Generation and Superposition of Perfect Vortex Beams in Terahertz Region via Single-Layer All-Dielectric Metasurface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polarization-Independent Metasurface
2.2. Spin-Decoupled Metasurface
2.3. Superpositions of PVBs by a Spin-Decoupled Metasurface
3. Results and Discussion
3.1. Polarization-Independent PVBs Generator
3.2. Spin-Decoupled PVBs Generator
3.3. Superpositions of Perfect Vortex Beams
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Cai, X.L.; Wang, J.W.; Strain, M.J.; Johnson-Morris, B.; Zhu, J.B.; Sorel, M.; O’Brien, J.L.; Thompson, M.G.; Yu, S.T. Integrated compact optical vortex beam emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef]
- Vallone, G.; D’Ambrosio, V.; Sponselli, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F.; Villoresi, P. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 2014, 113, 060503. [Google Scholar] [CrossRef]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef]
- Lavery, M.P.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef]
- Parigi, V.; D’Ambrosio, V.; Arnold, C.; Marrucci, L.; Sciarrino, F.; Laurat, J. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 2015, 6, 7706. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, L.; Zhang, Z.; Wang, K.; Liu, J.; Wang, J. Orbit Angular Momentum Multiplexing in 0.1-THz Free-Space Communication via 3D Printed Spiral Phase Plates; CLEO; Optica Publishing Group: San Jose, CA, USA, 2014; p. STu2F.2. [Google Scholar]
- Wu, G.B.; Chan, K.F.; Shum, K.M.; Chan, C.H. Millimeter-wave and terahertz OAM discrete-lens antennas for 5G and beyond. IEEE Commun. Mag. 2022, 60, 34–39. [Google Scholar] [CrossRef]
- Yan, H.W.; Zhang, E.T.; Zhao, B.Y.; Duan, K.L. Free-space propagation of guided optical vortices excited in an annular core fiber. Opt. Express 2012, 20, 17904–17915. [Google Scholar] [CrossRef]
- Li, H.S.; Ren, G.B.; Zhu, B.F.; Gao, Y.X.; Yin, B.; Wang, J.; Jian, S.S. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers. Opt. Lett. 2017, 42, 179–182. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Yang, K.; Zhou, J. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett. 2014, 113, 263901. [Google Scholar] [CrossRef]
- Ramachandran, S.; Kristensen, P.; Yan, M.F. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 2009, 34, 2525–2527. [Google Scholar] [CrossRef]
- Fang, X.Y.; Ren, H.R.; Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 2020, 14, 102–108. [Google Scholar] [CrossRef]
- Lissberger, P.H. Ellipsometry and polarised Light. Nature 1977, 269, 270. [Google Scholar] [CrossRef]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of Light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef]
- Yi, X.; Liu, Y.; Ling, X.; Zhou, X.; Ke, Y.; Luo, H.; Wen, S.; Fan, D. Hybrid-order Poincare sphere, Phys. Rev. A 2015, 91, 023801. [Google Scholar] [CrossRef]
- Galvez, E.J. Light beams with spatially variable polarization. In Photonics—Fundamentals of Photonics and Physics; Wiley: Hoboken, NJ, USA, 2015; Volume 1, pp. 61–76. [Google Scholar]
- Han, J.; Intaravanne, Y.; Ma, A.N.; Wang, R.X.; Li, S.T.; Li, Z.C.; Chen, S.Q.; Li, J.S.; Chen, X.Z. Optical metasurfaces for generation and superposition of optical ring vortex beams. Laser Photonics Rev. 2022, 14, 2000146. [Google Scholar] [CrossRef]
- Niv, A.; Biener, G.; Kleiner, V.; Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 2006, 14, 4208–4220. [Google Scholar] [CrossRef]
- Philip, G.M.; Kumar, V.; Milione, G.; Viswanathan, N.K. Manifestation of the Gouy phase in vector-vortex beams. Opt. Lett. 2012, 37, 2667–2669. [Google Scholar] [CrossRef] [PubMed]
- Ostrovsky, A.S.; Rickenstorff-Parrao, C.; Arrizón, V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator, Opt. Lett. 2013, 38, 534–536. [Google Scholar]
- Fu, S.; Gao, C.; Wang, T.; Zhang, S.; Zhai, Y. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt. Lett. 2016, 41, 5454–5457. [Google Scholar] [CrossRef]
- Vaity, P.; Rusch, L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 2015, 40, 597–600. [Google Scholar] [CrossRef]
- Jabir, M.V.; Apurv Chaitanya, N.; Aadhi, A.; Samanta, G.K. Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons. Sci. Rep. 2016, 6, 21877. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Y.; Liu, S.; Ma, C.; Han, L.; Cheng, H.; Zhao, J. Generation of perfect vectorial vortex beams. Opt. Lett. 2016, 41, 2205–2208. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, H.; Xiang, L.; Chen, L.; Yang, J.; Wen, J.; Shang, Y.; Wang, T.; Pang, F. Generation of perfect vortex beams with polymer-based phase plate. IEEE Photon. Technol. Lett. 2020, 32, 565–568. [Google Scholar] [CrossRef]
- Gu, Z.; Yin, D.; Gu, F.; Zhang, Y.; Nie, S.; Feng, S.; Ma, J.; Yuan, C. Generation of concentric perfect Poincaré beams. Sci. Rep. 2019, 9, 15301. [Google Scholar] [CrossRef]
- Li, D.; Feng, S.; Nie, S.S.; Chang, C.; Ma, J.; Yuan, C. Generation of arbitrary perfect Poincaré beams. J. Appl. Phys. 2019, 125, 073105. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef]
- Qiu, C.W.; Zhang, T.; Hu, G.; Kivshar, Y. Quo Vadis, Metasurfaces? Nano Lett. 2021, 21, 5461–5474. [Google Scholar] [CrossRef] [PubMed]
- Rubin, N.A.; Shi, Z.; Capasso, F. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photon. 2021, 13, 836–970. [Google Scholar] [CrossRef]
- Němec, H.; Kuel, P.; Kadlec, F.; Kadlec, C.; Mounaix, P. Tunable terahertz metamaterials with negative permeability. Phys. Rev. B 2009, 79, 241108. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Jaroszewicz, L.; Olifierczuk, M.; Parka, J. Experimental study on terahertz metamaterial embedded in nematic liquid crystal. Appl. Phys. Lett. 2015, 106, 092905. [Google Scholar] [CrossRef]
- Wang, S.; Kang, L.; Werner, D.H. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci. Rep. 2017, 7, 4326. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Liu, W.W.; Gao, J.; Yang, X.D. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv. Opt. Mate. 2018, 6, 1701228. [Google Scholar] [CrossRef]
- Xie, J.; Guo, H.; Zhuang, S.; Hu, J. Polarization-controllable perfect vortex beam by a dielectric metasurface. Opt. Express 2021, 29, 3081–3089. [Google Scholar] [CrossRef]
- Bao, Y.; Ni, J.; Qiu, C.-W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater. 2020, 32, 1905659. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, M.; Zhu, W.; Chen, L.; Ren, Y.; Lezec, H.J.; Lu, Y.; Agrawal, A.; Xu, T. Generation of perfect vortex beams by dielectric geometric metasurface for visible light. Laser Photonics Rev. 2021, 15, 2100390. [Google Scholar] [CrossRef]
- Xu, Y.H.; Zhang, H.F.; Li, Q.; Zhang, X.Q.; Xu, Q.; Zhang, W.T.; Hu, C.; Zhang, X.X.; Han, J.G.; Zhang, W.L. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics 2020, 9, 3393–3402. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Q.; Xu, Q.; Jiang, X.; Wu, T.; Gu, J.; Han, J.; Zhang, W. Multichannel terahertz quasi-perfect vortex beams generation enabled by multifunctional metasurfaces. Nanophotonics 2022, 11, 3631–3640. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, Y.; Zhou, J.; Liu, Y.; Luo, H.; Wen, S.; Fan, D. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep. 2017, 7, 44096. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xu, Y.; Tian, Z.; Gu, J.; Yue, W.; Zhang, S.; Han, J.; Zhang, W. A broadband metasurface-based terahertz flat-lens array. Adv. Opt. Mater. 2015, 3, 779–785. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Li, H.; Wang, X.; Luo, W.; Sun, S.; Zhang, Y.; He, Q.; Zhou, L. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl. 2019, 8, 16. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.; Zhang, Y.; Yang, F.; Su, P.; Liberman, V.; Chou, J.B.; Roberts, C.M.; Kang, M.; Rios, C.; et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 2021, 12, 1225. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Xu, Q.; Wang, Q.; Xu, Y.; Wei, M.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photon. Res. 2018, 6, 24–29. [Google Scholar] [CrossRef]
- Li, J.; Zheng, C.; Li, J.; Wang, G.; Liu, J.; Yue, Z.; Hao, X.; Yang, Y.; Li, F.; Tang, T.; et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photon. Res. 2021, 9, 1939–1947. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. A subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic spin Hall effect at metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef]
- Balthasar Mueller, J.P.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef]
- Baumann, S.M.; Kalb, D.M.; MacMillan, L.H.; Galvez, E.J. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express 2009, 17, 9818–9827. [Google Scholar] [CrossRef]
- Schaefer, B.; Collett, E.; Smyth, R.; Barrett, D.; Fraher, B. Measuring the stokes polarization parameters. Am. J. Phys. 2007, 75, 163–168. [Google Scholar] [CrossRef]
- Yu, F.; Chen, J.; Huang, L.; Zhao, Z.; Wang, J.; Jin, R.; Chen, J.; Wang, J.; Miroshnichenko, A.E.; Li, T.; et al. Photonic slide rule with metasurfaces. Light Sci. Appl. 2022, 11, 77. [Google Scholar] [CrossRef]
Unit | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
L (μm) | 109 | 39 | 49 | 55 | 60 | 107 | 107 | 103 | 103 |
W (μm) | 60 | 98 | 101 | 105 | 105 | 35 | 44 | 51 | 58 |
PCE (%) | 73.8 | 70.4 | 75.1 | 80.1 | 77.0 | 70.6 | 71.9 | 78.6 | 80.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Fan, W.; Qin, C. Generation and Superposition of Perfect Vortex Beams in Terahertz Region via Single-Layer All-Dielectric Metasurface. Nanomaterials 2022, 12, 3010. https://doi.org/10.3390/nano12173010
Wu Q, Fan W, Qin C. Generation and Superposition of Perfect Vortex Beams in Terahertz Region via Single-Layer All-Dielectric Metasurface. Nanomaterials. 2022; 12(17):3010. https://doi.org/10.3390/nano12173010
Chicago/Turabian StyleWu, Qi, Wenhui Fan, and Chong Qin. 2022. "Generation and Superposition of Perfect Vortex Beams in Terahertz Region via Single-Layer All-Dielectric Metasurface" Nanomaterials 12, no. 17: 3010. https://doi.org/10.3390/nano12173010
APA StyleWu, Q., Fan, W., & Qin, C. (2022). Generation and Superposition of Perfect Vortex Beams in Terahertz Region via Single-Layer All-Dielectric Metasurface. Nanomaterials, 12(17), 3010. https://doi.org/10.3390/nano12173010