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Abstract: CABs (Ca alginate beads), AVCABs (Aloe vera Ca alginate beads), and AVMNCABs
(Aloe-vera functionalized magnetic nanoparticles entrapped Ca alginate beads) were developed as
adsorbents for the removal of Cu(II) from aqueous solutions. The materials were characterized using
Fourier-transform infrared (FTIR) spectroscopy, high-resolution scanning electron microscopic (HR-
SEM) analysis, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and a vibrating-
sample magnetometer (VSM). The effect of several parameters, such as pH, time, temperature,
adsorbent dose, etc., were investigated. The adsorption isotherm of Cu(II) was adjusted best to the
Langmuir model. The maximum adsorption capacities were 111.11 mg/g, 41.66 mg/g, and 15.38
mg/g for AVMNCABs, AVCABs, and CABs, respectively. The study of the adsorption kinetics for
Cu(II) ions on beads followed a pseudo-second-order kinetic model, with a very good correlation
in all cases. The adsorption studies used a spectrophotometric method, dealing with the reaction of
Cu(II) with KSCN and variamine blue.

Keywords: copper ion adsorption; magnetic nanoparticles; aloe-vera functionalized alginate beads;
adsorption isotherm; spectrophotometric method

1. Introduction

Cu(II) is essential for the human body, but excessive intake can damage organs and, in
extreme cases, lead to death. Copper is commonly used in roofing, plumbing, electroplating,
utensils, pesticides, fertilizers, and medicines. It may also result from mining and industrial
wastes. Exposure to high levels of copper or its intake through contaminated food, air,
and water is dangerous [1,2]. The ingestion of high doses of copper can cause severe
mucosal corrosion and irritation, central nervous system damage, followed by depression
and intense capillary damage. It can also cause gastrointestinal irritation and the necrosis
of liver and kidney tissues, leading to hepatic and renal damage due to chronic poisoning.
The most serious situations are diseases such as leukemia, hepatitis, and Wilson’s disease,
among others. The World Health Organization recommends 1 mg L−1 as the maximum
acceptable limit of Cu(II) in drinking water [3].

Several methods, such as adsorption, reverse osmosis, chemical precipitation, ion
exchange, membrane filtration, evaporation, and electrochemical procedures [4–7], have
been reported for the treatment of wastewater. Among those, adsorption is promising
for removing Cu(II) ions, given its operational ease, high efficiency, low cost, and good
recyclability. Several types of adsorbents, such as zeolites [8], biomasses [9–15], fly ash [16],
activated carbon [17–19], chitosan [20], polymeric hybrid sorbents [21–26], and agriculture
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wastes [27] have been reported. A large number of the latter, namely orange peels [28],
palm shells [29], sawdust [30], hazelnut shells [31], rice husk [32], walnut shells [33], etc.,
have been used as cheap adsorbents for removing Cu(II) from aqueous solutions.

Magnetic nanoparticles can be entrapped inside various organic and inorganic stabi-
lizers, such as activated carbon [17–19], chitosan [34–37], alginate biopolymer [38,39], and
β-cyclodextrin [40,41] to minimize their aggregation, enhance their adsorption efficiency,
and enable the easy separation from the matrix. Sodium alginate is a water-soluble and
commonly used natural polysaccharide with wide uses due to its non-toxic, inexpensive,
biocompatible, biodegradable, emulsion stabilizing, and bioadhesive nature [42,43]. The
alginates have the ability to form gels in the presence of calcium ions (Ca2+), which occurs
through the interaction and cross-linking between the L-guluronic acid (G) of alginate and
the calcium ion (Ca2+) in solution.

Aloe vera is a tropical, medicinal plant with a polysaccharide-rich matrix. It contains
amino acids, lignin, salicylic acid, enzymes, vitamins, minerals, several carbohydrates, etc.
Such molecules have functional groups that are able to bind with metals [44,45].

In this study, bio-sorbent AVMNCABs (Aloe-vera functionalized magnetic nanoparticles
on Ca alginate beads) were prepared by mixing the pulp of Aloe vera leaves, a natural
ingredient, with alginate and magnetic nanoparticles. Its efficiency for Cu(II) removal from
aqueous solutions was compared with CABs (calcium alginate beads) and AVCABs (Aloe
vera calcium alginate beads) using a simple spectrophotometric method. The performance
and reusability of the adsorbents were investigated, and the influence of the temperature, time,
and pH was studied in batch conditions. The thermodynamic and kinetic results revealed that
the materials had advantages, such as a high adsorption capacity, simplicity, inexpensiveness,
and good reproducibility. Adsorption isotherm models were used to explore the possibility of
applying the synthesized adsorbents to the removal of Cu(II) ions from aqueous solutions. The
study was carried out by a simple spectrophotometric procedure established in our laboratory
and using potassium thiocyanate and variamine blue [46].

2. Materials and Methods
2.1. Reagents

The reagents used were of analytical grade. Double distilled water was used in all of
the experiments. Copper sulfate (CuSO4), ferrous chloride dihydrate (FeCl2·2H2O), ferric
chloride hexahydrate (FeCl3·6H2O), and potassium thiocyanate (KSCN) were obtained from
Merck (Mumbai, India). Variamine blue (VB) [0.05%], sodium alginate (C6H9NaO7)—used for
obtaining the alginate beads, and calcium chloride (CaCl2), which was used for cross-linking
the alginate beads—were obtained from Sigma-Aldrich (Mumbai, India). Moreover, 0.1 M
sodium hydroxide (NaOH) and 0.1 M hydrochloric acid (HCl) were also prepared.

The Aloe vera leaves were collected from a nearby area, washed several times with
double distilled water to remove dust and other impurities, and then cut into small pieces,
followed by extraction of the gel.

2.2. Equipment

X-ray diffraction (XRD) analysis was carried out in an Expert-Pro PW3064/60 appara-
tus from 5◦ to 80◦ (Almelo, Netherlands). A Thermo Nicolet Avtar 370 Fourier-transform
infrared (FT-IR) spectrometer (Tokyo, Japan) was used to record the infrared spectra in the
500–4000 cm−1 range with the help of KBr pellets. Scanning Electron Microscopic (SEM)
images were obtained in a Jeol 6390LA/OXFORD XMX N (Tokyo, Japan) to analyze the
surface morphology of the adsorbents. Energy-Dispersive X-ray (EDS/EDX) spectroscopy
analysis (Oxford instruments, Abingdon, UK) was utilized to obtain the elemental com-
position. A vibrating-sample magnetometer (VSM) (Lake Shore 7410 model Westerville,
OH, USA) was used to obtain the magnetization curve of the adsorbents. A Systronics
ultraviolet-visible (UV-Vis) spectrophotometer-117 (Carry 50 scan, Varian, East Lyme, CT,
USA) was used to measure the absorbance. The pH measurements were carried out on a
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digital Systronics pH meter (112 model, Ahmedabad, India). The temperature was kept
constant using a thermostatic water bath.

2.3. Preparation of Beads
2.3.1. Synthesis of Ca Alginate Beads (CABs)

Sodium alginate (SA) (1.5 g powder) was added to 50 mL of double distilled water. A
viscous solution was obtained, which was added dropwise into a CaCl2 (2%, w/v) solution
with gentle stirring, resulting in the formation of the spherical bio-sorbent. The beads were
then left for 24 h in the CaCl2 solution to become stable and rinsed three times with distilled
water to eliminate excess Ca(II) and stored in distilled water for subsequent use.

2.3.2. Synthesis of Aloe-Vera Calcium Alginate Beads (AVCABs)

The Aloe vera (AV) gel (0.25 g) was added to the viscous solution containing sodium
alginate (1.5 g in 50 mL of distilled water). The solution thus obtained was added dropwise
into CaCl2 (2%, w/v) aqueous solution with stirring. The beads were then left for 24 h in
the CaCl2 solution to become stable. The gel beads were then washed three times with
distilled water and stored in clean distilled water for further use.

2.3.3. Synthesis of Aloe-Vera Functionalized Magnetic Nanoparticles on Ca Alginate Beads
(AVMNCABs)

The Fe3O4 nanoparticles (IN) were obtained by co-precipitation, mixing ferric chloride
(Fe2+) and ferrous chloride (Fe3+) in a molar ratio of 2:1, followed by the addition of 1.5 M
NH4OH solution at room temperature (~30 ◦C) under vigorous stirring. The nanoparticles
were obtained as a black precipitate that was magnetically separated and then washed
three times with double distilled water and dried at 200 ◦C for 2 h.

The Fe3O4 nanoparticles (0.05 g) were added to the viscous solution containing 0.25 g
of Aloe vera gel in a 3% aqueous sodium alginate solution. Later, the above mixture was
added dropwise to the CaCl2 solution, leading to the formation of AVMNCABs. The beads
were then left for 24 h in the CaCl2 solution to become stable. Then, they were washed three
times with double distilled water and stored for later use in distilled water. The beads became
red–brown due to the modified magnetic nanoparticles. The representative images of the gel
beads (CABs, AVCABs, and AVMNCABs) are displayed in Figure 1A (their approximate size
was 2–3 mm). The synthesis of the gel beads is represented in Figure 1B.
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Figure 1. (A) Images of the (a) CABs, (b) AVCABs and (c) AVMNCABs gel beads (approximate size
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2.4. Spectrophotometric Determination of Cu (II)

After the adsorption, the beads were separated from the liquid by filtration, and the
concentration of Cu(II) was spectrophotometrically determined using potassium thiocyanate
and variamine blue. Then, 5 mL of filtrate, 0.5 mL of potassium thiocyanate (0.2 N), and
0.6 mL of a 0.05% variamine blue solution were added, which resulted in the oxidation of the
leucoform of variamine blue to variamine blue (violet color), with a maximum absorbance at
550 nm. The concentration of the Cu(II) was obtained from the calibration curve [46].

2.5. Batch Adsorption Experiments

The adsorption performance of the gel beads for removing copper from aqueous
solutions was investigated using a batch adsorption approach. The effects of pH (2–7),
adsorbent amount (0.05–0.6 g), time of contact (5–180 min), and initial ion concentration
(10–90 mg L−1) on the removal efficiency were studied. The pH was adjusted by using
0.1 M HCl/0.1 M NaOH. A fixed volume of Cu(II) ion solution (10 µg mL−1) was shaken
with 0.2 g of CABs, AVCABs, and AVMNCABs at a pH of 4 and at 35 ◦C for 120 min. The
adsorption isotherms were obtained by using aqueous solutions of Cu(II) with several
concentrations. After the adsorption, the adsorbents were separated by filtration, and
the Cu (II) amount in the filtrate was determined by UV-vis at 550 nm using potassium
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thiocyanate and variamine blue. The materials were characterized using SEM-EDX, FTIR,
XRD, and VSM. The percentage of removal, adsorption capacity at equilibrium (qe), and at
a given time t (qt) were calculated using Equations (1)–(3), respectively:

R =
C0 − Ce

C0
(1)

qe (%) =
(C0 − Ce) V

m
(2)

qt (%) =
(C0 − Ct) V

m
(3)

where C0, Ce, and Ct are the initial, equilibrium, and at a given t time concentrations of Cu(II)
ions (µg mL−1), respectively, m is the adsorbent mass (g), and V is the solution volume (L).

2.6. Desorption

The desorption was carried out using 2 mL of a 0.05 M HNO3 solution as the desorption
agent. The adsorbent was washed with double distilled water three times, and its reusability
was assessed. The adsorbents exhibited good adsorption–desorption performance and
could be reused up to 7 cycles (Figure 2). The desorption (%) was calculated by:

Desorption(%) =
Desorbed quantity of metal
Adsorbed quantity of metal

× 100 (4)
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92.7%, 96.4%, and 97.4% desorption were obtained for CABs, AVCABs, and AVMN-
CABs, respectively.

3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. X-ray Diffraction (XRD)

The XRD diffractograms of the iron oxide nanoparticles, CABs, AVCABs, and AVMN-
CABs show several characteristic peaks (Figure 3). The XRD pattern of CABs shows broad
peaks at 2θ values of 31.80◦ and 36.61◦, while AVCABs show comparatively sharp peaks
at 2θ values of 31.87◦, 34.33◦, 36.25◦, 43.37◦, 56.69◦, and 62.97◦. The XRD pattern of the
iron oxide nanoparticles shows broad peaks at 2θ = 30.20◦, 36.24◦, 43.21◦, 53.74◦, 57.23◦,
and 62.90◦, identical to the standard JCPDS data [47] for Fe3O4, which can be indexed to
(220), (311), (400), (422), (511), and (440) planes. The Aloe vera-alginate beads containing
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iron oxide nanoparticles (AVMNCABs) show six characteristic peaks at 2θ values of 30.2◦,
35.67◦, 43.21◦, 54.08◦, 57.62◦, and 62.51◦, identical to that of the planes of Fe3O4 [48]. The
narrow, sharp peaks of AVMNCABs indicate the small crystallites and ultra-fine nature of
the particles and indicate the spinal structure.
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The average crystal size of the CABs, AVCABs, and AVMNCABs were determined
using Debye–Scherrer’s Equation [49]:

D =
K·λ

β·cosθ
(5)

where D is the average size of crystallites in Å, θ is the diffraction angle, β is the FWHM
(full width at half maximum) of the peak, λ is the X-ray wavelength (1.54 Å), and K is a
constant (K = 0.9 Å). Table 1 shows the particle sizes of CABs, AVCABs, and AVMNCABs:
0.072 nm, 0.131 nm, and 0.022 nm, respectively.

Table 1. Average crystal size of CABs, AVCABs, and AVMNCABs calculated using Debye–Scherrer’s
formula.

Samples Most Intense Peak
(2θ, Degrees)

Most Intense
Peak (θ, Degrees)

FWHM of the
Most Intense

Peak (β, Radians)

Particle Size
(D, nm)

CABs 36.61 18.30 2.00 0.072

AVCABs 36.25 18.12 1.11 0.131

AVMNCABs 33.11 16.55 6.57 0.022

3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of the CABs, AVCABs, and AVMNCABs are displayed in Figure 4.
Calcium alginate shows characteristic peaks at 3235 and 2923 cm−1, attributed to O-H
stretching and C-H stretching vibrations. The bands at 1588 and 1410 cm−1 are due to
the asymmetric and symmetric vibrations of C=O of the COO− group. The peak around
1079 cm−1 corresponds to C-O, C-C, and C-O-C stretching vibrations, and the sharp peak
at 1022 cm−1 is due to C-C and C-O-C stretching [50]. The spectrum of the AVCABs shows
shifts in the position and intensity of the bands due to -OH stretching (3228 cm−1) and
asymmetric C=O stretching vibrations (1586 cm−1). In the case of AVMNCABs, the peaks
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shift to 3241, 2922, and 1585 cm−1. The intensity of the peaks decreases due to the chelation
of OH and COO− to the Fe3+ ion. An additional peak at 568 cm−1 is observed, which can
be ascribed to Fe-O vibration.
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Figure 4. FTIR spectra of (A) CABs, (B) AVCABs, and (C) AVMNCABs before adsorption.

3.1.3. Vibrating Sample Magnetometer (VSM)

This technique was used to assess the magnetic properties of the materials, such as
retentivity (MR), coercivity (HC), and saturation magnetization (MS). The hysteresis loop
describing the magnetization of CABs, AVCABs, and AVMNCABs is shown in Figure 5.
The saturation magnetization measures the material magnetization extent in an external
magnetic field. The coercivity is the intensity of the magnetic field needed to reduce the
material magnetization to zero after the sample has been magnetized. The values of MS are
6.77 × 10−3, 4.89 × 10−3, and 1.08 × 10−1 emu/g for CABs, AVCABs, and AVMNCABs,
respectively, indicating the enhancement of the magnetic properties of AVMNCABs after
the incorporation of iron nanoparticles, compared to CABs and AVCABs. The value of
HS is 193.15 Oe for AVMNCABs, showing the ferromagnetic nature of the AVMNCABs,
whereas the other adsorbents are non-magnetic. A decrease in MS has been reported in
several adsorbents [51–53]. The obtained low value of MS, compared to iron nanoparticles,
can be explained by the presence of a non-magnetic substance in the adsorbent matrix. The
appreciable magnetic properties of AVMNCABs, compared to CABs and AVCABs, enable
the easy removal by the first adsorbent in less time.
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Figure 5. Vibrating sample magnetization (VSM) of CABs, AVCABs, and AVMNCABs (at
room temperature).

3.1.4. Scanning Electron Microscopy (SEM)

The morphological features of the synthesized adsorbents were investigated by SEM.
The images of CABs (a), AVCABs (b), and AVMNCABs (c) show the surface morphology
of the various alginate beads (Figure 6). AVMNCABs are shown to have a more irregular,
uneven structure, with a large surface area available for adsorption compared to the other
materials. Figure 6 shows that the surface of the AVMNCABs has more pores than CABs and
AVCABs, indicating the enhanced adsorption capacity of the former material (Figure 6a–c).
Figure 6d shows that the surface of AVMNCABs has less porosity after adsorption, as most
of the available pores found in beads are covered, causing the surface of the beads to be
more saturated and smother.
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3.1.5. Energy Dispersive X-ray (EDX) Spectroscopy

EDX was used to determine the composition of the samples. As shown in Figure 7a,
CABs contain C (43.3%), O (39.21%), Na (4.44%), and Ca (12.25%). Figure 7b shows that the
AVCABs have C (33.21%), O (38.38%), Na (3.35%), and Ca (24.43%), and Figure 7c indicates that
AVMNCABs (after adsorption) comprise C (22.69%), O (34.30%), Na (5.51%), Ca (11.44%), and
Fe (25.06%), which confirms the incorporation of iron nanoparticles onto the alginate beads.
Figure 7d clearly shows the presence of Cu in the nanocomposite matrix of AVMNCABs,
demonstrating the efficiency of the beads in removing Cu(II) from the water.
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(d) AVMNCABs after adsorption.

3.2. Effect of pH

The pH of the solution is a crucial factor in the removal of Cu(II). The pH was adjusted
using different quantities of 0.1 M HCl or 0.1 M NaOH solutions. The influence of pH on
the removal of Cu(II) was tested by changing the pH from 2 to 7 using an initial Cu(II)
concentration of 10 mg L−1, 0.2 g adsorbent, and a 1 h contact time. Figure 8 shows that
the removal (%) increases with pH increase until pH 4. Above that value, a reduction in
removal is found in all the cases.
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Figure 8. pH effect on Cu(II) removal for an initial concentration of 10 µg mL−1; 0.2 g adsorbent; 1 h.

The point of zero charge (pHpzc) was 3.72 for AVMNCABs and AVCABs and 3.32 for
CABs (Figure 9). For pH values below pHpzc, the surface of the adsorbent has positive
charges. However, for pH > pHpzc, the surface becomes negative, which facilitates the
electrostatic attraction of the copper(II) ion. The maximal adsorption of Cu(II) was observed
at pH 4, which is above the pHpzc value [54].
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Figure 9. Point of zero charge (pHpzc) of AVMNCABs, AVCABs, and CABs.

At lower pH values, the adsorbents are protonated; that is, they have a positive
surface charge, which leads to strong repulsion with the also positively charged Cu(II) ions.
Furthermore, for pH > 4, the surface active sites of the adsorbents are unprotonated, and
hence, the surface has a negative charge, which increases the adsorption of Cu(II). At highly-
basic pH, Cu(II) ions can precipitate in the form of insoluble hydroxides, lowering the
adsorption. Moreover, the competition between Cu(II) and H+ can also decrease adsorption.
The maximum removal efficiencies for CABs, AVCABs, and AVMNCABs were 53%, 64%,
and 87%, respectively, at pH 4.

3.3. Effect of Adsorbent Amount

The adsorption capacity of the materials was revealed by the variation of the adsorbent
amount from 0.05 to 0.6 g (Figure 10). After a certain dose, the removal shows no significant
changes. The amount of Cu(II) adsorbed by CABs, AVCABs, and AVMNCABs increased
from 65.1 to 81.4%, 74.28 to 83.5%, and 79 to 89.1%, respectively, for adsorbent amounts
ranging from 0.1 to 0.4 g (CABs), 0.1 to 0.5 g (AVCABs), and 0.1 to 0.2 g (AVMNCABs).
The increase in the removal efficiency with the increase in the amount of adsorbent can
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be correlated with a higher number of active sites on the adsorbent surface, which are
accessible to the metal ions.
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3.4. Effect of Time

The influence of time on the removal of Cu(II) was determined from 5–180 min at pH 4,
and the results can be found in Figure 11. The removal ranged from 25.3 to 97.6% in the
time span of 5–120 min. The minimum and maximum efficiencies for CABs, AVCABs, and
AVMNCABs, were 25.3–86.1%, 33.9–94.6%, and 53–97.6%, respectively, for 5 to 120 min.
Initially, the adsorption process was quite fast but slowed down with time. The initial higher
rate of removal could be caused by the relatively high Cu(II) concentration and a large number
of vacant active surface sites on the adsorbent. The lowering of the removal rate with time
can be ascribed to a decrease in the availability of the adsorbent active sites.
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3.5. Effect of Copper Ion Concentration

Cu(II) adsorption was investigated for the previously found optimum time (120 min),
pH 4, 10 to 80 µg mL−1 copper ion concentration. An increase in the initial value leads to an
adsorption decrease. Figure 12 shows that the maximal removal of Cu(II) was 88.4% (CABs),
94.7% (AVCABs), and 98.6% (AVMNCABs). More adsorption sites are available for lower
Cu(II) concentrations. As the number of Cu(II) ions increases, for higher concentrations,
less active sites are available for adsorption. Hence, adsorption depends on the initial
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concentration of Cu(II). As this concentration increases, more active sites are covered, and
Cu(II) ions have greater competition for the surface of the adsorbent [55].
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3.6. Adsorption Isotherms

Various models of adsorption isotherms were tested to assess the adsorption capac-
ity under optimized conditions. The acquired data were applied to the Freundlich [56],
Langmuir [57], and Temkin [58] models. The adsorption parameters obtained for CABs,
AVCABs, and AVMNCABs for removing Cu(II) are in Table 2.

Table 2. Parameters of the adsorption isotherm of Cu(II) on various adsorbents.

Isotherm Value of Parameters

Langmuir qmax (mg g−1) KL R2 RL
CABs 15.38 0.193 0.982 0.518
AVCABs 41.66 0.049 0.991 0.671
AVMNCABs 111.11 0.014 0.997 0.877
Freundlich KF (mg g−1) (mg L−1)n n R2

CABs 3.296 1.182 0.959
AVCABs 2.137 1.05 0.986
AVMNCABs 1.62 1.026 0.994
Temkin B1 KT (L mg−1) R2

CABs 28.19 0.058 0.779
AVCABs 30.99 0.03 0.837
AVMNCABs 17.26 0.091 0.919

The Langmuir isotherm model is characterized by the equation:

1
qe

=
1

qm
+

1
Kmqm

· 1
Ce

(6)

where: Km is the Langmuir adsorption constant (L/mg), qm is the adsorbent maximum
adsorption capacity (mg/g); Ce and qe are the equilibrium concentration of Cu(II) ion and
equilibrium adsorption capacity (mg/L), respectively. The 1/qe versus 1/Ce plot is depicted
in Figure 13A.
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The separation factor, constant, and equilibrium parameter RL were calculated with

RL =
1

1 + KLC0
(7)

RL infers if the adsorption is irreversible (for RL = 0), favorable (for 0 < RL < 1), linear
(for RL = 1), or not favorable (for RL > 1). In the present case, the value of RL is much smaller
than 1, confirming that Cu(II) adsorption is a favorable process [59–61].

The Freundlich model depicting multilayer adsorption is expressed as:

log qe = log KF +
1
n

log Ce (8)

where: n and KF (L/mg) are the Freundlich constants, indicative of the intensity and
adsorption capacity, respectively; qe and Ce are the equilibrium adsorption capacity (mg/g)
and equilibrium concentration of Cu(II), respectively. KF and 1/n values can be obtained
from the intercept and slope of the log qe versus log Ce plot represented in Figure 13B.

The Temkin isotherm model is centered on the surface coverage. The adsorption
energy decreases linearly with coverage. This isotherm is expressed by Equation (9):

qe = B1lnkT + B1lnce (9)

where: B1 = RT/b; b is the Temkin constant (J/mol); T is the temperature (K); R is the
gas constant (8.314 J/mol K); B1 is the constant related with the adsorption heat (J/mol);
KT is the constant of equilibrium binding (L/g). The determination of KT and B1 can be
performed by the qe versus ln Ce plot, as shown in Figure 13C.
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3.7. Adsorption Kinetics

The pseudo-first-order [62], pseudo-second-order [63], Elovich kinetics [64], and intra-
particle diffusion [65] models were used to investigate the adsorption kinetics. The effect of
the contact time on the adsorption is presented in Figure 14 and Table 3.
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Table 3. Kinetic parameters for Cu(II) adsorption on various adsorbents.

Models Kinetics Parameters

Pseudo-First-Order k1 (min−1) qe (mg g−1) R2

CABs 0.027 426.578 426.578
AVCABs 0.041 426.578 426.578
AVMNCABs 0.043 426.578 426.578
Pseudo-Second-Order k2 (g mg−1 min−1) qe (mg g−1) R2

CABs 0.092 0.471 0.931
AVCABs 0.129 0.512 0.973
AVMNCABs 0.312 0.510 0.997
Intra-particle Diffusion kd (mg g−1 min−1) C (mg g−1) R2

CABs 0.035 0.040 0.980
AVCABs 0.036 0.097 0.991
AVMNCABs 0.027 0.226 0.949
Elovich model α (mg g−1 min−2) β (g mg−1 min−1) R2

CABs −0.042 0.090 0.900
AVCABs 0.005 0.095 0.962
AVMNCABs 0.160 0.069 0.991
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The pseudo-first-order, pseudo-second-order, Elovich kinetics, and intra-particle diffu-
sion follow Equations (10)–(13).

log (qe − qt) = log qe −
k1t

2.303
(10)

where: qe and qt are the quantity of copper adsorbed (mg g−1) at equilibrium and at a given
time t (min), respectively; k1 (min−1) is the pseudo-first-order rate constant. The log (qe − qt)
versus t plot is shown in Figure 14A.

1
qt

=
t

k2qe2 − 1
qe

(11)

where: k2 (g/mg min−1) is the pseudo-second-order rate constant; qe and qt are the same
as above. t/qt versus t plot is shown in Figure 14B. The highest correlation coefficient was
obtained for pseudo-second-order kinetics.

The intra-particle diffusion model centered on the diffusion mechanism, suggested by
Weber and Morris, is given by:

qt = Kd t1/2 + C (12)

where: Kd is the pores diffusion rate constant (mg/g min1/2); C is the intercept (mg/g). The
dt versus t1/2 plot is shown in Figure 14C.

The Elovich equation is generally used in chemisorption and satisfactorily applies to
the chemisorption process; it is expressed as:

qt = α + β ln t (13)

where: qt (mg/g) is the amount of copper(II) adsorbed at time t (min); α (mg g−1 min−1)
and β (g mg−1) are constants, respectively, obtained from the intercept and the slope of qt
versus ln t linear plot, as shown in Figure 14D.

3.8. Thermodynamic Parameters

The thermodynamic parameters, namely the free energy of Gibbs (∆G, kJ mol−1),
changes in enthalpy (∆H, kJ mol−1), and entropy (∆S, J mol−1 K−1) for the adsorption of
Cu(II) on various beads was determined using the equilibrium data obtained at different
temperatures using the Gibbs and Van’t Hoff equations [66]:

∆G = −RT ln Kd (14)

ln Kd =
∆S
R

− ∆H
RT

(15)

where: Kd is the Langmuir equilibrium constant (L/g); T is the temperature (K); R is the
gas constant (8.314 kJ/mol K). The ∆S and ∆H values can be, respectively, attained from
the intercept and slope of plot ln Kd versus 1/T (Figure 15). The Van’t Hoff equation relates
the coefficient of distribution with ∆S and ∆H at a given temperature. The negative values
of ∆G at 30 ◦C, 40 ◦C, and 50 ◦C (Table 4), infer that Cu(II) adsorption onto various beads
was thermodynamically possible and spontaneous for all of the studied temperatures. The
positive enthalpy demonstrates the adsorption endothermic nature.
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Table 4. Thermodynamic parameters for Cu(II) adsorption on CABs, AVCABs, and AVMNCABs.

Adsorbents ∆H
(kJ/mol)

∆S
(J/mol/K)

∆G (kJ/mol)

303 K 313 K 323 K

CABs 0.82 215.7 −8.6 −12.7 −14.6
AVCABs 0.8 210.2 −8.21 −12.17 −14.07

AVMNCABs 0.57 153.2 −6.6 −9.4 −10.9

3.9. Adsorption Mechanism

The FTIR spectra of the adsorbents (Figure 4) show peaks due to −OH, C=O, and
COO− stretching and Fe−O vibrations which come from the active binding sites for Cu(II)
adsorption. Additionally, the maximal adsorption for the AVMNCABs, AVCABs, and CABs
values are observed at pH 4. The point of zero charge (pHpzc) is 3.72 for AVFMNPECABs
and AVCABs and 3.32 for CABs (Figure 9). The surface is negatively charged above pHpzc,
which facilitates the electrostatic attraction with the Cu(II) ion.

3.10. Comparison with Other Adsorption Methods

The adsorption efficiencies of the synthesized bio-sorbents were compared with the
values obtained from the literature for Cu(II) removal using other materials (Table 5). It
was found that our materials showed better performance, as evidenced by the adsorption
capacity values. Furthermore, our functionalized adsorbents showed a greater affinity for
Cu(II) compared to the non-functionalized adsorbents.
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Table 5. Adsorption capacities of different adsorbents—comparison with literature.

S.No. Adsorbents Adsorption
Capacity (mg g−1) pH Ref.

1. Polyaniline/calcium alginate composite 79.0 3.0 [67]

2. Magnetic composite gel beads
(CMC/SA/graphene oxide@Fe3O4) 55.96 5.0 [68]

3. Nanochitosan/sodium
alginate/microcrystalline cellulose beads 43.3 5.0 [69]

4. Fluidized zeolite beads 23.3 [70]
5. Chitosan nanoparticles-bentonite-alginate 12.21 7.0 [71]
6. γ-Fe2O3 nanoparticles 34.0 [72]

7. Iminodiacetic acid-functionalized Paeonia ostii
seed coats 36.6 5.0 [73]

8. Plasma-modified activated carbon 21.4 5.0 [74]

9. Oxidized Functionalized multiwalled
carbon nanotubes 14.086 [75]

10. Sewage sludge-based composite adsorbent
diethylenetriaminepentaacetic acid 31.42 3.0 [76]

11. (a) Calcium alginate beads (CABs) 15.38 4.0 Present study
(b) Aloe-vera calcium alginate beads (AVCABs) 41.66 4.0 Present study
(c) Aloe-vera functionalized magnetic
nanoparticles entrapped calcium alginate
beads (AVMNCABs)

111.11 4.0 Present study

4. Conclusions

The synthesized bio-sorbents CABs, AVCABs, and AVMNCABs, can be used as cost-
efficient and environmentally friendly materials for removing Cu(II) from water. The
adsorption studies demonstrate the applicability of the developed spectrophotometric
method. The adsorption results of CABs, AVCABs, and AVMNCABs follow a Langmuir
model with a maximal adsorption capacity of 15.38 mg/g, 41.66 mg/g, and 111.11 mg/g,
respectively, with the sequence: AVMNCABs > AVCABs > CABs. The kinetic data indicate
that the adsorption of Cu(II) on the synthesized adsorbents follows a pseudo-second-
order model. Thermodynamic studies reveal the spontaneous and endothermic nature
of the adsorption process. The beads demonstrate high recyclability, and the desorption
efficiencies of CABs, AVCABs, and AVMNCABs were 92.7%, 96.4%, and 98.6%, respectively,
on the 7th cycle.
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