attached to the substrate. However, such nanostructures were
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characterized by low density and uniformity. This may be the reason for the low emission
current density. Similarly, with the SWCNT layer, a threshold value of 0.5 J/cm2 radiation
energy density was used for orientation since lower values did not provide the orientation
effect of rGO/SWCNT hybrids, and an increase in energy above the threshold value led
to sublimation.

An interesting fact was that the energy density of even 0.8 J/cm2 did not allow
changing the orientation of the rGO layer on the Si substrate. The morphology of the rGO
layer after exposure to laser radiation with an energy density of 0.8 J/cm2 or less remained
unchanged. SEM images of the layer rGO surface before (Figure 6e,f) and after (Figure 8e,f)
laser exposure had a similar character to the layer surface morphology. A further increase
in the energy density above the threshold value (0.8 J/cm2) led to the sublimation of rGO,
as shown in Figure 7e. Thus, the applied layer of rGO formed a graphene surface that
was unable to rise above the substrate under the influence of laser radiation due to dense
packing and strong adhesion to the Si substrate.

Despite the impossibility of raising rGO particles above the substrate, the effect of
“merging” rGO flakes with the surface of the Si substrate under the influence of pulsed
laser radiation can be used to form effective field emission structures. Such a structure
should have good adhesion and low contact resistance with the substrate. In this regard,
the resulting effect of welding a layer of rGO flakes to a Si substrate under the influence of
laser radiation (0.8 J/cm2) was used to create a buffer layer that provides a high degree of
adhesion to subsequent layers of carbon nanomaterials to the substrate.

Thus, after the formation of the buffer layer from rGO, the SWCNT layer was applied
as the main layer since it demonstrated the highest density of potential emission centers
per unit area with a favorable aspect ratio of centers. After exposure to laser radiation with
a threshold energy density of 0.5 J/cm2 for SWCNT, the nanotubes, on the one hand, were
firmly fixed by welding to the buffer layer and, on the other hand, were oriented vertically
relative to the substrate (Figure 8g,h). The resulting hybrid nanostructure rGO(bl)-SWCNT
had an increased degree of uniformity and density of emission centers compared with
structures from dispersions 1 and 3.

Raman spectroscopy was used to evaluate the effect of laser radiation on the defec-
tiveness of nanostructures from SWCNT, rGO, rGO/SWCNT, and rGO(bl)-SWCNT. A
distinctive feature of the Raman spectra of SWCNT is the presence of a vibrational RBM
mode (100–400 cm−1), which does not manifest itself in any other graphene-related struc-
tures. It is widely known that its frequency is inversely proportional to the diameter of an
SWCNT [106]. There are also two equally important bands in the analysis of carbon-based
materials: D (~1350 cm−1) and G (1580–1605 cm−1). It is known that the G-mode appears
in all sp2 carbon materials and is caused by the stretching of C–C bonds in the hexagonal
lattice, and the D-Band arises from the defects and disorders in the carbon lattice [107].
The intensity ratio of the ID/IG bands is widely known in the literature and is used as an
indirect assessment of the defectiveness level of carbon nanomaterials.

The analysis of structural features was carried out based on the assessment of changes
in the characteristic bands for SWCNT and rGO. Table 2 contains the key parameters taken
from the Raman spectra. The carbon nanotubes used in this study had a semiconductor
type of conductivity (splitting the G mode into two bands, Figure 9) and had a relatively
low defect rate before exposure (Table 2; 0 J/cm2) to laser radiation. When exposed to
laser radiation, the ID/IG ratio increased with increasing power, and there was also a
displacement of the D and G bands themselves, which indicated the beginning of structural
destructurization (Table 2).
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Table 2. Characterization of Raman spectra via characteristic bands for SWCNT, rGO, rGO/SWCNT,
and rGO(bl)-SWCNT nanostructures.

Sample Laser Energy Density, J/cm2 ID/IG ν (G Band), cm−1 ν (D Band), cm−1

1. SWCNT

0 0.036 1595 1343
0.3 0.083 1592 1338
0.5 0.112 1590 1338
0.8 0.269 1589 1339

2. rGO

0 0.439 1596 1352
0.3 0.425 1597 1354
0.5 0.421 1597 1353
0.8 0.407 1596 1353

3. rGO/SWCNT

0 0.032 1595 1343
0.3 0.033 1593 1341
0.5 0.038 1593 1340
0.8 0.054 1591 1339

4. rGO(bl)-SWCNT

0 0.092 1594 1340
0.3 0.113 1595 1339
0.5 0.136 1589 1341
0.8 0.181 1592 1342
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SWCNT samples with an increase in the energy density of laser radiation from 0.3
to 0.8 J/cm2 were characterized by a gradual increase in defectiveness. The frequencies
of the characteristic modes were shifted towards the values for amorphous carbon, but
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the distinctive RBM mode was preserved at all laser radiation energies. This indicates
the preservation of the overall structural features of SWCNT. A similar relationship was
observed for the rGO/SWCNT sample (Table 2). However, in this case, the defect increased
much more slowly, probably because the laser radiation energy accounted for, in addition to
changing the morphology of SWCNT, the orientation of the rGO flakes, and the formation
of bonding between SWCNT and rGO.

In the case of rGO, the relative stacking of graphene layers was random, and the
defectiveness affects all the main characteristic modes, complicating the analysis [108,109].
For rGO flakes, the ID/IG ratio gradually decreased with a higher energy density of laser
radiation (from 0.3 to 0.8 J/cm2); however, the rate was much weaker compared with that
for pure nanotubes. At the same time, the width and the intensity of the D and G bands also
slowly lowered. This was probably due to the welding of graphene flakes to Si substrate
and, as a result, thinning of the layer itself.

At the same time, the rGO(bl)-SWCNT sample combined, on the one hand, the reg-
ularity of increasing the defectiveness of SWCNT with an increase in the energy of laser
exposure; on the other hand, the regularity of decreasing the defectiveness of rGO with
an increase in the energy density of laser exposure. As a result, the initial defectiveness of
this sample was higher than the defectiveness of SWCNT but lower than the defectiveness
of rGO, and with an increase in energy density, the defectiveness of the rGO(bl)-SWCNT
nanostructure increased, but not as rapidly as for SWCNT. A possible reason for such a
defect change was the stabilization of SWCNT using an rGO buffer layer welded to the
Si substrate.

3.4. Influence of Laser Radiation on Mechanical Properties of Hybrid Nanostructures

To determine the strength of the nanostructures formed by laser radiation, the hardness
of the formed layers on the Si substrate was measured using the nanoindentation method.
The samples’ hardness could change due to various patterns of carbon nanomaterials
binding to each other, including the formation of rGO and SWCNT hybrids. For each
sample, five measurements were carried out, and then the average hardness values were
calculated. Based on the data obtained, a graph of the layers’ hardness before and after
laser exposure was plotted (Figure 10).
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The SWCNT layer had a hardness of 9.2 GPa. After laser exposure, the hardness
increased by more than 2.5 times and amounted to 24.5 GPa. However, the hardness of
the layer of rGO flakes at 19.6 GPa was initially higher than that of the SWCNT layer,
while laser exposure made it possible to increase the hardness by more than 2.3 times. The
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layer formed from rGO and SWCNT flakes had the lowest hardness, ~7.8 GPa, but laser
radiation made it possible to increase it by 2.2 times. The maximum hardness was achieved
for the rGO(bl)-SWCNT nanostructure based on the rGO buffer layer and the main SWCNT
layer, 22.6 and 54.4 GPa before and after laser exposure, respectively. On the one hand, the
obtained patterns of increase in hardness confirmed the effect of laser welding of carbon
nanomaterials to each other under the action of pulsed laser radiation. On the other hand,
the samples in which a densely packed layer of rGO flakes was formed before and after
laser exposure (a layer of rGO and rGO(bl)-SWCNT) had a higher hardness compared with
the branched layer structure of SWCNT and rGO/SWCNT.

In addition, to control the hardness of the layers, it was important to determine the
adhesion degree of the layers to the Si substrate since the vertical electrical conductivity
from the bottom of the substrate to the tip of the formed nanostructure played a decisive
role in the creation of stable field emission cathodes [110,111]. In this regard, a sclerometric
of the layers was carried out. It was found that for the formation of scratches with identical
geometric dimensions, it was necessary to apply different force values, which ensured the
detachment of the layer from the Si substrate. The force values for the separation of all
layers varied in the range of 7.8–10.5 mN: SWCNT (9.5 mN), rGO (10.9 mN), rGO/SWCNT
(7.8 mN), and rGO(bl)-SWCNT (10.5 mN). After laser exposure, the force values increased
by more than 3 times—31.8–47.5 mN. Layers based on rGO and rGO(bl)-SWCNT had the
maximum adhesion after laser exposure. The force for detachment of these layers was 44.8
and 47.5 mN, respectively. The force for the SWCNT-based layer was 32.9 mN. In this case,
the sample with a branched surface of raised graphene flakes was characterized by the
lowest adhesion to the surface of the Si substrate. The force for this sample was 18.5 mN.

Thus, the formed rGO(bl)-SWCNT hybrid nanostructure, because of the presence of
the rGO buffer layer, had a high hardness value and a high degree of adhesion to the Si
substrate, which would potentially help to reduce the contact resistance and could increase
the long-term stability of the field emitters characteristics based on them.

3.5. Effect of Laser Radiation on the Emission Characteristics of Hybrid Nanostructures

After comparing the structural and mechanical properties, the field emission current–
voltage characteristics of laser-formed layers from carbon nanostructures SWCNT (Figure 11a),
rGO (Figure 11b), rGO/SWCNT (Figure 11c), and rGO(bl)-SWCNT (Figure 11d) were
obtained. For the rGO sample, the maximum current value was not more than 1.7 nA.
Such a low value was due to the rGO layer morphology, which was characterized by
the absence of surface branching and the absence of pronounced field emission centers
(Figure 8e,f). Despite the attractive rGO/SWCNT structure in terms of field emission, a
low field emission current was obtained (Figure 11c). This was due to the low degree of
uniformity and low population density of emission centers on the layer surface (Figure 8c,d).
At the same time, strong fluctuations were presented in the current–voltage characteristic,
which was probably associated with low mechanical characteristics of vertically oriented
graphene flakes with SWCNT relative to the Si substrate (Figure 8c). Meanwhile, for the
SWCNT sample (Figure 11a), the current–voltage characteristic demonstrated high values
of the maximum current ~0.14 mA. This effect was most likely due to two reasons. The first
reason was the high population density of field emission centers with a high aspect ratio.
The second reason was related to the effect of laser welding of the SWCNT to the silicon
substrate, which reduced the contact resistance, thus improving the electron transport [92].
However, the current–voltage curve of the SWCNT layer contained significant fluctuations
in the emission current with increasing voltage above 85 V, which could be explained by
insufficient strength and adhesion of the SWCNT layer to the Si substrate. In order to
improve the adhesion of SWCNT to the Si substrate, an rGO buffer layer was formed before
the main SWCNT layer. This made it possible to improve electron transfer from the Si
substrate through the rGO buffer layer to the SWCNT emitting layer. It is assumed that the
covalent bonding of SWCNT to the graphene flakes may contribute to an increase in the
vertical electrical conductivity [112]. For the rGO(bl)-SWCNT hybrid nanostructure sample,
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an increase in voltage up to 140 V demonstrated a low level of emission current fluctuations
(Figure 11d). This also indicated that laser exposure of the rGO buffer layer promoted
welding of graphene flakes with Si substrate, thereby increasing the field emission stability.
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The important point was to ensure that the structure morphology affects the field emis-
sion characteristics. Since the morphology was controlled by varying the energy density of
pulsed laser radiation, the emission current–voltage characteristics were measured using
the example of an rGO(bl)-SWCNT layer formed with a radiation energy density of 0.3,
0.5, and 0.8 J/cm2. Figure 12 shows the average values of the emission current at 5 points
of each square area formed by a given radiation energy density for the rGO(bl)-SWCNT
sample. The highest field emission current was 175–226 µA at a laser radiation energy
density of 0.5 J/cm2. Further increase in the laser radiation energy density up to 0.8 J/cm2

led to a decrease in the maximum emission current values below 60 µA, which could be
explained by defects formation on the SWCNT surface and by the destruction of individual
SWCNTs, which were effective emitters. An energy density of 0.3 J/cm2 was insufficient for
the SWCNT orientation and formation of emission centers. The result obtained correlated
with the data obtained by Raman spectroscopy.
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To determine the integral emission current density, the round-shaped cathode samples
of ~1 mm2 (Figure 13a,b) were made of SWCNT and rGO(bl)-SWCNT layers. For this
purpose, the corresponding dispersions were deposited through a stencil mask with a hole
of 1.1 mm in diameter. Before measuring the field emission current–voltage characteristics
of the SWCNT and rGO(bl)-SWCNT, the samples were trained at a fixed emission current
of 1 mA for at least 540 min. The voltage–time curves at a constant emission current of
1 mA for the SWCNT and rGO(bl)-SWCNT samples are shown in Figure 13c,d, respectively.
For the SWCNT sample, a significant increase in voltage (more than 100 V) was observed,
which indicated sample degradation during field emission due to the mechanical instability
of the SWCNT on the Si substrate. For the rGO(bl)-SWCNT sample, a smooth voltage
increase followed by stabilization was obtained. This indicated an improved adhesion of
SWCNT to the substrate compared with SWCNT due to laser formation of the buffer layer.
This fact was confirmed by the measured current–voltage characteristics after training of
layers based on SWCNT and rGO(bl)-SWCNT hybrids (Figure 13e). Then for the SWCNT
sample, the maximum current was 2.5 times less than that of the rGO(bl)-SWCNT sample
at the same field strength. The current density for the SWCNT sample was 226 mA/cm2,
and for the rGO(bl)-SWCNT—562 mA/cm2.

We compared the obtained values of the emission current density with the values for
structures based on carbon materials reported by other researchers. Based on the analysis,
it was found that obtained emission current density values of rGO(bl)-SWCNT hybrid
sample 562 mA/cm2 exceed the values obtained earlier. Murakami et al. obtained the
emission current density of the GO structure at 100 mA/cm2 [40]. Kaur et al., in their work,
obtained the value of the hybrid CNT/rGO structure’s current density of 64 mA/cm2 [42].
In work [56], emission current density of CNT film up to 1 mA/cm2 was achieved.
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4. Conclusions

Technology for the formation of hybrid nanostructures by pulsed 1064 nm laser
radiation on spray-deposited layers of homogeneous liquid dispersions of single-walled
carbon nanotubes (SWCNT), reduced graphene oxide (rGO), and SWCNT with rGO on a
Si substrate was developed.

Molecular dynamics modeling using the real-time time-dependent density functional
tight-binding (TD-DFTB) method showed that laser radiation rearranged SWCNT with
graphene flakes into hybrid nanostructures with the formation of nonhexagonal graphene
elements. Because of the electron charge density redistribution, the hybrid structure
acquired a dipole moment oriented along the external field and was located along it. SEM
images confirmed the effect of changing the SWCNT and rGO/SWCNT orientation upon
pulsed laser radiation exposure with an energy density of 0.5 J/cm2.

It was found that rGO/SWCNT nanostructures had lower hardness and adhesion
to the Si substrate compared with rGO and were less efficient as field emitters compared
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with SWCNT due to the low uniformity and density of emission centers. Therefore, hybrid
nanostructures rGO(bl)-SWCNT were proposed with a laser-exposed rGO buffer layer
(0.8 J/cm2) and a main layer of SWCNT (0.5 J/cm2). The laser provided SWCNT welding
to graphene and changed their orientation. With the help of Raman spectroscopy, the effect
of laser radiation energy on the defectiveness of all nanostructures of carbon nanomaterials
was determined.

The laser exposure provided an increase in the hardness of all nanostructures more
than twice. The maximum hardness obtained for rGO(bl)-SWCNT was 54.4 GPa. In
addition, the adhesion of rGO to the substrate and electron transport between the substrate
and rGO(bl)-SWCNT increased. The rGO(bl)-SWCNT cathode with an area of ~1 mm2

provided stable field emission for 540 min at a current of 1 mA. The achieved current density
was 2.5 times higher in comparison with SWCNT cathode and amounted to 562 mA/cm2.

The proposed technology for creating hybrids from SWCNT and rGO has great po-
tential for developing emission cathodes for electronic devices, such as X-ray tubes, field
emission displays, and vacuum microwave devices.
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