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Abstract: The availability of fast and non-expensive analytical methods for the determination of
widespread interest analytes such as glucose is an object of large relevance; this is so not only
in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context,
electrochemical biosensors have been proposed in different arrangements, according to the mode of
electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme
on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in
terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report
the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of
an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy
carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized
on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the
analytical performances of both the arrangements (without and with graphene oxide) in the glucose
detection were compared. The biosensor containing graphene oxide showed satisfactory values of
linear dynamic range (1.0–10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM−1 cm−2).
Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose,
saccharose, and ascorbic acid was evaluated.

Keywords: amperometric biosensor; conducting polymers; poly(thiophene); glucose oxidase;
graphene oxide

1. Introduction

Glucose detection is an object of great attention by the scientific community due to
its relevance in clinical medicine, as well as in the food and beverage industry. Its level
in the human blood is indeed related to some diseases, mainly diabetes and obesity [1–6].
Therefore, rapid and accurate methods to evaluate its concentration in foods as sources of
glucose are widely investigated. The constant interest towards glucose determination is
attested by the high number of scientific articles published in the last two decades [2,3,5,7,8].
Conventional analytical methods can be successfully adopted in glucose determination,
including chromatographic, spectroscopic, and electrochemical techniques [9]. In particular,
electrochemical sensing of glucose is widely utilized because of its high sensitivity and
selectivity, accuracy, fast responses, low cost, and ease of use. Electrochemical sensing of
glucose can be achieved by an enzymatic or a non-enzymatic approach. The second one is
often affected by a relatively low selectivity compared to the enzymatic approach, where
the selectivity is assured by the biological receptor (glucose oxidase enzyme, GOx) as a
catalyst for the glucose oxidation.

From a general point of view, amperometric enzyme-based sensors can be classified
into three groups, according to the nature of the redox mediator used to regenerate the
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active form of the enzyme (first- and second-generation biosensors), or by the lack of medi-
ator (third-generation biosensors) [10]. Especially, first-generation amperometric glucose
biosensors use O2 as an electron acceptor to regenerate the active (oxidized) form of the
enzyme after the reaction with the substrate (glucose); moreover, the amperometric mea-
surement of the depleted O2 or of the formed H2O2 is directly related to the concentration
of glucose. Reduced sensitivity and an upper limit of linearity, as well as a significative
effect of interferent substances, are the drawbacks of these sensors; various attempts have
been proposed to overcome them. For instance, permselective films and (carbon-based
or metallic) nanomaterials can be used to improve the selectivity of the sensor [11–14].
However, the response of first-generation biosensors is highly influenced by the variation
of oxygen concentration in solution; thus, the use of alternative mediators has been devel-
oped in second-generation biosensors. In this case, a so-called artificial electron acceptor
is employed, dissolving it in the analyte solution or locking it with the enzyme on the
electrode surface; furthermore, the amperometric signal produced in the re-oxidation of
the mediator is used as a measure of the glucose concentration. Quinone and ferrocene
derivatives, ferricyanide, transition-metal complexes, organic conducting salts, and redox-
conducting polymers can be used as a mediator in second-generation biosensors [15–18].
The performances of these kinds of sensors depend on the effectiveness of the communi-
cation between the enzyme and the mediator. In this context, immobilizing the mediator
to the enzyme could be a better choice than adding it to the analyte solution. However,
the mutual immobilization between enzyme and mediator influences the movement of
the enzyme and its interaction with the substrate; thus, this limits the efficiency of the
measure. Therefore, the use of redox mediators in solution is still adopted in the design of
second-generation biosensors. The possibility of assuring a direct electron transfer between
the enzyme and the electrode, avoiding the need of a redox mediator, is finally given by the
so-called third-generation biosensors. Their performances strongly depend on the distance
between the biological receptor and the electrode surface; such a requirement represents
the main trouble in their construction.

In any case, one of the most critical steps in the development of an electrochemical
biosensor is the efficient and long-term immobilization of the enzyme on the electrode
surface. Different approaches are possible with this aim, including physical absorption,
entrapment in gels or membranes, and covalent- or cross-linking [19–21]. In this context,
conducting polymers are extensively used as immobilizing agent for the biological receptor,
with two main, different strategies. As a first approach, the enzyme is dissolved in the
solution containing the monomer; then, it is entrapped in the conducting film during its
electrochemical synthesis. This is an efficient approach; however, it requires quite a high
concentration of the enzyme and is quite expensive. Furthermore, the conditions suitable
for the activity of the enzyme often do not fit with the electropolymerization requirements;
for instance, as for the nature of the solvent or pH value. As an alternative, a double-step
strategy can be adopted involving, first, the electro-synthesis of a conducting polymer film
on the electrode surface; then, the (physical or chemical) immobilization of the enzyme
on the film surface. Especially, thiophene-based electrochemically generated conducting
polymers have been proposed as components of electrochemical biosensors; this is due to
their high conductivity and stability [19,22–30]. Most polythiophenes can be obtained by
electrochemical synthesis in non-aqueous solvents; thus, the double-step approach is often
adopted in this case.

In order to improve the anchoring of the bioreceptor on the film surface, as well as
the electron-transfer rate of the biosensors, nanomaterials can be used alone or in addition
to other components of the biosensor. Among nanomaterials, graphene oxide has been
successfully used due to its good electric conductivity, large surface area, and excellent
mechanical properties [31–34].

Looking at the briefly described features above, second-generation biosensors us-
ing a redox mediator in the substrate solution can be regarded as a good compromise
between ease of assembly and analytical performances in terms of sensitivity, accuracy,
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and selectivity. However, highly fascinating designs of electrochemical biosensors re-
ported in the scientific literature often require an expensive and time-consuming approach
aimed at immobilizing glucose oxidase and at excluding interferences; they involve one
or more preliminary synthetic steps. Therefore, our purpose is to propose as an alter-
native, GOx-based biosensors obtained from low-cost, commercially available starting
materials that are easy and quick to prepare, and suitable for fast and accurate glucose
determinations in commercial beverages. With this aim, here we report the use of a thio-
phene derivative (2,5-di(2-thienyl)thieno[3,2-b]thiophene, dTT-bT, Figure 1) as a precursor
of an electro-generated conducting polymer film; modified with graphene oxide (GrO)
in a glucose oxidase-based amperometric biosensor for the detection of glucose in fruit
juices. The development of the electrochemical biosensor reported here involves a few
simples steps: (i) electrosynthesis of a polythiophene derivative as a transducer on an
electrode surface, starting from a commercial, affordable precursor; thus, this avoids time-
and money-expensive synthetic steps; (ii) modification of the conducting polymer layer by
dropping a methanol suspension of graphene oxide in methanol; and (iii) efficient immobi-
lization of the glucose-oxidase enzyme on the modified electrode by dipping in an aqueous
solution containing the enzyme and a condensing agent. The analytical performances in
terms of sensitivity, LoD, accuracy, and linear dynamic range, as well as the selectivity
against fructose, saccharose, and ascorbic acid, are reported. The behavior of biosensors
not containing graphene oxide was also investigated and compared to the polythiophene
film/GrO/GOx one.
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Figure 1. Structure of 2,5-di(2-thienyl)thieno[3,2-b]thiophene (dTT-bT).

2. Materials and Methods
2.1. Reagents and Apparatus

Tetraethylammonium hexafluorophosphate (TEAPF6, puriss. electrochemical grade),
p-benzoquinone (BQ), N-cyclohexyl-N’-(2-morpholinoethyl)carbodiimide metho-p-
toluenesulfonate (CMC), graphite oxide powder (GrO), sodium monohydrogen phosphate,
potassium dihydrogen phosphate, β-D-glucose, glucose oxidase (GOx) from Aspergillus niger,
saccharose, and ascorbic acid were from Sigma-Aldrich (Milan, Italy); CH2Cl2 (99.8%, pack-
aged under nitrogen) was from Acros; 2,5-di(2-thienyl)thieno[3,2-b]thiophene (dTT-bT) was
from TCI Chemicals (Zwijndrecht, Belgium); and the fructose and real samples (pear and
apricot juices) were from a local food company. All the buffers were prepared according to
generally known, obligatory standards.

A CHI-650 electrochemical station (CH Instruments, Austin, TX, USA) interfaced
with a PC using its software was used in all the electrochemical tests. The experiments
were performed in a three-electrode, single compartment cell equipped with a Ag/AgCl
reference electrode, a graphite bar as an auxiliary electrode, and a Pt (diameter 2 mm),
glassy carbon (GC, diameter 3 mm) or Au (diameter 2 mm) disk as a working electrode
(WE). Working electrodes were polished with alumina powder (1 and 0.3 µm diameter),
treated in an ultrasonic bath for 10 min, and rinsed with water and acetone before use in
polymer film deposition.

2.2. Biosensor Preparation

Electrochemical polymerization of dTT-bT was performed in a 5 mL CH2Cl2 solution
containing 0.1 M TEAPF6 as a supporting electrolyte and 1 mM monomer, purging Ar
gas into the cell for 20 min before each experiment. A polymer film was formed on the
electrode surface (Pt, GC, or Au disk) by applying a potential value between 0.98 V and
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1.05 V; this was according to the cyclic voltammetry characterization on the different
electrode materials, until a charge of 1 mC was passed. The film was neutralized by
applying a potential of 0 V for 60 s; then, characterized by cyclic voltammetry in a CH2Cl2
solution containing only 0.1 M TEAPF6; and finally, washed with ultrapure water.

A first set of biosensors (WE/poly(dTT-bT)/GOx) was obtained via immobilizing the
GOx enzyme by dipping the film in an ultrapure water solution (2.5 mL) containing CMC
(7.5 mg) and GOx (30 mg) at 4 ◦C for at least 12 h [22].

A second set of biosensors (WE/poly(dTT-bT)/GrO/GOx) was realized via modifying
the film through the dropping of a suspension of GrO in methanol (1 mg/1 mL) on the
polymer layer; then, letting the solvent evaporate at room temperature. The GOx enzyme
was finally immobilized on the polymer/GrO surface as described for the first set.

2.3. Glucose Sensing

The WE/poly(dTT-bT)/GOx and WE/poly(dTTbT)/GrO/GOx biosensors were used
as a working electrode in a three-electrode cell containing 20 mL of a phosphate buffer
solution (0.1 M, pH 7.0) with a 1 mM BQ as a redox mediator. A constant potential of
0.40 V vs. Ag/AgCl was applied to the stirring solution, and the current was measured as a
function of the time. When the background current was stabilized, incremental additions of
a 0.2 M β-D-glucose aqueous solution were conducted; this allowed the signal to stabilize
between two subsequent additions (usually 200 s).

The same conditions were adopted to test the poly(dTTbT)/GrO/GOx biosensor
on real samples. Pear and apricot juices were properly diluted as 1:100 in 20 mL of the
0.1 M phosphate buffer solution (containing 1 mM BQ) at pH = 7.0; they were analyzed
for glucose without further treatment. The glucose concentration was estimated by the
standard addition method.

In all cases, the sensitivity was calculated as the ratio of the slope of the calibration
curves to the area of the electrode surface, while LoD (limit of detection) was calculated as:

LoD = 3.29 σB/b (1)

where σB is the standard deviation of the blank (calculated on 11 replicates of the blank)
and b is the slope of the regression line [35].

All the analytical measurements were performed in triplicate. For the sake of simplicity,
one representative image for each analytical experiment is reported through the text.

3. Results
3.1. Electrochemical Investigation of dTT-bT

The electrochemical characterization of 2,5-di(2-thienyl)thieno[3,2-b]thiophene (dTT-bT)
was performed using a Pt, GC, or Au disk as a working electrode. In all cases, the cyclic
voltammetry behavior evidenced an anodic response at 0.99 V, 1.05 V, and 0.98 V, respec-
tively; there was a sharp peak (0.48 V, 0.42 V, 0.41 V) in the reverse scan. In all cases,
subsequently scanning the potential in the range suggested by the voltammetric responses
indicated that the peak current increased (Figure 2); in addition, the presence of a red-
orange film was observed on the electrode surfaces.

The films grown by potentiodynamic polymerization on each electrode surface were
characterized by cyclic voltammetry in a monomer-free 0.1 M TEAPF6/CH2Cl2 solution.
A doping process was always observed in the range −0.35 ÷ 0.7 V, with an associated
de-doping process between 0.5 V and 0.6 V (Figure 3).

In order to better tune the features of the films, the electrochemical polymerization
of the monomer was performed by chronoamperometry, applying a constant potential
(selected according to the voltammetric characterization) to the working electrode until a
charge of 1 mC was attained. The voltammetric characterization of the potentiostatic-grown
films confirmed their doping–dedoping behavior as for the potentiodynamic-grown films;
the current values were lower in the potentiostatic-mode polymers due to their lower
thickness compared to the potentiodynamic-mode ones.
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3.2. Glucose Sensing
3.2.1. WE/Poly(dTT-bT)/GOx Sensors

The poly(dTT-bT) films grown on the Pt, GC, and Au electrode surfaces were used to
immobilize the GOx enzyme, as described in Section 2.2. The first set of sensors, namely
Pt/poly(dTT-bT)/GOx, GC/poly(dTT-bT)/GOx, and Au/poly(dTT-bT)/GOx, with a film
charge equal to 1 mC, was tested towards the determination of glucose in a 0.1 M phosphate
buffer at pH = 7.0. The current/time responses (Figure 4a–c) show an acceptable stability
of the signal for the sensor using GC (Figure 4b) as an electrode material; whereas the Pt-
(Figure 4a) and Au-based (Figure 4c) arrangements show a large noise, increasing with the
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glucose concentration. All the sensors showed a good linearity between the current and
glucose concentration in the range between 0.2 and 2.0 mM (Figure 4d–f), with the higher
sensibility (expressed as a slope of the calibration curve) for the Au/poly(dTT-bT)/GOx one.
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Figure 4. Current/time responses (a–c) and corresponding calibration curves (d–f) of Pt/poly(dTT-bT)/
GOx (a,d), GC/poly(dTT-bT)/GOx (b,e), and Au/poly(dTT-bT)/GOx (c,f) biosensors in a phosphate
buffer (0.1 M, pH 7.0) at a glucose concentration range of 0.2 ÷ 2.0 mM; working potential: 0.40 V vs.
Ag/AgCl.

3.2.2. GC/Poly(dTT-bT)/GrO/GOx Sensor

GC/poly(dTT-bT)/GrO/GOx sensors were prepared according to Section 2.2. Due to
a low stability and repeatability of the current signal evidenced in Pt- and Au-based sensors
without and with GrO, only GC was used as an electrode material for the sensors using GrO
in addition to the polymer film as a transducer. The comparison between the two GC-based
sensors, without and with GrO, suggests that the presence of the graphite powder makes
the current/time response (Figure 5a) more stable than that of the sensor without GrO.
Furthermore, the calibration curve (Figure 5b) evidences that the presence of GrO into the
assembling of the sensor makes it more sensitive; this is indicated by the higher values of
the current as well as a higher value of the slope of the calibration curve.

3.2.3. Interferences

Interferences tests in the glucose sensing were carried out towards fructose, saccharose,
and ascorbic acid with 1:1, 1:0.6, and 1:0.05 glucose:interference ratios, respectively. The
effect of all the interfering species was extremely low (RSD% ≤ 0.5) in a solution containing
glucose 0.2 mM (Figure 6a). At an increasing glucose concentration of up to 2.0 mM, and an
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interference concentration accordingly, the effect appears slightly higher; the RSD% is lower
than 5% for fructose and saccharose, and lower than 10% for ascorbic acid (Figure 6b).
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3.2.4. Real Samples and Recovery Tests

Commercial fruit juice samples (pear and apricot) were employed to measure the
content of glucose using the standard addition method. Each experiment was replicated
three times. The results are reported in Table 1.

Table 1. Glucose concentration average values and the standard deviation in the real samples (n = 3
replicates for each sample).

Real Sample Glucose Concentration
Found (M) Slope (mA/M) R2

Pear juice 0.3 ± 0.1 0.76 ± 0.05 0.99 ± 0.01

Apricot juice 0.40 ± 0.04 0.92 ± 0.03 0.997 ± 0.003

Recovery tests were performed on standard solutions containing 1.0 mM and 5.0 mM
glucose concentration. The recovery was calculated as a percentage ratio of the evaluated
glucose concentration towards the real value. The recovery results are reported in Table 2.

Table 2. Recovery tests results (n = 3 replicates).

Glucose Concentration (mM) Glucose Found (mM) RSD% Recovery (%)

1.0 0.95 8.12 94.90

5.0 4.99 0.48 99.80
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4. Discussion

The voltammetric behavior of 2,5-di(2-thienyl)thieno[3,2-b]thiophene (dTT-bT) was
investigated with the aim to find the better conditions for using it as immobilizing agent for
a glucose sensor. Tetraethylammonium hexafluorophosphate was selected as a supporting
electrolyte based on previous results [22,36,37]; these suggest satisfactory reproducibility
and stability of the polythiophene-based conducting polymer films when alkylammonium
salts are employed with this role. The voltammetric responses of the monomer on three
different electrode surfaces (Pt, GC, and Au), as well as a feature of the following scans, evi-
dence a sharp shape in the backward scans; this suggests absorbing/desorbing phenomena
as previously reported for thiophene derivatives [38]. In order to tune the thickness of the
film, the electrode surfaces were modified using a chronoamperometric deposition mode.
Despite the different dimensions of the three working electrodes (diameter = 2 mm for Pt
and Au; 3 mm for the GC electrodes), a charge value of 1 mC was always chosen according
to preliminary tests concerning the stability of the film on the electrode surfaces.

The immobilization of the GOx enzyme was first performed directly on the electrogen-
erated film, to give the WE/poly(dTT-bT)/GOx (WE = Pt, GC, Au) biosensors. By compar-
ing their performances, it is possible to observe the Pt-based sensor has the lowest sensitivity
(5.9 ± 0.2 µA mM−1 cm−2 against 6.6 ± 0.6 µA mM−1 cm−2 and 35 ± 5 µA mM−1 cm−2

for GC and Au, respectively), and the higher LoD value (0.91 mM against 0.13 mM for GC
and 0.12 mM for Au). On the other hand, the Au-based sensor showed a poorly stable
current signal; while the GC-based one allowed the obtaining of a quite stable current signal
coupled to acceptable sensitivity and LoD. These results showed that GC as a working
electrode showed a higher affinity towards the analyte, which produces the higher and
more resolved current peaks; this made the electrochemical analysis easy as compared
to other working electrodes. In all cases, the linear dynamic range was from 0.2 mM to
2.0 mM.

For these reasons, only GC was chosen as an electrode surface for the second step,
where graphene oxide was dropped on the electrogenerated polymer film before the
anchoring of the enzyme. The GC/poly(dTT-bT)/GrO/GOx biosensor shows a higher
sensitivity (9.4 ± 0.7 µA mM−1 cm−2) and a lower LoD (0.036 mM) than the analogue
without graphene oxide. Moreover, the current appears more stable compared to the
no-GrO arrangement; this allows the extension of the linear dynamic range from 0.2 mM to
10 mM. The improvement of the results for biosensing systems with GrO are connected
with its excellent conductive and mechanical properties, as well as a high reactivity to
chemical compounds [39]. What is more, the presence on its surface of indigenous “ripples”
provide a valuable property in the case of biosensing due to increasing the surface area of
the working electrode; this ensures successful immobilization of an enzyme [40].

A further clue on the performances of the GC/film/GrO/GOx arrangement could
be obtained by the evaluation of the electrochemical-active surface area [41–43] using the
Randles–Sevcik equation (Equation (S1)). However, this approach is valid for reversible and
diffusion-controlled processes; whereas the behavior of the modified electrode discussed
here does not strictly fit such conditions (Figure S1). Hence, only a prudent estimation of
the active surface area of GC/poly(dTT-bT)/GrO/GOx can be performed; this suggests
that its value is about twice than that of the unmodified electrode.

The effect of the interfering species was tested first against fructose, which is the main
simple sugar present in fruit together with glucose. The interference study of fructose
towards glucose was performed at a concentration value of 0.2 mM, causing no significative
change of current. At higher concentration values (2 mM), a slight increase (+5%) in the
current value of the glucose solution due to fructose addition was observed. Analogously,
the interference of saccharose was tested on 0.2 mM and 2.0 mM solutions of glucose.
In this case, with saccharose being usually present in a lower amount in beverages, its
effect was investigated in a 0.6:1 ratio to glucose. Its effect was not significative at the
lowest concentration and caused a slight decrease (−3%) of the current value at a higher
concentration. Finally, the effect of ascorbic acid, commonly used in the food industry and
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presenting an oxidation potential rather close to the analyte, was studied (1:0.05 G:AA
ratio). As in the case of fructose and saccharose, the presence of ascorbic acid has no
significative effect on the detection of glucose at low concentrations (0.2 mM); whereas it
causes a 13% overestimation of the current measured in 2 mM glucose solutions. However,
it can be pointed out that ascorbic acid concentrations in beverages are usually lower than
the values taken into account here; hence, the 13% overestimation reported can be seen as
an upper limit value for its interference.

The analytical performances of the WE/poly(dTT-bT)/GOx (WE = Pt, GC, Au) and
GC/poly(dTT-bT)/GrO/GOx sensors was compared to some of the GOx-based sensors
from the literature (Table 3). Especially in the case of the last one, containing graphene
oxide as an interlayer between the conducting film and the enzyme, the analytical data
suggest that GrO can induce a short response time (due to a higher surface reactivity)
and a high sensitivity (ascribable to an enhanced active surface area). Furthermore, the
GrO-containing biosensor shows a behavior making it suitable for the determination in
real samples such as human blood, as well as fruit juices. In particular, recovery tests
support the use of the proposed biosensor in soft drinks; wherein glucose concentration
can be recovered with a high accuracy and with a low level of interferences from fructose
and saccharose.

Table 3. Some examples of electrochemical GOx-based sensors for the determination of glucose.

Sensor Linear Range
(mM) LoD (mM) Sensitivity

(µA mM−1 cm−2)
Response
Time (s)

Stability
(Days) Ref.

Pt/PEDOT/PAA/GOD 0.96–30 0.29 0.59 10–30 30 [21]

Pt/PEDOT/AA/GOD 1.86–30 0.56 0.52 10–30 30 [21]

Pt/poly(2,2′-BT)/GOx 0.09–5.20 0.030 48 180 >15 [22]

Pt/poly(4,4′-BT)/GOx 0.15–5.20 0.050 11 50 >30 [22]

Pt/PPy-GOx/PPy-Cl 0.5–24 0.0269 3.5 3–7 >60 [1]

GC/Py/Py-CO2H/Py-Fc/GOx 1.0–4.0 0.0069 1.796 2 28 [44]

GOx/Pt/rGO/P3ABA/SPCE 0.25–6.00 0.0443 22.01 - 7 [9]

SiO2(LuPc2)PANI(PVIA)-
CNB/GOx 1–16 0.1 38.53 45 [45]

Graphite rod/EDOT-PdBPI-co-
HKCN/GOx 0.25–2.5 0.176 - - >56 [36]

Chit-GOX-pFcAc-HSA-carbon
paper 0.1–10 0.07 0.33 200 >28 [15]

Pt/(CHIT/PAA)GOD 0.05–15 0.01 21 <8 60 [46]

Pt/poly(dTT-bT)/GOx 0.2–2.0 0.91 5.9 <200 >30 This work

GC/poly(dTT-bT)/GOx 0.2–2.0 0.12 6.6 <200 >30 This work

Au/poly(dTT-bT)/GOx 0.2–2.0 0.12 35 <200 >30 This work

GC/poly(dTT-bT)/GrO/GOx 0.2–10 0.036 9.4 10–20 >60 This work

PEDOT, poly(3,4-ethylenedioxythiophene); PAA, polyacrylic acid [21]; AA, anthranilic acid; GOD and GOx,
glucose oxidase; poly(2,2′-BT), poly(2,2′-bithiophene); poly(4,4′-bis(2-methyl-3-butyn-2-ol)-2,2′-bithiophene); PPy,
polypyrrole; Py-CO2H, 1-(2-carboxyethyl)pyrrole; Py-Fc, N-(3-(1H-pyrrol- 1-yl)ethyl)ferrocenecarboxate; rGO,
reduced graphene oxide; P3ABA, poly(3-aminobenzoic acid); SPCE, screen-printed carbon electrode; LuPc2,
lutetium phthalocyanine; PANI, polyaniline; PVIA, Poly(vinyl alcohol-vinyl acetate) itaconic acid; CNB, conduct-
ing nanobeads; EDOT, 3,4-ethylenedioxythiophene; BPI, 1,3-Bis(2-pyridylimino)isoindoline; HKCN, 4-amino-
N-(2,5-di(thiophene-2-yl)-1H-pyrrol-1-yl)benzamide; pFcAc, poly(N-(3-dimethyl(ferrocenyl)methylammonium
bromide) propyl acrylamide; HAS, human serum albumin; CHIT, chitosan; PAA, poly(allylamine) [46].
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5. Conclusions

In this study, the use of a polythiophene conducting film associated to graphene oxide
in the construction of a GOx-based, second-generation, amperometric biosensor is reported.
The conducting polymer was obtained via potentiostatic polymerization by a commercially
available monomer; that is, 2,5-di(2-thienyl)thieno [3,2-b]thiophene. The potentiostatic
polymerization approach was selected instead of the potentiodynamic one in order to
carefully monitor the thickness of the film through the charge passed during the film
growth. The effect of a deposit of graphene oxide on the polymer film before the anchoring
of the enzyme was also investigated; an improvement in analytical performances compared
to the biosensors obtained in the absence of graphene oxide was observed. The behavior of
the GC/polymer/graphene oxide/enzyme proposed sensor towards glucose detection is
comparable to (or better than) biosensors previously reported, with the benefit of easily
accessible and less expensive starting materials. The design of this last electrochemical
biosensor, involving the cooperation of a conducting polymer and graphene oxide, and the
presence of p-benzoquinone as a redox mediator, also allows a reduction in the effect of
potential interferents, such as fructose, saccharose, and ascorbic acid.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12162840/s1, Figure S1: (a) Cyclic voltammetric curves of
GC/poly(dTT-bT)/GrO/GOx in a 0.1 M KCl solution containing 5mM K3[Fe(CN)6] at scan rates
from 0.02 V s-1 to 0.2 V s-1. (b) Relationship between the peak current and the square root of the
potential scan rate.
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