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1. GAP Model Details

The GAP models used herein decompose the total energy into local two-body (2B) and
many-body (MB) contributions.[1] The MB contributions are based on the Smooth Overlap
of Atomic Positions (SOAP) kernel, which provides a rotationally and permutationally
invariant measure of the similarity of chemical environments.[2] Technical hyperparameters
used for the two-body and SOAP descriptors are listed in table S1.

Description Symbol 2B SOAP
Cutoff rcut [Å] 5 6

Transition Width ∆ [Å] 0.6 0.7
Atom Smearing σat [Å] - 0.7
SOAP Basis Size nmax/lmax - 4/12
Kernel Exponent ζ - 2
Size of Sparse Set Nsparse 20 2000

Table S1. Technical Hyperparameters for the GAP models used in this work.

2. Data Efficient Training Protocol

The employed training protocol is taken from previous work and likewise employed
for Li3PS4 and Li7P3S11.[3] This procedure is based on a Voronoi tessellation of the anion
grid, yielding high symmetry positions as potential Li sites. An exemplary tessellation is
shown in Fig. S1. Using k-means clustering, diverse set of these sites can be generated. The
underlying assumption of this procedure is a relative rigidity of the thiophosphates and
high mobility of Li ions. This assumption is not in contrast to anion lattice dynamics, such
as the paddlewheel effect.[4] Although, small anions increase the conductivity by quasi
continuous rotations, thiophosphates only exhibit no translational motion.[4]

This potential is then used to generate new configurations via molecular dynamics
(MD) simulations at 800 K, which are added to the training set. This procedure is repeated
for several iterations (termed "generations") until the force and energy errors on new config-
urations no longer improve. The GAP model is extend by the β Li3PS4 modification using
the same iterative training approach. α and γ crystal configurations are used as test cases.

Figure S1. Voronoi Tesselation of the anion grid. Li (darkblue), P (red), S (orange) and Voronoi
vertices(light blue). Figure is readapted from [3]
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To build amorphous counterparts for the crystalline structures, a Monte Carlo-like
sampling approach is chosen. This approach allows for the free tuning of stoichiometries
and anions. Only the dominant anions (e.g. PS3−

4 and P2S4−
7 ) are taken into consideration

in the first place and utilized in a ratio that represents correctly the desired stoichiometry.
The random sampling approach is depicted Fig. S2. Thiophosphate anions are rotated
by a random angle and placed randomly on a predefined grid. Alternatively we used a
Poisson disc sampling for a homogeneous placement of anion, yielding similar results
as the placement on a grid. Thereupon, lithium ions are added into the structure utiliz-
ing a Voronoi tesselation of the sulfur anion grid and chosen to ensure charge neutrality
accordingly. The hereby obtained cell is then compressed to yield desired experimental
densities range. This is accomplished by iterative rescaling of the cell by a factor in all
three directions in alternation with a subsequent geometry optimizations utilizing the GAP
model. To consequently obtain a glassy structure that represents the physical system, short
molecular dynamics runs of the glasses at a temperature of 600 K - 800 K are conducted and
the iterative training proceeded on these geometries, similarly to the training of crystalline
geometries.

Figure S2. Graphical representation of the sampling approach, involving random sampling of
thiophosphate compounds on a predefined grid, addition of lithium ions via a Voronoi Tesselation
of the anion grid, and iterative compressing to the desired density. Lithium is displayed in blue,
phosphorous in violet, and sulfur in yellow.

In a final step the GAP model is extended by additional local P-S microchemistry.
In particular, the emphasis is set on the P2S4−

6 anion which has been found frequently
especially in glassy materials.

The extension of by P2S6 is necessary as we observe the P2S4−
6 units to degrade during

the optimization when isolated S atoms are added to the training but tend to either form
structures which resemble the P2S4−

7 anion or collapse the P-P bond to distances below 0.5 Å.
This can be intuitively explained as the GAP model had not been trained on different P-P
bonds before and can hence not predict the energy profile on the P-P coordinate correctly.
To prevent this unphysical behavior, the P-P bond distance is systematically sampled by
distorting the Li4P2S6 crystal and training the GAP on these geometries. It is indeed found
that the untrained GAP minimizes P-P distances. The minimized P-P distance is in contrast
to the expected coulombic behavior in DFT. When retraining on P-P data, however, the GAP
correctly preidtcs the P-P binding energy. The distorted structures and the corresponding
energy profiles of the Li4P2S6 crystal, untrained and trained GAP are provided in Figure
S3 Glasses are sampled in a similiar fashion as above by using PS3−

4 and P2S4−
6 anions in a

ratio of 1:1 and adding Li ions accordingly.
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Figure S3. Systematic sampling of P-P distances in the Li4P2S6 crystal. Geometries used for the
sampling approach: The initial structure is distorted by displacing one phosphorous atom (i.e.
shortening the P-P bond length). Lithium is displayed in blue, phosphorous in purple, sulfur in
yellow, and the phosphorous atoms in the distorted structures in light grey.

Figure S4. Obtained energy profile from DFT, untrained, and trained GAP as a function of P-P
distance.

3. Convergence and Error Assessment

Convergence is reached at RMSEs of 0.3 eV/ and 7.5 meV/atom for forces and energies.
The energy and force RMSEs obtained for the sampled amorphous structures are signifi-
cantly higher than the values obtained for the equilibrated ones. This may be explained
by the high (local) anisotropy of the training configurations: lithium ions are not evenly
distributed and coordinated by a sphere of sulfur atoms, but often occur in clusters. The
higher anisotropy is expected to increase the locality error induced by the finite cutoff of the
SOAP descriptor.[? ] To consequently obtain a glassy structure that represents the physical
system, short molecular dynamics runs of the glasses at a temperature of 600 K - 800 K are
conducted. Force and energy convergence in the iterative training cycle is shown in Figure
S2. A significant decrease in force and energy RMSEs is observed as converged RMSEs of
0.2 eV/ and 5 meV/atom are predicted.
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The peak in RMSE energy of the validation set in generation 5 can be explained by
the different temperature chosen for the MD run in this generation, which was 1000 K
instead of 600 K. An elevated temperature, upon which the GAP is not yet trained, leads
to a systematic underestimation of the energy. This effect is to be expected also for MD
production runs at different temperatures. When correcting/retraining the GAP predicted
energy for the observed offset, one obtains an energy RMSE of 5 meV/atom.

Figure S5. Coordination-resolved force correlation plot for P atoms in MD snapshots of Li7P3S11

glasses.
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Figure S6. Coordination-resolved force correlation plot for S atoms in MD snapshots of Li7P3S11

glasses.

A comparison of force RMSEs of phosphorous and sulfur in different PmSn polyhedra
(Figure S6 and Table S2) proves, that RMSEs in P2S4−

6 are elevated in comparison to those
in PS3−

4 and 2S4−
7 . This may be attributed to the different charge states of phosphorous and

sulfur or to non-ideal hyperparameters for this polyhedron.

PmSn RMSE P / eV/Å RMSE S / eV/Å
PS3−

4 0.36 0.24
P2S4−

6 0.67 0.31
P2S4−

7 0.38 0.18
Table S2. Coordination-resolved force RMSEs of phosphorous and sulphur in MD snapshots of
Li7P3S11 glasses.

4. Radial Distribution Functions

The element-resolved radial distribution functions for glassy Li3PS4 along with the
crystalline counterparts (α-, β-, and γ-Li3PS4 ) are displayed in Figure ??.

It is apparent that the P-S and S-Li radial distribution functions of glass and crystal are
identical. Differences occur for S-S, where a double peak at around 4 Åis observed for the
β- and γ-crystal, but neither for the α-phase nor for the amorphous structures. Kim et al.
have used this peak in literature to discriminate between hexagonal and cubic S-sublattices
in the structure.[5] The P-P RDF displays different structural feature: In the amorphous
material two peaks are observed which are not found in the crystals, located at 2 - 2.5 Åand
a broadening of the distinct crystalline peaks at 4.5 - 6.5 Å. These features are attributed to
the occurrence of P2S4−

6 and P2S4−
7 moieties.

Another distinction can be made for the peaks at rP-P ≤ 4.5 Å: Two distinct peaks
occur in all crystal phases, while one broad peak is visible for the glass. This observation
serve as a validation for the non-periodicity of the P-lattice in the amorphous material.
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Figure S7. Radial distribution functions for a) P-S, collected from molecular dynamics runs of α, β,
and γ-crystals at 500K, using an averaged ensemble of 20 different Li3PS4 glasses with ρ = 1.8 g/cm3.

Figure S8. Radial distribution functions for b) S-Li.
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Figure S9. Radial distribution functions for c) S-S.

Figure S10. Radial distribution functions for d) P-P.

5. Li3PS4

Li3PS4 is the crystalline compound of Li2S = 75 mol% and can be found in three
different phases: α, β, and γ -Li3PS4. All of them solely contain the simplest PS3−

4 anion.

Figure S11. Arrangements of PS4 tetrahedra in the α, β, and γ in Li3PS4. (Li: blue; S: yellow; P: red)
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6. Ionic Mobility

As a measure for the ion transport, we evaluate the tracer diffusion coefficients D∗α
from the Einstein relation as

D∗α =
1
3

〈
|ri(t)− ri(0)|2

〉
2∆t

(1)

where ri(t) is the position of particle i at time t and ∆t is the sampling time.[6] In addition
to D∗, the ionic conductivity σ∗ is determined via the Nernst-Einstein formulation based
on the tracer diffusion coefficients as

σ∗ =
1

3VkBT

nα

∑
α

q2
αNαD∗α (2)

where V is the volume, T equals temperature, nα the number of different species α, qα the
charge, Nα the number of ions, and D∗α the tracer diffusion coefficients.[7]

For LPS glasses a range of densities have been reported. At first we exemplary evaluate
the lithium ion conductivity as a function of the materials density at 600K. As shown in
Figure S12 we can’t identify a clear trend. The weak trend is not pronounced in comparison
to the width of the distribution.

Figure S12. Density dependence of the conductivity of Li3PS4 and Li7P3S11 glasses, using an ensem-
ble of three structures for each density and stoichiometry at 600K.

A measure for the amorphous nature of the glasses is isotropicity with respect to the
ion diffusivity in all dimensions. This is tested using an ensemble of 20 MD runs of Li3PS4
glass at 500 K. It is found that the standard deviation of the mean square displacement in x,
y, and z direction vary by 9 % in one MD run, but by only 1 % when averaging over the 20
structures in the ensemble. Hence, the structures are sufficiently isotropic with respect to
diffusivity.
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Figure S13. Computational Arrhenius plots for α (light blue solid line) and γ (dark blue line) phase of
Li3PS4. γ-Li3PS4 exhibits a change of slope at roughly 700 K. Above 700 K, conductivities of γ-Li3PS4

matches those of α-Li3PS4.

Table S3. Summarized conductivities from MD calculations performed in this study of the ternary
LPS system. The abbreviations AIMD, MD and Exp denote the reference methods. The top part
corresponds to crystalline LPS, bottom glassy LPS. A detailed list of synthesis methods and ionic
conducitivities can be found in Ref. [8].

phase σRT / S/cm σRT , lit. / S/cm EA / eV EA, lit. / eV

Li7P3S11 2.9 ± 1.1 ×10−3
5.6 ×10−2, AIMD [9]
1.2 ×10−2, Exp [9]
1.7 ×10−2, Exp [10]

0.21 ± 0.01
0.19, AIMD [9]
0.21, Exp [9]
0.17, Exp [10]

α-Li3PS4 3.6 ± 2.9 ×10−3 0.8 ×10−2, AIMD [5] 0.22 ± 0.02 0.18, AIMD [5]

β-Li3PS4 6.0 ± 0.1 ×10−5 8.9 ×10−7, Exp [11]
10−1, AIMD [12]

0.48 ± 0.04

0.46,Exp [13]
0.16, Exp [11]
0.08, AIMD [12]
0.40, AIMD [14]

γ-Li3PS4 5.5 ± 0.4 ×10−7 3.0 ×10−7, Exp [11][13] 0.42 ± 0.16 0.49, Exp [13]
0.22, Exp [11]

Li3PS4 7.4 ± 0.9×10−4

4.1 ×10−4, MD [15]
8.8 ×10−5, AIMD [16]
2.8 ×10−4, Exp [17]
7.5 ×10−4, Exp [18]

0.280
0.28, MD [15]
0.17, AIMD [16]
0.40, Exp [17]

Li7P3S11 4.1 ± 0.8×10−4
8.2 ×10−5, AIMD [16]
3.7 ×10−5, Exp [17]
1 ×10−4, Exp [19]

0.267 0.45, Exp [17]

Li4P2S7 2.4 ± 0.2 ×10−4 5.7 ×10−5, AIMD [16]
3.8 ×10−5, Exp [17]

0.278 0.44, Exp [17]
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7. Li accessible volume

In the main script we analyzed the number of Li-positions occupied during MD
simulations at finite temperatures by calculating the isosurface of the probability density
distribution of Li-positions. In Figure S14 we visualize the accessible volume. Exemplary we
choose the glasses with the highest Li content (Li3PS4) and the lowest Li content (Li4P2S7).
Li3PS4 has a higher accessible Li-volume at all temperatures compared to Li4P2S7.

Figure S14. Li accessible volume (blue) for Li4P2S7 and Li3PS4 at given temperatures.
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