Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Graphene, ZnO/Cu, and ZnO/G/Cu Films
2.2. Characterization
3. Results and Discussion
3.1. Electrochemical Study
3.2. Structural Properties
3.3. Morphology Analysis
3.4. Raman Study
3.5. Optical Properties
3.6. Photoluminescence
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Florica, C.; Costas, A.; Kuncser, A.; Preda, N.; Enculescu, I. High Performance FETs Based on ZnO Nanowires Synthesized by Low Cost Methods. Nanotechnology 2016, 27, 475303. [Google Scholar] [CrossRef] [PubMed]
- Matei, E.; Enculescu, M.; Preda, N.; Enculescu, I. ZnO Morphological, Structural and Optical Properties Control by Electrodeposition Potential Sweep Rate. Mater. Chem. Phys. 2012, 134, 988–993. [Google Scholar] [CrossRef]
- Badre, C.; Pauporté, T. Nanostructured ZnO-Based Surface with Reversible Electrochemically Adjustable Wettability. Adv. Mater. 2009, 21, 697–701. [Google Scholar] [CrossRef]
- Chang, S.P.; Chang, S.J.; Lu, C.Y.; Li, M.J.; Hsu, C.L.; Chiou, Y.Z.; Hsueh, T.J.; Chen, I.C. A ZnO Nanowire-Based Humidity Sensor. Superlattices Microstruct. 2010, 47, 772–778. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef] [PubMed]
- Djurišić, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef]
- Liu, X.; Lin, P.; Yan, X.; Kang, Z.; Zhao, Y.; Lei, Y.; Li, C.; Du, H.; Zhang, Y. Enzyme-Coated Single ZnO Nanowire FET Biosensor for Detection of Uric Acid. Sens. Actuators B Chem. 2013, 176, 22–27. [Google Scholar] [CrossRef]
- Ahmed, F.; Almutairi, G.; AlOtaibi, B.; Kumar, S.; Arshi, N.; Hussain, S.G.; Umar, A.; Ahmad, N.; Aljaafari, A. Binder-Free Electrode Based on ZnO Nanorods Directly Grown on Aluminum Substrate for High Performance Supercapacitors. Nanomaterials 2020, 10, 1979. [Google Scholar] [CrossRef]
- Rafique, A.; Bianco, S.; Fontana, M.; Pirri, C.F.; Lamberti, A. Flexible Wire-Based Electrodes Exploiting Carbon/ZnO Nanocomposite for Wearable Supercapacitors. Ionics 2017, 23, 1839–1847. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Wu, R.; Ronning, C.; Lu, J.G. Temperature-Dependent Photoconductance of Heavily Doped ZnO Nanowires. Nano Res. 2011, 4, 1110–1116. [Google Scholar] [CrossRef]
- Smazna, D.; Shree, S.; Polonskyi, O.; Lamaka, S.; Baum, M.; Zheludkevich, M.; Faupel, F.; Adelung, R.; Mishra, Y.K. Mutual Interplay of ZnO Micro-and Nanowires and Methylene Blue during Cyclic Photocatalysis Process. J. Environ. Chem. Eng. 2019, 7, 103016. [Google Scholar] [CrossRef]
- Opoku, C.; Dahiya, A.S.; Poulin-Vittrant, G.; Camara, N.; Alquier, D. Source-Gating Effect in Hydrothermally Grown ZnO Nanowire Transistors. Phys. Status Solidi (A) 2016, 213, 2438–2445. [Google Scholar] [CrossRef]
- Poongodi, G.; Anandan, P.; Kumar, R.M.; Jayavel, R. Studies on Visible Light Photocatalytic and Antibacterial Activities of Nanostructured Cobalt Doped ZnO Thin Films Prepared by Sol–Gel Spin Coating Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Florica, C.; Matei, E.; Costas, A.; Molares, M.E.T.; Enculescu, I. Field Effect Transistor with Electrodeposited ZnO Nanowire Channel. Electrochim. Acta 2014, 137, 290–297. [Google Scholar] [CrossRef]
- Florica, C.; Preda, N.; Enculescu, M.; Zgura, I.; Socol, M.; Enculescu, I. Superhydrophobic ZnO Networks with High Water Adhesion. Nanoscale Res. Lett. 2014, 9, 385. [Google Scholar] [CrossRef]
- Preda, N.; Enculescu, M.; Zgura, I.; Socol, M.; Matei, E.; Vasilache, V.; Enculescu, I. Superhydrophobic Properties of Cotton Fabrics Functionalized with ZnO by Electroless Deposition. Mater. Chem. Phys. 2013, 138, 253–261. [Google Scholar] [CrossRef]
- Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T.S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P.J. Inkjet-Printed Graphene Electronics. ACS Nano 2012, 6, 2992–3006. [Google Scholar] [CrossRef]
- Hwang, T.; Kwon, H.-Y.; Oh, J.-S.; Hong, J.-P.; Hong, S.-C.; Lee, Y.; Ryeol Choi, H.; Jin Kim, K.; Hossain Bhuiya, M.; Nam, J.-D. Transparent Actuator Made with Few Layer Graphene Electrode and Dielectric Elastomer, for Variable Focus Lens. Appl. Phys. Lett. 2013, 103, 023106. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Razzaghi-Kashani, M. Actuation Behavior of PDMS Dielectric Elastomer Composites Containing Optimized Graphene Oxide. Smart Mater. Struct. 2018, 27, 085021. [Google Scholar] [CrossRef]
- Beams, R.; Bharadwaj, P.; Novotny, L. Electroluminescence from Graphene Excited by Electron Tunneling. Nanotechnology 2014, 25, 055206. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Park, H.; Chang, S.; Jean, J.; Cheng, J.J.; Araujo, P.T.; Wang, M.; Bawendi, M.G.; Dresselhaus, M.S.; Bulović, V.; Kong, J. Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells. Nano Lett. 2013, 13, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.I.; Zhang, L.; Zhou, C. Review of Chemical Vapor Deposition of Graphene and Related Applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef]
- Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Röhrl, J. Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P. Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef]
- Yu, M.; Ma, Y.; Liu, J.; Li, X.; Li, S.; Liu, S. Sub-Coherent Growth of ZnO Nanorod Arrays on Three-Dimensional Graphene Framework as One-Bulk High-Performance Photocatalyst. Appl. Surf. Sci. 2016, 390, 266–272. [Google Scholar] [CrossRef]
- Dong, X.; Cao, Y.; Wang, J.; Chan-Park, M.B.; Wang, L.; Huang, W.; Chen, P. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2012, 2, 4364–4369. [Google Scholar] [CrossRef]
- Amiri, M.H.; Namdar, N.; Mashayekhi, A.; Ghasemi, F.; Sanaee, Z.; Mohajerzadeh, S. Flexible Micro Supercapacitors Based on Laser-Scribed Graphene/ZnO Nanocomposite. J. Nanoparticle Res. 2016, 18, 237. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, L.; Yi, X.; Wu, D.; Zhu, H.; Wang, G. Enhanced light emission of GaN-based diodes with a NiOx/graphene hybrid electrode. Nanoscale 2012, 4, 5852–5855. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, L.; Li, X.; Yi, X.; Zhang, N.; Li, J.; Zhu, H.; Wang, G. Annealed InGaN green light-emitting diodes with graphene transparent conductive electrodes. J. Appl. Phys. 2012, 111, 114501. [Google Scholar] [CrossRef]
- Wu, G.; Tang, L.; Deng, G.; Liu, L.; Hao, Q.; Yuan, S.; Wang, J.; Wei, H.; Zhao, Y.; Yue, B.; et al. Transparent dual-band ultraviolet photodetector based on graphene/p-GaN/AlGaN heterojunction. Opt. Express 2022, 30, 21349–21361. [Google Scholar] [CrossRef]
- Brent, C.; Qingfeng, L.; Jianwei, L.; Maogang, G.; Dan, E.; Matthew, C.; Alex, S.; Judy, W. Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: Towards Debye length radius nanowires for ultraviolet photodetection. J. Mater. Chem. C 2017, 5, 10087–10093. [Google Scholar]
- Ju, D.; Liu, X.; Zheng feng, Z.; Wang, S.; Liu, S.; Gu, Y.; Chang, J.; Qingquan, L.; Zou, Y. Solution processed membrane-based wearable ZnO/graphene Schottky UV photodetectors with imaging application. Nanotechnology 2019, 30, 375701. [Google Scholar] [CrossRef]
- Ge, C.; Hongji, L.; Mingji, L.; Cuiping, L.; Xiaoguo, W.; Baohe, Y. Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers. Carbon 2015, 95, 1–9. [Google Scholar] [CrossRef]
- Cho, H.D.; Kim, D.Y.; Lee, J.-K. ZnO Nanorod/Graphene Hybrid-Structures Formed on Cu Sheet by Self-Catalyzed Vapor-Phase Transport Synthesis. Nanomaterials 2021, 11, 450. [Google Scholar] [CrossRef]
- Cembrero, J.; Pruna, A.; Pullini, D.; Busquets-Mataix, D. Effect of Combined Chemical and Electrochemical Reduction of Graphene Oxide on Morphology and Structure of Electrodeposited ZnO. Ceram. Int. 2014, 40, 10351–10357. [Google Scholar] [CrossRef]
- George, L.; Thomas, S.; Nalini, S.; Jayaraj, M.K. Electrodeposition of ZnO Nanostructures on Graphene for Optoelectronic Applications. In Proceedings of the AIP Conference Proceedings. AIP Conf. Proc. 2019, 2162, 020014. [Google Scholar]
- Yin, Z.; Wu, S.; Zhou, X.; Huang, X.; Zhang, Q.; Boey, F.; Zhang, H. Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 2010, 6, 307–312. [Google Scholar] [CrossRef]
- Matei, E.; Enculescu, I. Electrodeposited ZnO Films with High UV Emission Properties. Mater. Res. Bull. 2011, 46, 2147–2154. [Google Scholar] [CrossRef]
- Thomas, M.A.; Sun, W.W.; Cui, J.B. Mechanism of Ag Doping in ZnO Nanowires by Electrodeposition: Experimental and Theoretical Insights. J. Phys. Chem. C 2012, 116, 6383–6391. [Google Scholar] [CrossRef]
- Izaki, M.; Omi, T. Transparent Zinc Oxide Films Prepared by Electrochemical Reaction. Appl. Phys. Lett. 1996, 68, 2439–2440. [Google Scholar] [CrossRef]
- Peulon, S.; Lincot, D. Cathodic Electrodeposition from Aqueous Solution of Dense or Open-Structured Zinc Oxide Films. Adv. Mater. 1996, 8, 166–170. [Google Scholar] [CrossRef]
- Matei, E.; Costas, A.; Florica, C.; Enculescu, M.; Pintilie, I.; Pintilie, L.; Enculescu, I. Electrical Properties of Templateless Electrodeposited ZnO Nanowires. Mater. Sci. Semicond. Process. 2016, 42, 364–372. [Google Scholar] [CrossRef]
- Kumar, V.; Som, S.; Yousif, A.; Singh, N.; Ntwaeaborwa, O.M.; Kapoor, A.; Swart, H.C. Effect of annealing on the structural, morphological and photoluminescence properties of ZnO thin films prepared by spin coating. J. Colloid Interface Sci. 2014, 428, 8–15. [Google Scholar] [CrossRef]
- Xu, C.X.; Sun, X.W.; Zhang, X.H.; Ke, L.; Chua, S.J. Photoluminescent Properties of Copper-Doped Zinc Oxide Nanowires. Nanotechnology 2004, 15, 856. [Google Scholar] [CrossRef]
- Park, S.H.; Bak, S.M.; Kim, K.H.; Jegal, J.P.; Lee, S.I.; Lee, J.; Kim, K.B. Solid-State Microwave Irradiation Synthesis of High-Quality Graphene Nanosheets under Hydrogen Containing Atmosphere. J. Mater. Chem. 2011, 21, 680–686. [Google Scholar] [CrossRef]
- Efthimiopoulos, I.; Mayanna, S.; Stavrou, E.; Torode, A.; Wang, Y. Extracting the Anharmonic Properties of the G-Band in Graphene Nanoplatelets. J. Phys. Chem. C 2020, 124, 4835–4842. [Google Scholar] [CrossRef]
- Biroju, R.K.; Tilak, N.; Rajender, G.; Dhara, S.; Giri, P.K. Catalyst Free Growth of ZnO Nanowires on Graphene and Graphene Oxide and Its Enhanced Photoluminescence and Photoresponse. Nanotechnology 2015, 26, 145601. [Google Scholar] [CrossRef] [PubMed]
- Cancado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Nanakkal, A.R.; Alexander, L.K. Photocatalytic Activity of Graphene/ZnO Nanocomposite Fabricated by Two-step Electrochemical Route. J. Chem. Sci. 2017, 129, 95–102. [Google Scholar] [CrossRef]
- Hsu, J.W.P.; Tallant, D.R.; Simpson, R.L.; Missert, N.A.; Copeland, R.G. Luminescent Properties of Solution-Grown ZnO Nanorods. Appl. Phys. Lett. 2006, 88, 252103. [Google Scholar] [CrossRef]
- Mahmood, K.; Park, S.B.; Sung, H.J. Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C 2013, 1, 3138–3149. [Google Scholar] [CrossRef]
- Ahn, M.W.; Park, K.S.; Heo, J.H.; Park, J.G.; Kim, D.W.; Choi, K.J.; Lee, J.H.; Hong, S.H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 2008, 93, 263103. [Google Scholar] [CrossRef]
- Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Mothudi, B.M.; Zorkani, I.; Jorio, A. Graphene Oxide/ZnO Nanorods/Graphene Oxide Sandwich Structure: The Origins and Mechanisms of Photoluminescence. J. Alloys Compd. 2019, 797, 1320–1326. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Klason, P.; Willander, M.; Zhong, H.M.; Lu, W.; Yang, J.H. Deep-Level Emissions Influenced by O and Zn Implantations in ZnO. Appl. Phys. Lett. 2005, 87, 211912. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Leung, Y.H.; Tam, K.H.; Ding, L.; Ge, W.K.; Chen, H.Y.; Gwo, S. Green, Yellow, and Orange Defect Emission from ZnO Nanostructures: Influence of Excitation Wavelength. Appl. Phys. Lett. 2006, 88, 103107. [Google Scholar] [CrossRef]
ZnO/Cu | ZnO/G/Cu | ||||||||
---|---|---|---|---|---|---|---|---|---|
Potential (V) | (hkl) Peak | 2θ (Degree) | FHWM (Rad) | Crystallite Size nm | Average Crystallite Size D (nm) | 2θ (Degree) | FHWM (Rad) | Crystallite Size nm | Average Crystallite Size D (nm) |
−0.8 | (100) | 31.99 | 0.156 | 55.20 | 68.90 | 31.98 | 0.144 | 63.80 | 67.03 |
(002) | 34.6 | 0.100 | 86.60 | 34.57 | 0.098 | 85.20 | |||
(101) | 36.45 | 0.150 | 64.90 | 36.48 | 0.185 | 52.10 | |||
−0.9 | (100) | 31.99 | 0.146 | 62.30 | 65.65 | 31.98 | 0.232 | 40.30 | 58.38 |
(002) | 34.59 | 0.112 | 84.10 | 34.57 | 0.091 | 89.90 | |||
(101) | 36.50 | 0.163 | 50.50 | 36.47 | 0.220 | 44.70 | |||
−1 | (100) | 31.99 | 0.197 | 47.50 | 56.14 | 31.99 | 0.264 | 36.60 | 48.57 |
(002) | 34.59 | 0.129 | 63.70 | 34.58 | 0.122 | 67.40 | |||
(101) | 36.50 | 0.173 | 57.00 | 36.48 | 0.240 | 41.70 | |||
−1.1 | (100) | 31.99 | 0.180 | 53.10 | 57.13 | 31.99 | 0.184 | 30.10 | 49.83 |
(002) | 34.60 | 0.130 | 61.20 | 34.58 | 0.120 | 80.20 | |||
(101) | 36.50 | 0.173 | 57.00 | 36.48 | 0.231 | 39.10 |
Potential (V) | ID/IG | La (nm) |
---|---|---|
−0.8 | 1.38 | 27.92 |
−0.9 | 1.30 | 29.64 |
−1 | 1.29 | 29.87 |
−1.1 | 1.20 | 30.03 |
CIE | Iuv/Ivis | |||
---|---|---|---|---|
Samples | Potential (V) | x | y | |
ZnO/Cu | −0.8 | 0.45 | 0.47 | 0.43 |
−0.9 | 0.47 | 0.48 | 0.66 | |
−1 | 0.48 | 0.46 | 0.54 | |
−1.1 | 0.46 | 0.46 | 0.81 | |
−1.2 | 0.45 | 0.46 | - | |
ZnO/G/Cu | −0.8 | 0.47 | 0.44 | 2.09 |
−0.9 | 0.47 | 0.48 | 0.40 | |
−1 | 0.46 | 0.46 | 0.64 | |
−1.1 | 0.37 | 0.46 | 0.87 | |
−1 | 0.44 | 0.47 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukhoubza, I.; Matei, E.; Jorio, A.; Enculescu, M.; Enculescu, I. Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates. Nanomaterials 2022, 12, 2858. https://doi.org/10.3390/nano12162858
Boukhoubza I, Matei E, Jorio A, Enculescu M, Enculescu I. Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates. Nanomaterials. 2022; 12(16):2858. https://doi.org/10.3390/nano12162858
Chicago/Turabian StyleBoukhoubza, Issam, Elena Matei, Anouar Jorio, Monica Enculescu, and Ionut Enculescu. 2022. "Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates" Nanomaterials 12, no. 16: 2858. https://doi.org/10.3390/nano12162858
APA StyleBoukhoubza, I., Matei, E., Jorio, A., Enculescu, M., & Enculescu, I. (2022). Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates. Nanomaterials, 12(16), 2858. https://doi.org/10.3390/nano12162858