N-Doped Honeycomb-like Ag@N-Ti3C2Tx Foam for Electromagnetic Interference Shielding
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Honeycomb-like Ag@Ti3C2Tx Composites
2.3. Synthesis of 3D Honeycomb-like Ag@N-Ti3C2Tx Foam
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Y.; Wang, X.; Dai, X.; Lu, W.; Tang, Y.; Kong, J. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics. J. Mater. Sci. Technol. 2022, 100, 1–11. [Google Scholar] [CrossRef]
- Du, H.; Zhang, Q.; Zhao, B.; Marken, F.; Gao, Q.; Lu, H.; Guan, L.; Wang, H.; Shao, G.; Xu, H.; et al. Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Ceram. 2021, 10, 1042–1051. [Google Scholar] [CrossRef]
- Song, L.; Zhang, F.; Chen, Y.; Guan, L.; Zhu, Y.; Chen, M.; Wang, H.; Putra, B.R.; Zhang, R.; Fan, B. Multifunctional SiC@SiO2 Nanofiber Aerogel with Ultrabroadband Electromagnetic Wave Absorption. Nano-Micro Lett. 2022, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Tu, X.; Zhang, S.; Li, Y.; Wang, H.; Shao, G.; Zhang, R.; Li, H.; Zhao, B.; Fan, B. Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260. [Google Scholar] [CrossRef]
- Zeng, S.; Li, X.; Li, M.; Zheng, J.; Shiju, E.; Yang, W.; Zhao, B.; Guo, X.; Zhang, R. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 2019, 155, 34–43. [Google Scholar] [CrossRef]
- Younes, H.; Shoaib, N.; Rahman, M.M.; Abu Al-Rub, R.; Hong, H.; Christensen, G.; Chen, H.; Younes, A.B.; Al Ghaferi, A. Thin carbon nanostructure mat with high electromagnetic interference shielding performance. Synth. Met. 2019, 253, 48–56. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; He, J.; Zhang, L. Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 2017, 205, 261–263. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, S.; He, M.; Wei, L.; Chen, Y.; Liu, R. 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon 2021, 178, 413–435. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.-B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z.-Z. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Adv. Mater. 2017, 29, 1702367. [Google Scholar] [CrossRef]
- Wu, X.; Han, B.; Zhang, H.-B.; Xie, X.; Tu, T.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z.-Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622. [Google Scholar] [CrossRef]
- Li, X.; Yin, X.; Song, C.; Han, M.; Xu, H.; Duan, W.; Cheng, L.; Zhang, L. Self-Assembly Core-Shell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Adv. Funct. Mater. 2018, 28, 1803938. [Google Scholar] [CrossRef]
- Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M.K.; Hong, S.M.; Han, M.; Gogotsi, Y.; Koo, C.M. Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Appl. Mater. Inter. 2019, 11, 38046–38054. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ru, X.; Song, Y.; Wang, H.; Yang, C.; Gong, L.; Liu, Z.; Zhang, Q.; Chen, Y. Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 2022, 227, 109602. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Z.; Chen, T.; Su, X.; Liu, Y.; Fu, R. Construction of 3D MXene/Silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, J.; Li, L.; Zhao, J.; Gao, H. A high-performance supercapacitor electrode based on freestanding N-doped Ti3C2Tx film. Ceram. Int. 2020, 46, 21482–21488. [Google Scholar] [CrossRef]
- Xu, W.; Li, S.; Zhang, W.; Ouyang, B.; Yu, W.; Zhou, Y. Nitrogen-Doped Ti3C2Tx MXene Induced by Plasma Treatment with Enhanced Microwave Absorption Properties. ACS Appl. Mater. Inter. 2021, 13, 49242–49253. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Hu, F.; Zhang, S.; Fan, B.; Min, Z.; Zhang, R.; Zhao, B.; Wang, H.; Lu, H.; et al. Electromagnetic Interference Shielding Performance of Flexible, Hydrophobic Honeycomb-Structured Ag@Ti3C2Tx Composites. Adv. Electron. Mater. 2022, 8, 2101028. [Google Scholar] [CrossRef]
- Wang, X.; Bao, S.; Hu, F.; Shang, S.; Chen, Y.; Zhao, N.; Zhang, R.; Zhao, B.; Fan, B. The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures. Ceram. Int. 2022, 48, 16892–16900. [Google Scholar] [CrossRef]
- Zhang, T.; Pan, L.; Tang, H.; Du, F.; Guo, Y.; Qiu, T.; Yang, J. Synthesis of two-dimensional Ti3C2Tx MXene using HCl plus LiF etchant: Enhanced exfoliation and delamination. J. Alloy. Compd. 2017, 695, 818–826. [Google Scholar] [CrossRef]
- Raagulan, K.; Braveenth, R.; Jang, H.J.; Seon Lee, Y.; Yang, C.M.; Mi Kim, B.; Moon, J.J.; Chai, K.Y. Electromagnetic Shielding by MXene-Graphene-PVDF Composite with Hydrophobic, Lightweight and Flexible Graphene Coated Fabric. Materials 2018, 11, 1803. [Google Scholar] [CrossRef] [PubMed]
- Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Q.; Wen, J.; Ma, X.; Zhu, C.; Zhang, X.; Qi, D. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale 2018, 10, 20828–20835. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lü, H.-Y.; Wu, X.-L.; Guan, H.; Wang, Y.-Y.; Wan, F.; Wang, G.; Yan, L.-Q.; Xie, H.-M.; Wang, R.-S. Electrochemical performance improvement of N-doped graphene as electrode materials for supercapacitors by optimizing the functional groups. RSC Adv. 2015, 5, 12583–12591. [Google Scholar] [CrossRef]
- Yoon, Y.; Tiwari, A.P.; Lee, M.; Choi, M.; Song, W.; Im, J.; Zyung, T.; Jung, H.-K.; Lee, S.S.; Jeon, S.; et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A 2018, 6, 20869–20877. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, J.; Du, Z.; Liu, Y.; Zhou, G.; Wang, J. Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance. Electrochim. Acta 2017, 254, 308–319. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Lei, W.; Wu, Y.; Li, C.; Khan, M.A.; Ouyang, Y.; Jiao, X.; Ye, H.; Mutahir, S.; et al. Achieving quick charge/discharge rate of 3.0 V s−1 by 2D titanium carbide (MXene) via N-doped carbon intercalation. Mater. Lett. 2019, 234, 21–25. [Google Scholar] [CrossRef]
- Song, Y.; Yin, F.; Zhang, C.; Guo, W.; Han, L.; Yuan, Y. Three-Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties. Nano-Micro Lett. 2021, 13, 76. [Google Scholar]
- Huang, L.; Li, J.; Li, Y.; He, X.; Yuan, Y. Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale 2019, 11, 8616–8625. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Lukatskaya, M.R.; Dyatkin, B.; Zhang, C.; Presser, V.; Gogotsi, Y.; Barsoum, M.W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014, 50, 7420–7423. [Google Scholar]
- Liao, Y.; Huang, Y.; Shu, D.; Zhong, Y.; Hao, J.; He, C.; Zhong, J.; Song, X. Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochim. Acta 2016, 194, 136–142. [Google Scholar]
Materials | Purity/Grain Size | Manufacturers |
---|---|---|
Ti3AlC2 MAX | ≥99% | 11 Technology Co., Ltd. |
Hydrochloric acid (HCl) | 36–38 wt% | Aladdin Biochemical Technology Co., Ltd. |
Lithium fluoride (LiF) | ≥99% | Macklin Biochemical Co., Ltd. |
Polymethyl methacrylate (PMMA) | 5 μm | Dongguan Kemai New Material Co., Ltd. |
Ethanol | analytical reagent | Aladdin Biochemical Technology Co., Ltd. |
Silver nitrate (AgNO3) | ≥99.8% | Sinopharm Chemical Reagent Co. Ltd. |
Sodium hydroxide (NaOH) | ≥96% | Macklin Biochemical Co., Ltd. |
Ammonia (N2H4·H2O) | ≥98% | Aladdin Biochemical Technology Co., Ltd. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, F.; Hu, F.; Li, Y.; Chen, Y.; Wang, H.; Min, Z.; Zhang, R. N-Doped Honeycomb-like Ag@N-Ti3C2Tx Foam for Electromagnetic Interference Shielding. Nanomaterials 2022, 12, 2967. https://doi.org/10.3390/nano12172967
Wang X, Zhang F, Hu F, Li Y, Chen Y, Wang H, Min Z, Zhang R. N-Doped Honeycomb-like Ag@N-Ti3C2Tx Foam for Electromagnetic Interference Shielding. Nanomaterials. 2022; 12(17):2967. https://doi.org/10.3390/nano12172967
Chicago/Turabian StyleWang, Xiaohan, Fan Zhang, Feiyue Hu, Yaya Li, Yongqiang Chen, Hailong Wang, Zhiyu Min, and Rui Zhang. 2022. "N-Doped Honeycomb-like Ag@N-Ti3C2Tx Foam for Electromagnetic Interference Shielding" Nanomaterials 12, no. 17: 2967. https://doi.org/10.3390/nano12172967
APA StyleWang, X., Zhang, F., Hu, F., Li, Y., Chen, Y., Wang, H., Min, Z., & Zhang, R. (2022). N-Doped Honeycomb-like Ag@N-Ti3C2Tx Foam for Electromagnetic Interference Shielding. Nanomaterials, 12(17), 2967. https://doi.org/10.3390/nano12172967