Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage
Abstract
:1. Introduction
2. Literature Review According to the Structure of Graphene-Based Nanocomposites
2.1. Graphene Surface Modification and Doping
2.2. The Three-Dimensional Structured Graphene for SIBs
2.3. Graphene Coated on the Surface of Active Materials
2.4. Intercalation Layer Stacked Graphene
3. Discussion and Prospects
- (1)
- In-depth knowledge of Na+ storage mechanism
- (2)
- Reasonable structure and process design of electrodes
- (3)
- Environmental, economic, and scaling-up aspects
- (4)
- Full cell fabrication and commercialization of SIBs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Yin, X.P.; Sarkar, S.; Shi, S.S.; Huang, Q.A.; Zhao, H.B.; Yan, L.M.; Zhao, Y.F.; Zhang, J.J. Recent Progress in Advanced Organic Electrode Materials for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Adv. Funct. Mater. 2020, 30, 2070071. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Zhao, H.; Meng, Z.; Wang, C.; Chu, P.K. Construction of α-MnO2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. Nanomaterials 2022, 12, 2020. [Google Scholar] [CrossRef]
- Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Recent Progress in Rechargeable Sodium-Ion Batteries: Toward High-Power Applications. Small 2019, 15, 1805427. [Google Scholar] [CrossRef]
- Pan, H.L.; Yong-Sheng, H.U.; Hong, L.I.; Chen, L.Q. Recent progress in structure study of electrode materials for room-temperature sodium-ion stationary batteries. Sci. China-Chem. 2014, 44, 1269. [Google Scholar]
- Divakaran, A.M.; Minakshi, M.; Bahri, P.A.; Paul, S.; Kumari, P.; Divakaran, A.M.; Manjunatha, K.N. Rational design on materials for developing next generation lithium-ion secondary battery. Prog. Solid State Chem. 2021, 62, 100298. [Google Scholar] [CrossRef]
- Divakaran, A.M.; Hamilton, D.; Manjunatha, K.N.; Minakshi, M. Design, development and thermal analysis of reusable Li-ion battery module for future mobile and stationary applications. Energies 2020, 13, 1477. [Google Scholar] [CrossRef]
- Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867. [Google Scholar] [CrossRef]
- Zhao, F.; Han, N.; Huang, W.; Li, J.; Ye, H.; Chen, F.; Li, Y. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Qiu, Z.; Huangfu, C.; Wang, L.; Wei, T.; Fan, Z. Tin Nanodots derived from Sn2+/Graphene quantum dot complex as pillars into gaphene blocks for ultrafast and ultrastable sodium-ion storage. Small 2020, 16, 2003557. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, K.; Zhao, Z.; Li, Q.; Ma, R.; Sasaki, T.; Geng, F. Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability. Energy Stor. Mater. 2020, 24, 504–511. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, B.; Liu, S.; Ma, Q.; Zhang, W.H. Galvanic Replacement Synthesis of Highly Uniform Sb Nanotubes: Reaction Mechanism and Enhanced Sodium Storage Performance. ACS Nano 2019, 28, 5885–5892. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zhang, Y.; Wei, Z.; Wang, C. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes. Nano Lett. 2019, 19, 538–544. [Google Scholar] [CrossRef]
- Liu, S.; Feng, J.; Bian, X.; Liu, J.; Xu, H. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 10098–10104. [Google Scholar] [CrossRef]
- Qiu, J.; Li, S.; Su, X.; Wang, Y.; Xu, L.; Yuan, S.; Li, H.; Zhang, S. Bismuth Nano-Spheres Encapsulated in Porous Carbon Network for Robust and Fast Sodium Storage. Chem. Eng. J. 2017, 320, 300–307. [Google Scholar] [CrossRef]
- Li, S.; Feng, R.; Li, M.; Zhao, X.; Zhang, B.; Liang, Y.; Ning, H.; Wang, J.; Wang, C.; Chu, P.K. Needle-like CoO nanowire composites with NiO nanosheets on carbon cloth for hybrid flexible supercapacitors and overall water splitting electrodes. RSC Adv. 2020, 10, 37489–37499. [Google Scholar] [CrossRef]
- Feng, R.; Li, M.; Wang, Y.; Lin, J.; Zhu, K.; Wang, J.; Wang, C.; Chu, P.K. High-performance multi-dimensional nitrogen-doped N+MnO2@TiC/C electrodes for supercapacitors. Electrochim. Acta 2021, 370, 137716. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Meng, Z.; Hu, R.; Wang, J.; Wang, C.; Chu, P.K. Efficient coupling of MnO2/TiN on carbon cloth positive electrode and Fe2O3/TiN on carbon cloth negative electrode for flexible ultra-fast hybrid supercapacitors. RSC Adv. 2021, 11, 35726–35736. [Google Scholar] [CrossRef]
- Pang, M.; Long, G.; Jiang, S.; Ji, Y.; Han, W.; Wang, B.; Liu, X.; Xi, Y.; Wang, D.; Xu, F. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors. Chem. Eng. J. 2015, 280, 377–384. [Google Scholar] [CrossRef]
- Needham, S.A.; Wang, G.X.; Liu, H.K.; Drozd, V.A.; Liu, R.S. Synthesis and electrochemical performance of doped LiCoO2 materials. J. Power Sources 2007, 174, 828–831. [Google Scholar] [CrossRef]
- Guan, C.; Wang, Y.; Hu, Y.; Liu, J.; Ho, K.H.; Zhao, W.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 23283–23288. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, G.; Zhang, Z.; Wang, Y.; Wang, H.; Bai, J.; Wang, G. Urchin-Type Architecture Assembled by Cobalt Phosphide Nanorods Encapsulated in Graphene Framework as an Advanced Anode for Alkali Metal Ion Batteries. Chem. Eur. J. 2021, 27, 1713–1723. [Google Scholar] [CrossRef]
- Li, M.; Meng, Z.; Feng, R.; Zhu, K.; Zhao, F.; Wang, C.; Wang, J.; Wang, L.; Chu, P.K. Fabrication of Bimetallic Oxides (MCo2O4: M=Cu, Mn) on Ordered Microchannel Electro-Conductive Plate for High-Performance Hybrid Supercapacitors. Sustainability 2021, 13, 9896. [Google Scholar] [CrossRef]
- Yan, B.; Wang, L.; Huang, W.; Zheng, S.; Hu, P.; Du, Y. High-capacity organic sodium ion batteries using a sustainable C4Q/CMK-3/SWCNT electrode. Inorg. Chem. Front. 2019, 6, 1977–1985. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. An Overview of Mixed Polyanionic Cathode Materials for Sodium-Ion Batteries. Small Methods 2019, 3, 1800253. [Google Scholar] [CrossRef]
- Wheeler, S.; Capone, I.; Day, S.; Tang, C.; Pasta, M. Low-Potential Prussian Blue Analogues for Sodium-Ion Batteries: Manganese Hexacyanochromate. Chem. Mater. 2019, 31, 2619–2626. [Google Scholar] [CrossRef]
- Nongkynrih, J.; Sengupta, A.; Modak, B.; Mitra, S.; Tyagi, A.K.; Dutta, P.D. Enhanced electrochemical properties of W-doped Na3V2(PO4)(2)F-3@C as cathode material in sodium ion batteries. Electrochim. Acta 2022, 415, 140256. [Google Scholar] [CrossRef]
- Yi, T.-F.; Pan, J.-J.; Wei, T.-T.; Li, Y.; Cao, G. NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today 2020, 33, 100894. [Google Scholar] [CrossRef]
- Yang, Z.X.; Zhang, Y.F.; Huang, J.H.; Ye, B.Q.; Lin, S.M.; Liu, J.H.; Ye, Y.L.; Zheng, K.; Lu, G.Z.; Guo, T.L.; et al. Sandwich architecture of graphene/MoS(2)composite as anodes for enhanced reversible lithium and sodium storage. Int. J. Energy Res. 2020, 44, 8314–8327. [Google Scholar] [CrossRef]
- Liu, M.; Ma, Y.; Fan, X.; Singh, D.J.; Zheng, W.T. Progress of graphdiyne-based materials for anodes of alkali metal ion batteries. Nano Futures 2022, 6, 022004. [Google Scholar] [CrossRef]
- Ivanovskii, A.L. Graphynes and graphdyines. Prog. Solid State Chem. Prog. Solid State Chem. 2013, 41, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Terrones, M.; Park, C.R.; Mukherjee, R.; Monthioux, M.; Koratkar, N.; Kim, Y.S.; Hurt, R.; Frackowiak, E.; Enoki, T.; et al. Carbon science in 2016: Status, challenges and perspectives. Carbon 2016, 98, 708–732. [Google Scholar] [CrossRef]
- Xu, J.; Dou, Y.; Wei, Z.; Ma, J.; Deng, Y.; Li, Y.; Liu, H.; Dou, S. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries. Adv. Sci. 2017, 4, 1700146. [Google Scholar] [CrossRef]
- Hernaez, M. Applications of Graphene-Based Materials in Sensors. Sensors 2020, 20, 3196. [Google Scholar] [CrossRef]
- Lobo, L.S.; Carabineiro, S.A.C. Kinetics of Carbon Nanotubes and Graphene Growth on Iron and Steel: Evidencing the Mechanisms of Carbon Formation. Nanomaterials 2021, 11, 143. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, J.; Kong, D.; Zhang, C.; Han, D.; Han, J.; Tao, Y.; Lv, W.; Yang, Q.H. Practical Graphene Technologies for Electrochemical Energy Storage. Adv. Funct. Mater. 2022, 2204272. [Google Scholar] [CrossRef]
- Gunasekaran, S.S.; Kumaresan, T.K.; Masilamani, S.A.; Karazhanov, S.Z.; Raman, K.; Subashchandrabose, R. Divulging the electrochemical hydrogen storage on nitrogen doped graphene and its superior capacitive performance. Mater. Lett. 2020, 273, 127919. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Hummers Jr, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium. Electrochim. Acta 2016, 199, 194–203. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Yan, J.; Zhi, G.; Kong, D.Z.; Wang, H.; Xu, T.T.; Zang, J.H.; Shen, W.X.; Xu, J.M.; Shi, Y.M.; Dai, S.G.; et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A 2020, 8, 19843–19854. [Google Scholar] [CrossRef]
- Yao, F.; Li, B.; So, K.; Chang, J.; Ly, T.H.; Vu, A.Q.; Mun, H.; Cojocaru, C.S.; Yue, H.; Xie, S. A strategy to overcome the limits of carbon-based materials as lithium-ion battery anodes. Carbon 2014, 79, 563–571. [Google Scholar] [CrossRef]
- Guo, H.; Long, D.; Zheng, Z.; Chen, X.; Ng, A.; Lu, M. Defect-enhanced performance of a 3D graphene anode in a lithium-ion battery. Nanotechnology 2017, 28, 505402. [Google Scholar] [CrossRef]
- Ma, J.; Xing, M.; Yin, L.; Hui, K.S.; Hui, K.N. Porous hierarchical TiO2/MoS2/RGO nanoflowers as anode material for sodium ion batteries with high capacity and stability. Appl. Surf. Sci. 2021, 536, 147735. [Google Scholar] [CrossRef]
- Jaoude, M.A.; Alhseinat, E.; Polychronopoulou, K.; Bharath, G.; Banat, F. Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochim. Acta 2019, 330, 135202. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Y.; Sun, X.; Liu, H.; Cui, J.; Zhang, Y.; He, W. N, S co-doped modified graphene/Fe2O3 composites synthesized via microwave-assisted method for Na-ion batteries. Inorg. Chem. Commun. 2020, 121, 108188. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhao, Z.; Tian, Z.; Zhang, D.; Wu, Y. Ni2P Nanoflake Array/Three-Dimensional Graphene Architecture as Integrated Free-Standing Anode for Boosting the Sodiation Capability and Stability. ChemElectroChem 2018, 6, 404–412. [Google Scholar] [CrossRef]
- Tan, X.; Mo, R.; Xu, J.; Li, X.; Yin, Q.; Shen, L.; Lu, Y. High Performance Sodium Ion Anodes Based on Sn4P3 Encapsulated within Amphiphilic Graphene Tubes. Adv. Energy Mater. 2022, 12, 2102345. [Google Scholar] [CrossRef]
- Yong, L.; Dy, C.; Ys, B.; Yong, W.B.; Bs, D.; Wen, L.B.; Rui, G.B.; Hp, B.; Hz, C.; Jz, C. Recycling materials from degraded lithium-ion batteries for Na-ion storage. Mater. Today Energy 2020, 15, 100368. [Google Scholar]
- Dong, O.; Jl, C.; Mjla, B.; Ju, Y.; Jo, A.; Shk, A.; Kmk, A.; Ygl, A. Restacked nanohybrid graphene layers with expanded interlayer distance enabled by inorganic spacer for highly efficient, flexible Na-ion battery anodes—Science Direct. J. Electroanal. Chem. 2021, 886, 115137. [Google Scholar]
- Han, J.; Liu, P.; Ito, Y.; Guo, X.; Hirata, A.; Fujita, T.; Chen, M. Bilayered nanoporous graphene/molybdenum oxide for high-rate lithium ion batteries. Nano Energy 2018, 45, 273–279. [Google Scholar] [CrossRef]
- Zhang, X.; Weng, W.; Gu, H.; Hong, Z.; Xiao, W.; Wang, F.; Li, W.; Gu, D. Versatile Preparation of Mesoporous Single-Layered Transition-Metal Sulfide/Carbon Composites for Enhanced Sodium Storage. Adv. Mater. 2022, 34, 2104427. [Google Scholar] [CrossRef]
- Thangavel, R.; Kannan, A.G.; Ponraj, R.; Yoon, G.; Aravindan, V.; Kim, D.W.; Kang, K.; Yoon, W.S.; Lee, Y.S. Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability. Energy Storage Mater. 2020, 25, 702–713. [Google Scholar] [CrossRef]
- He, Q.; Jin, X.; Li, Z.; Cai, Z.; Tian, J.; Hui, J.; Zhang, H. Regulated Electrodeposition of Na Metal in Monolithic ZIF-Pillared Graphene Anodes. ACS Appl. Mater. Interfaces 2022, 14, 1203–1211. [Google Scholar] [CrossRef]
- Ma, M.; Yao, Y.; Wu, Y.; Yu, Y. Progress and Prospects of Transition Metal Sulfides for Sodium Storage. Adv. Fiber Mater. 2020, 2, 314–337. [Google Scholar] [CrossRef]
- Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-Ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, M.; Li, H.; Wang, K.; Cheng, S.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921. [Google Scholar] [CrossRef]
- Harids, A.K.; Sadan, M.K.; Kim, H.H.; Heo, J.; Kim, S.S.; Choi, C.H.C.; Jung, H.Y.; Ahn, H.J.; Ahn, J.H. Realizing high-performance Li/Na-Ion half/full batteries via the synergistic coupling of Nano-Iron sulfide and S-doped graphene. ChemSusChem 2021, 14, 1936–1947. [Google Scholar] [CrossRef]
- Chong, S.; Wei, X.; Wu, Y.; Sun, L.; Huang, W. Expanded MoSe2 Nanosheets Vertically Bonded on Reduced Graphene Oxide for Sodium and Potassium-Ion Storage. ACS Appl. Mater. Inter. 2021, 13, 13158–13169. [Google Scholar] [CrossRef]
- Zhao, X.; Sui, J.; Li, F.; Fang, H.; Wang, H.; Li, J.; Cai, W.; Cao, G. Lamellar MoSe2 nanosheets embedded with MoO2 nanoparticles: Novel hybrid nanostructures promoted excellent performances for lithium ion batteries. Nanoscale 2016, 8, 17902–17910. [Google Scholar] [CrossRef]
- Meng, S.; Zhao, D.-L.; Wu, L.-L.; Ding, Z.-W.; Cheng, X.W.; Hu, T. Fe2O3/nitrogen-doped graphene nanosheet nanocomposites as anode materials for sodium-ion batteries with enhanced electrochemical performance. J. Alloys Compd. 2018, 737, 130–135. [Google Scholar] [CrossRef]
- Li, T.; Qin, A.; Yang, L.; Chen, J.; Wang, Q.; Zhang, D.; Yang, H. In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for Sodium-Ion batteries. ACS Appl. Mater. Inter. 2017, 9, 19900–19907. [Google Scholar] [CrossRef]
- Shi, L.; Li, Y.; Zeng, F.; Ran, S.; Dong, C.; Leu, S.-Y.; Boles, S.T.; Lam, K.H. In situ growth of amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries. Chem. Eng. J. 2019, 356, 107–116. [Google Scholar] [CrossRef]
- Saraf, M.; Natarajan, K.; Mobin, S.M. Microwave assisted fabrication of a nanostructured reduced graphene oxide (rGO)/Fe2O3 composite as a promising next generation energy storage material. RSC Adv. 2017, 7, 309–317. [Google Scholar] [CrossRef]
- Kong, D.; Cheng, C.; Wang, Y.; Liu, B.; Huang, Z.; Yang, H.Y. Seed-assisted growth of α-Fe2O3 nanorod arrays on reduced graphene oxide: A superior anode for high-performance Li-ion and Na-ion batteries. J. Mater. Chem. A 2016, 4, 11800–11811. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zhan, P.; Jiao, S. Hollow α-Fe2O3 Nanospheres Synthesized Using a Carbon Template as Novel Anode Materials for Na-Ion Batteries. ChemElectroChem 2014, 1, 1636–1639. [Google Scholar] [CrossRef]
- Jian, Z.; Zhao, B.; Liu, P.; Li, F.; Zheng, M.; Chen, M.; Shi, Y.; Zhou, H. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215–1217. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Guo, L.; He, Y.; Chen, C.; Qian, Y.; Chen, Y.; Xu, L. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium-ion batteries. Energy Storage. Mater. 2018, 15, 234–241. [Google Scholar] [CrossRef]
- Guo, H.; Chen, C.; Chen, K.; Cai, H.; Chang, X.; Liu, S.; Li, W.; Wang, Y.; Wang, C. High performance carbon coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage. J. Mater. Chem. A 2017, 5, 22316–22324. [Google Scholar] [CrossRef]
- Ma, X.; Ji, C.; Liu, Y.; Yu, X.; Xiong, X. Oxygen-rich graphene vertically grown on 3D N-Doped carbon foam for high-performance sodium ion batteries. J. Power Sources 2022, 530, 231292. [Google Scholar] [CrossRef]
- Chen, W.; Deng, D. Carbonized common filter paper decorated with Sn@ C nanospheres as additive-free electrodes for sodium-ion batteries. Carbon 2015, 87, 70–77. [Google Scholar] [CrossRef]
- Xu, S.; Gao, X.; Hua, Y.; Neville, A.; Wang, Y.; Zhang, K. Rapid deposition of WS2 platelet thin films as additive-free anode for sodium ion batteries with superior volumetric capacity. Energy Storage 2020, 26, 534–542. [Google Scholar] [CrossRef]
- Wu, D.; Han, H.; Hong, X.; Tao, S.; Xu, S.; Qian, B.; Wang, L.; Chen, X.; Chu, P.K. A novel self-branching MnCo2O4/ nanographene hybrid composites on macroporous electrically conductive network as bifunctional electrodes for boosting miniature supercapacitors and sodium ion batteries. J. Alloys Compd. 2020, 846, 155720. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Yang, H.; Chu, P.K. Hierarchical CoMoO4@Co3O4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 17312–17324. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, C.; Liang, C.; Zhu, Y.; Xu, S.; Xiong, D.; Xue, S.; Wang, L.; Chu, P.K. Preparation of multi-layer graphene on nickel-coated silicon microchannel plates by a hydrothermal carbonization procedure and its improved field emission properties. J. Mater. Chem. C 2016, 4, 2079–2087. [Google Scholar] [CrossRef]
- Chen, C.; Liu, B.; Ru, Q.; Ma, S.; An, B.; Hou, X.; Hu, S. Fabrication of cubic spinel MnCo2O4 nanoparticles embedded in graphene sheets with their improved lithium-ion and sodium-ion storage properties. J. Power Sources 2016, 326, 252–263. [Google Scholar] [CrossRef]
- Wu, L.; Lang, J.; Zhang, P.; Zhang, X.; Guo, R.; Yan, X. Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J. Mater. Chem. A 2016, 4, 18392–18400. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Xie, Q.; Wang, Y.; Qu, B. Rational design of graphene-encapsulated NiCo2O4 core-shell nanostructures as an anode material for sodium-ion batteries. J. Alloys Compd. 2017, 705, 314–319. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Wang, X.; Zhang, W.; Xing, L.; Li, W. Holey two-dimensional manganese cobalt oxide nanosheets as a high-performance electrode for supercapattery. Chem. Eng. J. 2019, 373, 547–555. [Google Scholar] [CrossRef]
- Wu, X.; Wu, W.; Wang, K.; Chen, W.; He, D. Synthesis and electrochemical performance of flower-like MnCo2O4 as an anode material for sodium ion batteries. Mater. Lett. 2015, 147, 85–87. [Google Scholar] [CrossRef]
- Wu, L.; Lang, J.; Wang, R.; Guo, R.; Yan, X. Electrospinning Synthesis of Mesoporous MnCoNiOx@Double-Carbon Nanofibers for Sodium-Ion Battery Anodes with Pseudocapacitive Behavior and Long Cycle Life. ACS Appl. Mater. Inter. 2016, 8, 34342–34352. [Google Scholar] [CrossRef]
- Wu, X.; Wu, W.; Li, Y.; Li, F.; Liao, S. Synthesis and electrochemical performance of rod-like CuFe2O4 as an anode material for Na-ion battery. Mater. Lett. 2015, 138, 192–195. [Google Scholar] [CrossRef]
- Wang, B.; Li, F.; Wang, X.; Wang, G.; Wang, H.; Bai, J. Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chem. Eng. J. 2019, 364, 57–69. [Google Scholar] [CrossRef]
- Jo, M.S.; Lee, J.S.; Jeong, S.Y.; Kim, J.K.; Kang, Y.C.; Kang, D.W.; Jeong, S.M.; Cho, J.S. Golden Bristlegrass-Like Hierarchical Graphene Nanofibers Entangled with N-Doped CNTs Containing CoSe2 Nanocrystals at Each Node as Anodes for High-Rate Sodium-Ion Batteries. Small 2020, 16, 2003391. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2·xH2O (Me=Co, Fe, and Ni) composites: Effect of type and amount of metal seed on oxygen reduction reactions. Appl. Catal. B 2012, 119-120, 123–131. [Google Scholar] [CrossRef]
- Park, S.-K.; Kang, Y.C. MOF-Templated N-Doped Carbon-Coated CoSe2 Nanorods Supported on Porous CNT Microspheres with Excellent Sodium-Ion Storage and Electrocatalytic Properties. ACS Appl. Mater. Inter. 2018, 10, 17203–17213. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, Z.; Hao, X.; Wang, Y.; Liu, Y.; Hou, Y.; Yang, Q.; Wang, X.; Qiu, J. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. J. Mater. Chem. A 2017, 5, 13591–13600. [Google Scholar] [CrossRef]
- Tabassum, H.; Zhi, C.; Hussain, T.; Qiu, T.; Aftab, W.; Zou, R. Encapsulating Trogtalite CoSe2 Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes. Adv. Energy Mater. 2019, 9, 1901778. [Google Scholar] [CrossRef]
- Xu, Y.; Jian, G.; Liu, Y.; Zhu, Y.; Zachariah, M.R.; Wang, C. Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries. Nano Energy 2014, 3, 26–35. [Google Scholar] [CrossRef]
- Cho, J.S.; Hong, Y.J.; Kang, Y.C. Design and Synthesis of Bubble-Nanorod-Structured Fe2O3–Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries. ACS Nano 2015, 9, 4026–4035. [Google Scholar] [CrossRef]
- Park, S.-K.; Lee, J.-K.; Kang, Y.C. Yolk–Shell Structured Assembly of Bamboo-Like Nitrogen-Doped Carbon Nanotubes Embedded with Co Nanocrystals and Their Application as Cathode Material for Li–S Batteries. Adv. Funct. Mater. 2018, 28, 1705264. [Google Scholar] [CrossRef]
- Cho, J.S.; Won, J.M.; Lee, J.-K.; Kang, Y.C. Design and synthesis of multiroom-structured metal compounds–carbon hybrid microspheres as anode materials for rechargeable batteries. Nano Energy 2016, 26, 466–478. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Q.; Feng, X.; Chen, W.; Ai, X.; Wang, L.; Wang, L.; Ma, Z.; Ren, Y.; Yang, H.; et al. An advanced low-cost cathode composed of graphene-coated Na2.4Fe1.8(SO4)3 nanograins in a 3D graphene network for ultra-stable sodium storage. J. Energy Chem. 2021, 54, 564–570. [Google Scholar] [CrossRef]
- Zeng, T.; Feng, D.; Xie, Y.; Jiao, X. Nano Sn4P3 embedded in nitrogenous carbon matrix as the anode of sodium ion battery for enhanced cyclability. J. Alloys Compd. 2021, 874, 159944. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, X.; Gao, L.; Li, Y.; Wang, G.; Sun, Q. Engineering carbon-nanochain concatenated hollow Sn4P3 nanospheres architectures as ultrastable and high-rate anode materials for sodium ion batteries. Carbon 2020, 167, 736–745. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir. Nano Lett. 2013, 13, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.; Rooney, D.; Sun, K.; Yang, H.Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 2017, 8, 13949. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Kimpton, J.A.; Brand, H.E.A.; Wang, Z.; Chou, S. Solving Key Challenges in Battery Research Using In Situ Synchrotron and Neutron Techniques. Adv. Energy Mater. 2017, 7, 1602831. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Liu, Y.; Wang, C. Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries. Adv. Energy Mater. 2013, 3, 128–133. [Google Scholar] [CrossRef]
- Ellis, L.D.; Hatchard, T.D.; Obrovac, M.N. Reversible Insertion of Sodium in Tin. J. Electrochem. Soc. 2012, 159, A1801–A1805. [Google Scholar] [CrossRef]
- Barpanda, P.; Oyama, G.; Nishimura, S.-i.; Chung, S.-C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, T.; Zhang, S.; Deng, C. Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2−x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 1624–1631. [Google Scholar] [CrossRef]
- Oyama, G.; Pecher, O.; Griffith, K.J.; Nishimura, S.-i.; Pigliapochi, R.; Grey, C.P.; Yamada, A. Sodium Intercalation Mechanism of 3.8 V Class Alluaudite Sodium Iron Sulfate. Chem. Mater. 2016, 28, 5321–5328. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, X.; Yan, Y.; Zhang, J.; Song, K.; Shi, J.; Mi, L.; Zheng, J.; Feng, X.; Chen, W. Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries. J. Energy Chem. 2020, 50, 387–394. [Google Scholar] [CrossRef]
- Oyama, G.; Nishimura, S.I.; Suzuki, Y.; Okubo, M.; Yamada, A. Off-Stoichiometry in Alluaudite-Type Sodium Iron Sulfate Na2+2xFe2−x(SO4)3 as an Advanced Sodium Battery Cathode Material. ChemElectroChem 2015, 2, 1019–1023. [Google Scholar] [CrossRef]
- Chen, M.; Cortie, D.; Hu, Z.; Jin, H.; Wang, S.; Gu, Q.; Hua, W.; Wang, E.; Lai, W.; Chen, L.; et al. A Novel Graphene Oxide Wrapped Na2Fe2(SO4)3/C Cathode Composite for Long Life and High Energy Density Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1800944. [Google Scholar] [CrossRef]
- Dwibedi, D.; Ling, C.D.; Araujo, R.B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights. ACS Appl. Mater. Interfaces 2016, 8, 6982–6991. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. Mesoporous Amorphous FePO4 Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries. Nano Lett. 2014, 14, 3539–3543. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, Q.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 17977–17984. [Google Scholar] [CrossRef]
- Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Commun. 2011, 13, 1225–1228. [Google Scholar] [CrossRef]
- Barpanda, P.; Ye, T.; Nishimura, S.I.; Chung, S.C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Sodium iron pyrophosphate: A novel 3.0V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 2012, 24, 116–119. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, P.; Qu, Z.; Yan, Y.; Lai, C.; Liu, T.; Zhang, S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat. Commun. 2019, 10, 3917. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, M.; Zhang, X.; Wan, B.; Li, X.; Gou, H.; Wang, Y.; Yin, F.; Wang, G. 2D Sandwiched Nano Heterostructures Endow MoSe2/TiO2−x/Graphene with High Rate and Durability for Sodium Ion Capacitor and Its Solid Electrolyte Interphase Dependent Sodiation/Desodiation Mechanism. Small 2020, 16, 2004457. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Wang, J.; Wang, C.; Li, W.; Chu, P.K. NiFeP nanoflakes composite with CoP on carbon cloth as flexible and durable electrocatalyst for efficient overall water splitting. Nanotechnology 2019, 30, 485402. [Google Scholar] [CrossRef]
- Minakshi, M.; Barmi, M.; Mitchell, D.R.; Barlow, A.J.; Fichtner, M. Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery. Mater. Today Energy 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.; Munnangi, A.R.; Barlow, A.J.; Fichtner, M. New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 2018, 10, 13277–13288. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, R.; Wu, Q.; Li, W.; Shen, C.; Ni, L.; Yan, H.; Diao, G.; Chen, M. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 2017, 11, 8429–8436. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Xin, S.; You, Y.; Cong, H.; Manthiram, A. Combining Nitrogen-Doped Graphene Sheets and MoS2: A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angew. Chem. Int. Ed. 2016, 55, 12783–12788. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xing, W.; Lei, S.; Yuan, H. Space-Confined Growth of Defect-Rich Molybdenum Disulfide Nanosheets within Graphene: Application in The Removal of Smoke Particles and Toxic Volatiles. ACS Appl. Mater. Inter. 2016, 8, 34735. [Google Scholar] [CrossRef]
- Anwer, S.; Huang, Y.; Li, B.; Govindan, B.; Liao, K.; Cantwell, W.J.; Wu, F.; Chen, R.; Zheng, L. Nature-Inspired, Graphene-Wrapped 3D MoS2 Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries. ACS Appl. Mater. Inter. 2019, 11, 22323–22331. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, M.; Xu, Z.; Feng, T.; Yang, J.; Chen, Z.; Wang, S.; Wang, Y. Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. J. Colloid. Interfaces Sci. 2019, 538, 267–276. [Google Scholar] [CrossRef]
- Desai, A.V.; Morris, R.E.; Armstrong, A.R. Advances in Organic Anode Materials for Na-/K-Ion Rechargeable Batteries. ChemSusChem 2020, 13, 4866–4884. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Luo, W.-B.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Adv. Energy Mater. 2018, 8, 1701428. [Google Scholar] [CrossRef]
- Tang, W.; Liang, R.; Li, D.; Yu, Q.; Hu, J.; Cao, B.; Fan, C. Highly Stable and High Rate-Performance Na-Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode. ChemSusChem 2019, 12, 2181–2185. [Google Scholar] [CrossRef]
- Su, Q.; Zeng, S.; Tang, M.; Zheng, Z.; Wang, Z. Flexible Carbon Nanofibrous Membranes with Adjustable Hierarchical Porous Structure as High-Capacity Anodes for Sodium-Ion Batteries. Energy Technol. 2021, 9, 2100049. [Google Scholar] [CrossRef]
- Wang, L.; Lin, C.; Liang, T.; Wang, N.; Feng, J.; Yan, W. NiSe2 encapsulated in N-doped TiN/carbon nanoparticles intertwined with CNTs for enhanced Na-ion storage by pseudocapacitance. Ceram. Int. 2022, 48, 14098–14106. [Google Scholar] [CrossRef]
- Park, S.; Paek, E. Can P-and Oxidized P-doped Graphene be a Good Anode for Na-Ion Batteries? A First-Principles Assessment. J. Electrochem. Soc. 2022, 169, 050529. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, X.; Liu, B.; Deng, S.; Xie, D.; Liu, Q.; Wang, Y.; Wu, J.; Wang, X.; Tu, J. Mul-tiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803342. [Google Scholar] [CrossRef]
- Esfandiari, A.; Haghighat-Shishavan, S.; Nazarian-Samani, M.; Nazarian-Samani, M.; Ramakrishna, S.; Kashani-Bozorg, S.F.; Kim, K.B. Defect-rich Ni3Sn4 quantum dots anchored on graphene sheets exhibiting unexpected reversible conversion reactions with exceptional lithium and sodium storage performance. Appl. Surf. Sci. 2020, 526, 146756. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, M.; Li, Q.; Yuan, C.; Wang, C. A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 2018, 129, 695–701. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, K.; Ye, K.; Gong, Z.; Liu, R.; Cheng, K.; Cao, D. Three-dimensional bio-mass derived hard carbon with reconstructed surface as a free-standing anode for so-dium-ion batteries. J. Colloid Interf. Sci. 2020, 561, 203–210. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Xie, J.; Hu, J.; Lu, Z.; Cao, Y. Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage. J. Alloys Compd. 2022, 911, 164979. [Google Scholar] [CrossRef]
- Thakur, A.K.; Ahmed, M.S.; Oh, G.; Kang, H.; Jeong, Y.; Prabakaran, R.; Vikram, M.P.; Sharshir, S.W.; Kim, J.; Hwang, J.Y. Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. J. Mater. Chem. A 2021, 9, 2628–2661. [Google Scholar] [CrossRef]
- Su, D.; Wang, C.; Ahn, H.J.; Wang, G. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-Ion batteries with enhanced performance. Chem.–Eur. J. 2013, 19, 10884–10889. [Google Scholar] [CrossRef]
- Vassilaras, P.; Ma, X.; Li, X.; Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 2012, 160, A207. [Google Scholar] [CrossRef]
- Ding, J.J.; Zhou, Y.N.; Sun, Q.; Yu, X.Q.; Yang, X.Q.; Fu, Z.W. Electrochemical properties of P2-phase Na0. 74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim. Acta 2013, 87, 388–393. [Google Scholar] [CrossRef]
- Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X.; Stickle, W.F.; Stucky, G.D.; Ji, X. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119–4124. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Liu, J.; Feng, W.; Sheng, J.; Tian, X.; He, L.; An, Q.; Mai, L. Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 2015, 3, 8070–8075. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; An, Q.; Ren, B.; Rong, Y.; Yao, Y. Flexible electrode for long-life rechargeable sodium-ion batteries: Effect of oxygen vacancy in MoO3−x. J. Mater. Chem. A 2016, 4, 5402–5405. [Google Scholar] [CrossRef]
- Li, S.; Dong, Y.; Xu, L.; Xu, X.; He, L.; Mai, L. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batterieS. Adv. Mater. 2014, 26, 3545–3553. [Google Scholar] [CrossRef]
- Zhu, C.; Song, K.; van Aken, P.A.; Maier, J.; Yu, Y. Carbon-coated Na3V2 (PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 2014, 14, 2175–2180. [Google Scholar] [CrossRef]
- Kim, H.; Shakoor, R.A.; Park, C.; Lim, S.Y.; Kim, J.S.; Jo, Y.N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study. Adv. Funct. Mat. 2013, 23, 1147–1155. [Google Scholar] [CrossRef]
- Barpanda, P.; Ye, T.; Avdeev, M.; Chung, S.C.; Yamada, A. A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J. Mater. Chem. A 2013, 1, 4194–4197. [Google Scholar] [CrossRef]
- Barpanda, P.; Lu, J.; Ye, T.; Kajiyama, M.; Chung, S.C.; Yabuuchi, N.; Komaba, S.; Yamada, A. A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. Rsc Adv. 2013, 3, 3857–3860. [Google Scholar] [CrossRef]
- Singh, P.; Shiva, K.; Celio, H.; Goodenough, J.B. Eldfellite, NaFe(SO4)2: An intercalation cathode host for low-cost Na-ion batteries. Energy Environ. Sci. 2015, 8, 3000–3005. [Google Scholar] [CrossRef]
- Sarwar, M.K.; Xu, Z.; Yao, K.; Liu, X.; Wang, Y.; Yang, J.; Huang, J. Constructing N-Doped graphene supported MoS2@Ni3S4 for pseudocapacitive sodium-ion storage with high rate and long life. Mater. Today Chem. 2022, 23, 100713. [Google Scholar]
- Aristote, N.T.; Zou, K.; Di, A.; Deng, W.; Wang, B.; Deng, X.; Hou, S.; Zou, G.; Ji, X. Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries. Chin. Chem. Lett. 2021, 33, 730–742. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, S.; Wu, P.; Wang, H.; Huang, Y.; Zhang, Y.; Sun, D.; Tang, T.; Wang, H. Engineering surface oxygenated functionalities on commercial hard carbon toward superior sodium storage. Chem. Eng. J. 2022, 441, 135899. [Google Scholar] [CrossRef]
- Beheshti, S.H.; Javanbakht, M.; Omidvar, H.; Hosen, M.S.; Hubin, A.; Van Mierlo, J.; Berecibar, M. Development, Retainment and Assessment of the Graphite-Electrolyte Interphase in Li-ion Batteries Regarding the Functionality of SEI-Forming Additives. Iscience 2022, 25, 103862. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Huang, Y.; Yang, H. 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1502197. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Kim, H.; Kim, J.; Yoon, G.; Lim, K.; Yoon, W.-S.; Kang, K. Understanding origin of voltage hysteresis in conversion reaction for Na rechargeable batteries: The case of cobalt oxides. Adv. Funct. Mater. 2016, 26, 5042–5050. [Google Scholar] [CrossRef]
- Peng, S.; Han, X.; Li, L.; Zhu, Z.; Cheng, F.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359–1368. [Google Scholar] [CrossRef]
- Teng, Y.; Zhao, H.; Zhang, Z.; Zhao, L.; Zhang, Y.; Li, Z.; Xia, Q.; Du, Z.; Świerczek, K. MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 2017, 119, 91–100. [Google Scholar] [CrossRef]
- Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y.S.; Wang, T.; Lee, J.Y. Layered SnS2-reduced graphene oxide composite–A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, G.; Lin, Y.; Wang, Y.; Ou, X.; Zheng, F.; Yang, C.; Wang, J.-H.; Liu, M. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Peng, B.; Mulder, F.M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite. Adv. Energy Mater. 2018, 8, 1701847. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, C.; Wang, G.; Lin, Y.; Ou, X.; Wang, J.H.; Zhao, B.; Liu, M.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, N.; Jiang, S.; Zhang, Y.; Zhou, M.; Tao, Z.; Archer, L.A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett. 2017, 17, 3668–3674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177–7184. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Jin, T.; Bao, W.; Zhang, Z.; Jiao, L. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater. 2019, 16, 383–390. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhu, K.; Zhao, H.; Meng, Z. Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage. Nanomaterials 2022, 12, 2837. https://doi.org/10.3390/nano12162837
Li M, Zhu K, Zhao H, Meng Z. Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage. Nanomaterials. 2022; 12(16):2837. https://doi.org/10.3390/nano12162837
Chicago/Turabian StyleLi, Mai, Kailan Zhu, Hanxue Zhao, and Zheyi Meng. 2022. "Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage" Nanomaterials 12, no. 16: 2837. https://doi.org/10.3390/nano12162837
APA StyleLi, M., Zhu, K., Zhao, H., & Meng, Z. (2022). Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage. Nanomaterials, 12(16), 2837. https://doi.org/10.3390/nano12162837