Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Characterization
2.3. Synthesis of g-C3N4
2.4. Fabrication of TiO2/g-C3N4 Nanocomposites
2.5. Photocatalytic Activity Evaluation
2.6. Identification of Active Species during Photocatalytic Degradation
3. Result and Discussion
3.1. Structural and Chemical Properties
3.2. Optical Properties
3.3. Photocatalytic Degradation of MCPs
3.4. Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, M.; Chen, X.; Pan, B. Simultaneous determination of 19 chlorophenols in water by liquid chromatography-mass spectrometry with solid-phase extraction. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1369–1380. [Google Scholar] [CrossRef]
- Jiang, C.; Yu, H.; Lu, Y.; Zhu, S.; Geng, Z.; Huo, M.; Wang, X. Preparation of spike-like palladium nanoparticle electrode and its dechlorination properties. Thin Solid Films 2018, 664, 27–32. [Google Scholar] [CrossRef]
- Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Performance and mechanism of piezo-catalytic degradation of 4-Chlorophenol: Finding of effective piezo-dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569. [Google Scholar] [CrossRef]
- Yang, C.-H.; Lee, C.-M. Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. J. Hazard. Mater. 2008, 152, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Onkani, S.P.; Diagboya, P.N.; Mtunzi, F.M.; Klink, M.J.; Olu-Owolabi, B.I.; Pakade, V. Comparative study of the photocatalytic degradation of 2-chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manag. 2020, 260, 110145. [Google Scholar] [CrossRef] [PubMed]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Adebowale, K.O. Distribution and interactions of pentachlorophenol in soils: The roles of soil iron oxides and organic matter. J. Contam. Hydrol. 2016, 191, 99–106. [Google Scholar] [CrossRef]
- Iqbinosa, E.O.; Odjadjare, E.E.; Chigor, V.N.; Igbinosa, I.H.; Emoghene, A.O.; Ekhaise, F.O.; Igiehon, N.O.; Idemudia, O.G. Toxicological Profile of Chlorophenols and Their Derivatives in the Environment: The Public Health Perspective. Sci. World J. 2013, 2013, 460215. [Google Scholar] [CrossRef]
- Kus’mierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. React. Kinet. Mech. Catal. 2016, 119, 19–34. [Google Scholar] [CrossRef]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Lin, H.-Y. Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification. Appl. Water Sci. 2017, 7, 3741–3757. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Igbinosa, E.O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 2011, 83, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- González, L.F.; Sarria, V.; Sánchez, O.F. Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV. Biores. Technol. 2010, 101, 3493–3499. [Google Scholar] [CrossRef] [PubMed]
- Pedroza, A.M.; Mosqueda, R.; Alonso-Vante, N.; Rodríguez-Vázquez, R. Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 2007, 67, 793–801. [Google Scholar] [CrossRef]
- Shu, X.; Yang, O.; Yao, F.; Zhong, Y.; Ren, W.; Chen, F.; Sun, J.; Ma, Y.; Fu, Z.; Wang, D.; et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chem. Eng. J. 2019, 358, 903–911. [Google Scholar] [CrossRef]
- Kavitha, V.; Palanivelu, K. Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes-A Comparative Study. J. Environ. Sci. Health A 2003, 38, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Aroh, A.O.; Gimba, C.E.; Omoniyi, K.I.; Abba, H.; Yilleng, M.T. Comparison of photocatalytic degradation of 4-chlorophenol and 3-chlorophenol using silver/palladium nanoparticles doped on TiO2. IJARBAS 2019, 1, 232–254. [Google Scholar]
- Sharma, A.; Lee, B.-K. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2 /reduced graphene oxide nanocomposite from aqueous media. J. Environ. Manag. 2016, 165, 1–10. [Google Scholar] [CrossRef]
- Xie, M.; Tang, J.; Kong, L.; Lu, W.; Natarajan, V.; Zhu, F.; Zhan, J. Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chem. Eng. J. 2019, 360, 1213–1222. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Ren, M.; Guan, J.; Lu, N.; Qu, J.; Yuan, X.; Zhang, Y.-N. Preparation of the CNTs/AG/ITO electrode with high electro-catalytic activity for 2-chlorophenol degradation and the potential risks from intermediates. J. Hazard. Mater. 2018, 359, 148–156. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, Z.; Khan, A.U.; Mastoi, N.R.; Aslam, M.; Kim, J. Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications. J. Environ. Chem. Eng. 2016, 4, 4143–4164. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. C 2017, 3, 106–114. [Google Scholar] [CrossRef]
- Gao, M.; Feng, J.; Zhang, Z.; Gu, M.; Wang, J.; Zeng, W.; Lv, Y.; Ren, Y.; Wei, T.; Fan, Z. Wrinkled ultrathin graphitic C3N4 nanosheets for photocatalytic degradation of organic wastewater. ACS Appl. Nano Mater. 2018, 1, 6733–6741. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.; Wang, L.; Chen, J. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. Int. J. Hydrogen Energy 2019, 44, 7194–7204. [Google Scholar] [CrossRef]
- Fe, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503–1701533. [Google Scholar]
- Zada, A.; Ali, N.; Subhan, F.; Anwar, N.; Shah, M.I.A.; Ateeq, M.; Hussain, Z.; Zaman, K.; Khan, M. Suitable energy platform significantly improves charge separation of g-C3N4 for CO2 reduction and pollutant oxidation under visible-light. Prog. Nat. Sci. 2019, 29, 138–144. [Google Scholar] [CrossRef]
- Kobkeatthawin, T.; Trakulmututa, J.; Amornsakchai, T.; Kajitvichyanukul, P.; Smith, S.M. Identification of active species in photodegradation of aqueous imidacloprid over g-C3N4/TiO2 Nanocomposites. Catalysts 2022, 12, 120. [Google Scholar] [CrossRef]
- Nekooie, R.; Ghasemi, J.B.; Badiei, A.; Shamspur, T.; Mostafavi, A.; Moradian, S. Design and synthesis of g-C3N4/(Cu/TiO2) nanocomposite for the visible light photocatalytic degradation of endosulfan in aqueous solutions. J. Mol. Struct. 2022, 1258, 132650. [Google Scholar] [CrossRef]
- Dong, S.; Chen, S.; He, F.; Li, J.; Li, H.; Xu, K. Construction of a novel N-doped oxygen vacancy-rich TiO2 N-TiO2−X/g-C3N4 S-scheme heterostructure for visible light driven photocatalytic degradation of 2,4-dinitrophenylhydrazine. J.Alloys Compd. 2022, 908, 164586. [Google Scholar] [CrossRef]
- Zizhen, L.; Meng, X.; Zhang, Z. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity. Catal. Sci. Technol. 2019, 9, 3979–3993. [Google Scholar]
- Azami, M.S.; Jalil, A.A.; Hitam, C.N.C.; Hassan, N.S.; Mamat, C.R.; Adnan, R.H.; Chanlek, N. Tuning of the electronic band structure of fibrous silica titania with g-C3N4 for efficient Z-scheme photocatalytic activity. Appl. Surf. Sci. 2020, 512, 145744. [Google Scholar] [CrossRef]
- Mozia, S.; Bubacz, K.; Janus, M.; Morawski, A.W. Decomposition of 3-chlorophenol on nitrogen modified TiO2 photocatalysts. J. Hazard. Mater. 2012, 128, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, Y.; Guo, Y.; Guo, W.; Wang, M.; Guo, Y.; Huo, M. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobite heterojunctions. J. Hazard. Mater. 2013, 261, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Rathi, V.; Panneerselvam, A.; Sathiyapriya, R. Graphitic carbon nitride (g-C3N4) decorated ZnWO4 heterojunctions architecture synthesis, characterization and photocatalytic activity evaluation. Diam. Relat. Mater. 2020, 108, 107981. [Google Scholar] [CrossRef]
- De Sousa, J.G.M.; da Silva, T.V.C.; de Moraes, N.P.; da Silva, M.L.C.P.; da Silva Rocha, R.; Landers, R.; Rodrigues, L.A. Visible light-driven ZnO/g-C3N4/carbon xerogel ternary photocatalyst with enhanced activity for 4-chlorophenol degradation. Mater. Chem. Phys. 2020, 256, 123651. [Google Scholar] [CrossRef]
- Pennetta, A.; Di Masi, S.; Piras, F.; Lü, X.; Li, J.; De Benedetto, G.E.; Mele, G. TiO2@lipophilic porphyrin composites: New insights into tuning the photoreduction of Cr(VI) to Cr(III) in aqueous phase. J. Compos. Sci. 2020, 4, 82. [Google Scholar] [CrossRef]
- Zou, L.-R.; Huang, G.-F.; Li, D.-F.; Liu, J.-H.; Pan, A.-L.; Huang, W.-Q. A facile and rapid route for synthesis of g-C3N4 nanosheets with high adsorption capacity and photocatalytic activity. RSC Adv. 2016, 6, 86688. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Mao, Z.; An, N.; Wang, D.; Fahlman, B.D. Ultrathin g-C3N4 nanosheets with an extended visible light-responsive range for significant enhancement of photocatalysis. RSC Adv. 2017, 7, 2333. [Google Scholar] [CrossRef]
- Fina, F.; Callear, S.K.; Carins, G.M.; Irvine, J.T.S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015, 27, 2612–2618. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, E.; Hu, X.; Tang, C.; Wan, J.; Li, J.; Fan, J. A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities. Appl. Surf. Sci. 2015, 358, 246–251. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A. 2013, 1, 14766. [Google Scholar] [CrossRef]
- Li, W.; Liang, L.; Hu, A.; Huanga, Z.; Zhou, Y.N. Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 2014, 4, 36959. [Google Scholar] [CrossRef]
- Majumdar, S.; Mahanta, D. Deposition of an ultra-thin polyaniline coating on a TiO2 surface by vapor phase polymerization for electrochemical glucose sensing and photocatalytic degradation. RSC Adv. 2020, 10, 17387–17395. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, F.; Wang, Z.; Hu, D.; Xu, X.; Hao, X. Graphitic carbon nitride, a saturable absorber material for the visible waveband. Photonics Res. 2018, 6, 307–313. [Google Scholar] [CrossRef]
- Fan, C.; Miao, J.; Xu, G.; Liu, J.; Lv, J.; Wu, Y. Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light. RSC Adv. 2017, 7, 37185. [Google Scholar] [CrossRef]
- Shen, L.; Xing, Z.; Zou, J.; Li, Z.; Wu, X.; Zhang, Y.; Zhu, Q.; Yang, S.; Zhou, W. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci. Rep. 2017, 7, 41978. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, L.; Shao, M.; Huang, J.; Ding, M.; Deng, X.; Wei, X.; Xu, X. Anodic Oxidation Synthesis of One-Dimensional TiO2 Nanostructures for Photocatalytic and Field Emission Properties. J. Nanomater. 2014, 2014, 831752. [Google Scholar] [CrossRef]
- Ren, B.; Wang, T.; Qu, G.; Deng, F.; Liang, D.; Yang, W.; Liu, M. In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation. Environ. Sci. Pollut. Res. 2018, 25, 19122–19133. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B.; Dou, M.; Huang, X.; Ma, Z. A porous g-C3N4 nanosheets containing nitrogen defects for enhanced photocatalytic removal meropenem: Mechanism, degradation pathway and DFT calculation. Environ. Res. 2020, 184, 109339. [Google Scholar] [CrossRef]
- Jiang, D.; Sun, X.; Zhang, H.; Wang, K.; Shi, L.; Du, F. Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination. Appl. Phys. A 2020, 126, 246. [Google Scholar] [CrossRef]
- Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem. Eng. J. 2020, 384, 123245. [Google Scholar] [CrossRef]
- Cheng, D.; Li, Y.; Yang, L.; Luo, S.; Yang, L.; Luo, X.; Luo, Y.; Li, T.; Gao, J.; Dionysiou, D.D. One step reductive synthesis of Ti3+ self–doped elongated anatase TiO2 nanowires combined with reduced graphene oxide for adsorbing and degrading waste engine oil. J. Hazard. Mater. 2019, 378, 120752. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, J.; Ravichandran, S. Insights into the defect-centered electrocatalytic behavior of reduced titania (TiO1.23). J. Phys. Chem. C 2018, 122, 1670–1680. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, X.; Wang, C.; Xu, J.; Du, X.; Li, L. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance. Appl. Surf. Sci. 2018, 448, 288–296. [Google Scholar] [CrossRef]
- Mohajernia, S.; Andryskova, P.; Zoppellaro, G.; Hejazi, S.; Kment, S.; Zboril, R.; Schmidt, J.; Schmuki, P. Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J. Mater. Chem. A 2020, 8, 1432–1442. [Google Scholar] [CrossRef]
- Xiong, L.-B.; Li, J.-L.; Yang, B.; Yu, Y. Ti3+ in the surface of Titanium Dioxide: Generation, properties and photocatalytic application. J. Nanomater. 2012, 2012, 9. [Google Scholar] [CrossRef]
- Kathiresan, V.; Rajarathinam, T.; Lee, S.; Kim, S.; Lee, J.; Thirumalai, D.; Chang, S.-C. Cost-effective electrochemical activation of graphitic carbon nitride on the glassy carbon electrode surface for selective determination of serotonin. Sensors 2020, 20, 6083. [Google Scholar] [CrossRef]
- Che, H.; Liu, L.; Che, G.; Dong, H.; Liu, C.; Li, C. Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3−toward improving photocatalytic performance. Chem. Eng. J. 2019, 357, 209–219. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, X.; Zhang, H.; Tu, W. An efficient exfoliation method to obtain graphitic carbon nitride nanosheets with superior visible-light photocatalytic activity. Int. J. Hydrogen Energy 2017, 42, 7930–7937. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.H.; Wang, Z.Y. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 2015, 358, 393–403. [Google Scholar] [CrossRef]
- Maurya, N.I.C.; Singh, S.; Gupta, A.K.; Srivastava, P.; Bahadur, L. N/Al-incorporated TiO2 nanocomposites for improved device performance of a dye-sensitized solar cell. Energy Environ. Sci. 2017, 2, 4267–4276. [Google Scholar]
- Yun, Y.-J.; He, J.-Y.; Zhang, D.; Wang, X.-J.; Zhao, J.; Liu, R.-H.; Li, F.-T. Simultaneous construction of dual-site phosphorus modified g-C3N4 and its synergistic mechanism for enhanced visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 517, 146192. [Google Scholar]
- Zhang, H.; Liu, F.; Wu, H.; Cao, X.; Sun, J.; Lei, W. In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Adv. 2017, 7, 40327. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, M.; Cui, N.; Chen, G.; Zou, G.; Zhou, L. One-Step Synthesis of b-N-TiO2/C Nanocomposites with high visible light photocatalytic activity to degrade microcystis aeruginosa. Catalysts 2020, 10, 579. [Google Scholar] [CrossRef]
- Dong, C.; Ma, Z.; Qie, R.; Guo, X.; Li, C.; Wang, R.; Shi, Y.; Dai, B.; Jia, X. Morphology and Defects Regulation of Carbon Nitride by Hydrochloric Acid to Boost Visible Light Absorption and Photocatalytic Activity. Appl. Catal. B 2017, 217, 629–636. [Google Scholar] [CrossRef]
- Ye, C.; Li, J.-X.; Li, Z.-J.; Li, X.-B.; Fan, X.-B.; Zhang, L.-P.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution. ACS Catal. 2015, 5, 6973–6979. [Google Scholar] [CrossRef]
- Ren, R.; Wen, Z.; Cui, Z.; Hou, Y.; Guo, X.; Chen, J. Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci. Rep. 2015, 5, 10714. [Google Scholar] [CrossRef]
- Zhu, M.; Lu, J.; Dong, L.; Hu, S.; Peng, S.; Zhu, C. Photochemical transformations of 2, 6-dichlorophenol and 2-chlorophenol with superoxide ions in the atmospheric aqueous phase. J. Mol. Struct. 2022, 1261, 132910. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Cui, Z.; Ma, F.; Guo, Y.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Morphology and defects design in g-C3N4 for efficient and simultaneous visible-light photocatalytic hydrogen production and selective oxidation of benzyl alcohol. Int. J. Hydrogen Energy. 2022, 47, 18738–18747. [Google Scholar] [CrossRef]
- Cai, H.; Han, D.; Wang, X.; Cheng, X.; Liu, J.; Jia, L.; Ding, Y.; Liu, S.; Fan, X. High specific surface area defective g-C3N4 nanosheets with enhanced photocatalytic activity prepared by using glyoxylic acid mediated melamine. Mater. Chem. Phys. 2020, 256, 123755. [Google Scholar] [CrossRef]
- Sun, N.; Qu, Y.; Yang, C.; Yang, Z.; Yan, R.; Zhang, W.E.Z.; Li, Z.; Li, H.; Khan, I.; Sun, R.; et al. Efficiently photocatalytic degradation of monochlorophenol on in-situ fabricated BiPO4/β-Bi2O3 heterojunction microspheres and O2−free hole induced selective dechloridation conversion with H2 evolution. Appl. Catal. B 2020, 263, 118313. [Google Scholar] [CrossRef]
- Ba-Abbad, M.M.; Takriff, M.S.; Kahum, A.A.H.; Mohamad, A.B.; Benamor, A.; Mohammad, A.W. Solar photocatalytic degradation of 2-chlorophenol with ZnO nanoparticles: Optimisation with D-optimal design and study of intermediate mechanisms. Environ. Sci. Pollut. Res. 2017, 24, 2804–2819. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Yu, S.; Liu, E.; Liu, L.; Zhang, K.; Zang, J.; Zhao, Y. Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf. A 2020, 603, 125193. [Google Scholar] [CrossRef]
- Liao, W.; Murugananthan, M.; Zhang, Y. Synthesis of Z-scheme g-C3N4–Ti3+/TiO2 material: An efficient visible light photoelectrocatalyst for degradation of phenol. Phys. Chem. Chem. Phys. 2015, 17, 8877. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gaytán, A.N.; Vera-Ávila, L.E.; Covarrubias-Herrera, M.d.R. On-line methodology for the trace level determination of the chlorinated phenol family in water samples. J. Mex. Chem. Soc. 2008, 52, 185–192. [Google Scholar]
- Moza, P.N.; Hustert, K.; Feicht, E.; Kettrup, A. Photolysis of imidacloprid in aqueous solution. Chemosphere 1998, 36, 497–502. [Google Scholar] [CrossRef]
Pollutant | Catalyst | Source | Dosage | MCP Treatment Time (h) | % Removal Efficiency | Ref |
---|---|---|---|---|---|---|
2-CP | Bulk g-C3N4 TiO2 TiO2/bulk g-C3N4 | Xe (150 W) | 4 g/L | 1 | 9% 3% 38% | [25] |
g-C3N4 OH-C3N4 | W (300 W) | 0.5 g/L, 10 ppm | 5 | 95% 85% | [29] | |
10% g-C3N4/FST 15% g-C3N4/FST g-C3N4 5% g-C3N4/FST FST (FST: fibrous silica titania) | W (400 W) | 0.37 g/L, 10 ppm | 4 | 93% 70% 67% 49% 40% | [30] | |
3-CP | TiO2/N-TiO2 TiO2 | Fluorescent lamp (154 W) | 0.2 g/L, 10 ppm | 5 | 77% 36% | [31] |
TiO2/N-TiO2 TiO2 | Incandescent lamp (100 W) | 24 | 30% 12% | |||
4-CP | g-C3N4/Bi5Nb3O15 g-C3N4 | - | 1 g/L, 10 ppm | 1 | 100% 72% | [32] |
g-C3N4 g-C3N4/ZnWO4(1:1) g-C3N4/ZnWO4(2:1) g-C3N4/ZnWO4(3:1) | Xe (500 W) | 0.2 g/L, 10 ppm | 1.67 | 45% 62% 78% 88% | [33] | |
C/ZnO/g-C3N4 | Solar (300 W) UV (400 W) | 0.2 g//L, 10 ppm | 5 | 92% 72% | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobkeatthawin, T.; Chaveanghong, S.; Trakulmututa, J.; Amornsakchai, T.; Kajitvichyanukul, P.; Smith, S.M. Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water. Nanomaterials 2022, 12, 2852. https://doi.org/10.3390/nano12162852
Kobkeatthawin T, Chaveanghong S, Trakulmututa J, Amornsakchai T, Kajitvichyanukul P, Smith SM. Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water. Nanomaterials. 2022; 12(16):2852. https://doi.org/10.3390/nano12162852
Chicago/Turabian StyleKobkeatthawin, Thawanrat, Suwilai Chaveanghong, Jirawat Trakulmututa, Taweechai Amornsakchai, Puangrat Kajitvichyanukul, and Siwaporn Meejoo Smith. 2022. "Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water" Nanomaterials 12, no. 16: 2852. https://doi.org/10.3390/nano12162852
APA StyleKobkeatthawin, T., Chaveanghong, S., Trakulmututa, J., Amornsakchai, T., Kajitvichyanukul, P., & Smith, S. M. (2022). Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water. Nanomaterials, 12(16), 2852. https://doi.org/10.3390/nano12162852