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Abstract: Degradation of organic pollutants, especially organic dyes and antibiotics, by semiconduc-
tor photocatalysts is an efficient strategy for wastewater treatment. TiO2 nanomaterials are considered
to be promising photocatalysts due to their high chemical stability, high efficiency and availability.
Anatase TiO2 generally has superior photocatalytic activity to the rutile phase. However, the anatase
phase can be irreversibly transformed to rutile phase when calcined at an elevated temperature.
Methods to improve the stability of anatase are especially important for the TiO2 gas sensors working
at high temperatures. The addition of strong acids can effectively suppress this transformation pro-
cess. However, these strong acids are relatively expensive, corrosive and environmentally unfriendly.
Herein, oxalic acid (OA) as a natural acid was used to control the hydrolysis process of tetrabutyl
titanate (TBOT), leading to controllable crystalline phase transformation and reduced crystalline size
of TiO2 on the nanoscale. What is more, the photocatalytic degradation performances were enhanced
continuously when the molar ratio of OA to TBOT increased. The degradation reaction rate constants
of CT650-R25 were about 10 times that of CT650-R0. The mechanism study shows that the enhanced
photocatalytic activity can be attributed to the improved dispersibility, increased specific surface area
and reduced recombination rates of photo-induced charge carriers and decreased energy bands as
the concentration of OA increased. Thus, this work provides a simple, mild and effective method for
controlling the crystalline forms of nano-TiO2 with enhanced photocatalytic performance towards
waste water treatment.

Keywords: TiO2; photocatalyst; inhibitor; phase transformation

1. Introduction

With the continuous growth in population and rapid development of the economy,
the problem of environmental pollution has increased. Organic dyes such as methyl orange
(MO), methylene blue and rhodamine [1], and antibiotics such as tetracycline (TC) [2,3],
have become major pollutants affecting the water environment. Untreated organic dyes
are often slowly naturally degraded. Since most organic dyes have carcinogenic and mu-
tagenic effects [4], they will cause various diseases after bioaccumulation in the human
body through the food chain [5]. On the other hand, antibiotics are widely used in farming
and by humans as drugs for the treatment of infectious diseases. However, after enter-
ing the human body or animals, 5–90% of the antibiotics are excreted through urine or
feces [6]. Antibiotics can easily enter the environment through direct or indirect ways.
Many reports have pointed out that a variety of antibiotics have been detected in natural
water environments, including oceans, rivers, lakes and groundwater [7–9]. At present,
the methods for treating organic pollutants in water are photocatalytic technology [10],
physical adsorption [11], biological decomposition [12] and other technologies. Among
them, photocatalytic degradation technology is an emerging green technology [13,14].
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Photocatalysts can degrade organic pollutants into harmless final products, such as carbon
dioxide, water and inorganic ions under light radiation [15]. At present, several types of
semiconductor metal oxides and sulfides, such as TiO2, Cu2O, ZnO, CdS and ZnS, have
been discovered [16]. TiO2 stands out due to its excellent stability, high efficiency and low
cost [17–19].

The photocatalytic activity of TiO2 is affected by many factors, such as crystalline
forms [20], specific facets [21], surface morphology [22], heterogeneous structures [23],
types of inhibitors and modifiers. Among them, the effect of crystalline forms on the
photocatalytic activity of TiO2 is particularly important [24]. It is well known that TiO2
exists in three crystalline forms, anatase, rutile and brookite [25]. Brookite is rarely used
in the photocatalytic applications due to its instability [26]. It is generally believed that
anatase has better photocatalytic properties than the more stable rutile [27]. However, the
anatase phase can irreversibly be converted to the rutile phase when calcined at elevated
temperatures [28]. It is important to study the conditions affecting the phase transition ki-
netics, especially for applications such as gas sensors and porous gas separation membranes
running at high temperatures [29]. Therefore, the factors that suppress this transformation
process have been intensively discussed [30]. Many researchers have used various acids,
such as hydrochloric acid [31] and sulfuric acid [32], as inhibitors to suppress the transfor-
mation. What is more, the addition of acids can effectively control the crystalline form [33],
grain size [34], specific surface area and surface oxygen defects of TiO2 [35]. However, these
strong acid inhibitors are relatively expensive and corrosive for industrial applications.
Therefore, our work explored an economical, environmentally friendly and stable method
by employing the natural mild oxalic acid (OA) to maintain the excellent photocatalytic
ability of anatase at high temperatures.

In this study, tetrabutyl titanate (TBOT) was used as the titanium source and oxalic
acid (OA) as an inhibitor. As illustrated in Scheme 1, TiO2 was synthesized by calcination of
the precursor obtained by OA-controlled hydrolysis of TBOT. In order to explore the effect
of OA on the phase transformation of TiO2, the crystalline forms of TiO2 with different
molar ratios of OA to TBOT at different calcination temperatures (CT) were investigated.
When the ratios were 2:10, 5:10, 15:10 and 25:10, the precursors were calcined at 450, 550, 650
and 750 ◦C. To evaluate the photocatalytic performances of the synthesized TiO2 crystals,
photocatalytic degradation experiments of MO and TC (as water pollutants) were carried
out under light irradiation. Furthermore, the specific surface area, the recombination of
photo-induced charge carriers and energy bands of the TiO2 crystals were analyzed in order
to study the photocatalytic enhancement mechanism produced by the addition of OA.
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2. Materials and Methods
2.1. Chemicals

Tetrabutyl titanate (TBOT, 98%, CAS: 5593-70-4), ethanol (99.5%, CAS: 64-17-5), oxalic
acid (OA, 99%, CAS: 144-62-7), methyl orange (MO, 96%, CAS: 547-58-0) and tetracycline
(TC, 96%, CAS: 64-75-5) were supplied by Aladdin Chemicals Co., Ltd. (Shanghai, China).
Ammonium oxalate (AO, 99.8%, CAS:1113-38-8), 1,4-benzoquinone (BQ, 97%, CAS:106-
51-4) and tert-butanol (TBA, 99.8%, CAS: 75-65-0) were purchased from Chengdu Chron
Chemicals Co., Ltd. (Chengdu, China). All chemicals were analytical grade and used
without further purification. The experimental water was deionized.

2.2. Preparation of Nano-TiO2 Samples

The synthesis process of nano-TiO2 crystals can be divided into 2 steps. The first step
is to obtain the precursor solution by mixing solution A and B. Solution A was the TBOT
ethanol solution with a concentration of 0.5 M. Solution B was a 60 mL mixture of 0.5 M OA
aqueous solution and H2O. The increasing molar ratios of OA to TBOT, from 0:10 to 25:10,
were accomplished according to the proportions of solutions A and B in Table S1. Firstly,
to retard the hydrolysis rate and obtain a uniform and controllable precursor, solution B
was added to solution A under the stirring in an ice-water bath (3–5 ◦C) for 3 h. Then,
the mixture was placed in a 90 ◦C water bath for 8 h. The precursor solution was aged
for about 20 h at room temperature (RT) to form a layered solution. After removing the
upper layer, the milky white suspension in the lower layer was dried in an oven at 80 ◦C
for about 6 h to obtain a white precursor solid. The dried precursor solid was ground into
powder. Then, the powder was calcined in air at 450, 550, 650 and 750 ◦C with a heating
rate of 5 ◦C/min and soaking time of 2 h. Finally, the samples were cooled to RT naturally.

2.3. Photocatalytic Activity Measurements

The photocatalytic performance experiments of TiO2 were carried out by using a
xenon lamp (250 W, with irradiation intensity of 35 mW/cm2) as the light source to sim-
ulate sunlight. The UV–Vis absorption spectra were obtained using a UV-3600 UV–Vis
spectrophotometer(UV, Shimadzu Group Company, Kyoto, Japan). MO and TC solutions
were prepared with an initial concentration of 20 mg/L: 0.1 and 0.05 g of TiO2 samples
were added to 20 mL MO and TC solutions, respectively. Before turning on the light source,
we magnetically stirred the suspension for 30 min to establish adsorption–desorption
equilibrium in the dark. After that, 1 mL of the solution was extracted per 15 min. The
absorbances of MO at λ = 470 nm and TC at λ = 220 nm were tested using the supernatant
after centrifugation. The degradation ratios (D) were calculated based on Formula (1).

D =
(A0 − At)

A0
× 100% =

(C0 − Ct)

C0
× 100% (1)

In the formula, A0 and C0 represent the initial absorbance and concentration of MO or
TC, respectively. At and Ct represent the absorbance and concentration of MO and TC at
time t, respectively.

2.4. Characterization of Nano-TiO2 Samples

The X-ray diffraction pattern (XRD) was obtained using an X-ray diffraction spectrom-
eter (XRD, Dandong Haoyuan Instrument Co., Ltd., Dandong, China) with a radiation
source of Cu (Kα), a tube voltage of 20 KV and a tube current of 30 mA. A scanning electron
microscope (SEM, FEI Corporation, Hillsboro, FL, USA) was used for micromorphological
analysis. Interplanar spacing analysis was performed by transmission electron microscopy
(TEM, Japan Electronics Co., Ltd., Tokyo, Japan). Surface area measurements were per-
formed on nitrogen adsorption-desorption data using Brunauer–Emmett–Teller (BET, Mike
Instrument Company, Atlanta, GA, USA). X-ray photoelectron spectra were obtained with
an X-ray photoelectron spectrometer (XPS, Kratos Ltd., Manchester, UK) for analyzing the
elemental compositions and chemical states of the surfaces of the samples. In addition, the
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XPS spectrum of TiO2 was corrected on the basis of the C1s peak (284.8 eV). Ultraviolet-
visible diffuse reflectance spectra (DRS, Shimadzu Group Company, Kyoto, Japan) were
collected using a spectrophotometer. Photoluminescence spectra (PL, Hitachi, Ltd., Hitachi,
Japan) were recorded on an F-4600 fluorescence spectrometer.

3. Results and Discussion
3.1. The Influence of OA on the Morphology of the Precursors

When the molar ratios of OA to TBOT were 0:10, 5:10, 15:10 and 25:10, the obtained
precursor powders were named R0, R5, R15 and R25. The crystal structures of the pre-
cursor powders (Rx) were studied. From the XRD spectra of Rx in Figure S1, no obvious
characteristic peaks of crystals were observed. Only a broad peak in the range from 15–20◦

was attributed to the contamination of the amorphous C on the measurement glass slide.
Thus, it can be judged that the precursors were all non-crystalline. The HR-TEM images
with no obvious crystal lattice and the corresponding Fast Fourier transform (FFT) image
with a halo in Figure S2 confirmed the amorphous state of the precursors.

The SEM images of the amorphous precursors are shown in Figure 1. In Figure 1a, the
irregular polyhedrons, flakes and numerous small particles can be observed in sample R0.
The samples R5 and R15 had an irregular shape but relatively smooth-surfaced particles
(Figure 1b,c). When the molar ratio reached 25:10, well-dispersed ellipsoidal grain-shaped
particles were obtained; see Figure 1d. It can be seen that the addition of OA during the
hydrolysis of TBOT can control the growth mode and improve the mono-dispersion of
the precursors.
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Figure 1. SEM images of the precursors: (a) R0, (b) R5, (c) R15 and (d) R25.

3.2. Controllable Phase Transformation of Nano-TiO2 Crystals Regulated by OA

Next, the amorphous precursor powders Rx were calcined at 450, 550, 650 and 750 ◦C.
The obtained samples were named CTy-Rx. The crystal structures of samples CTy-Rx
were investigated by XRD (Figure 2). After calcination at 450 ◦C (Figure 2a), the samples
CT450-R0, R5, R15 and R25 exhibited XRD peaks at 2θ = 25, 38, 48 and 55◦, which we
ascribed to typical anatase TiO2 crystal planes of (101), (103), (200) and (211) according to
PDF#89-4921 (marked as ♠). Given the relatively weak intensities of the peaks, the samples
were considered to be not well-crystallized, especially CT450-R25.
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Figure 2. XRD patterns of TiO2 obtained from precursors R0, R5, R15 and R25 after calcination at
(a) 450 ◦C, (b) 550 ◦C, (c) 650 ◦C and (d) 750 ◦C.

When the CT was 550 ◦C, the diffraction peaks in Figure 2b of all samples became
sharper, indicating enhanced crystallinity. All samples also had the same characteristic
diffraction peaks of anatase as those at 450 ◦C. Note for the sample CT550-R0, additional
peaks at 2θ = 27, 36, 41, 44, 56 and 62◦ emerged, indexing to (110), (103), (200), (111),
(002) and (301) planes of rutile TiO2 (PDF#99-0090, marked with ♣). Thus, as the CT was
elevated, the obvious phase transformation from anatase to rutile first appeared in R0,
where no OA was used during the hydrolysis of TBOT. As for R5, R15 and R25 with higher
[OA], the calcined TiO2 still preserved the anatase phase.

From the results of the XRD spectra in Figure 2c, the sample of CT650-R0 was com-
pletely converted to rutile from anatase. As the molar ratio of OA to TBOT increased to
five, the anatase phase was maintained in the mixed phase, although most crystals were
rutile. As for the sample CT650-R15, the anatase peaks dominated the XRD peaks, leaving
relatively weak rutile peaks. CT650-R25 was still anatase.

When the CT reached 750 ◦C, the characteristic peaks (Figure 2d) of rutile became
sharper and those of anatase disappeared for the CT750-R0, CT750-R5 and CT750-R15
samples, indicating the phase of obtained TiO2 after calcination completely transformed
from anatase to rutile. However, the R25 sample not only continued to maintain the
crystal form of anatase, but had improved crystallinity. For the same precursor calcined at
different temperatures, the evolution of the XRD spectra is also exhibited in Figure S3. It
is shown obviously that precursors R0, R5 and R15 all experienced phase transformation
from anatase to rutile at elevated CTs, from 450 to 750 ◦C, which agrees with the previous
studies [36–38].

When the CT was 650 ◦C, the controllability of the phase transformation of TiO2
crystals by OA was fully reflected. Thus, the properties of these samples were focused on.
The weight fractions of rutile and anatase phase (WR/A) for the mixed-phase TiO2 were
calculated according to Formulas (2) and (3), where IR and IA represent the intensities of the
characteristic diffraction peaks corresponding to the rutile (110) and anatase (101) crystal
planes, respectively [36].

WR = IR/(0.884IA + IR) (2)

WA = 1 −WR (3)
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As results calculated in Table 1, the WA of CT650-R5 and CT650-R15 were 21% and 46%.
As for CT650-R25, the WA increased to 100%. The results of the XRD test also showed that
the grain sizes of anatase and rutile crystals were nanoscale: 47.0 and 21.4 nm, respectively.
Thus, the WA in the obtained nano-TiO2 can be adjusted from 0 to 100% by simply adding
OA and without changing the CT.

Table 1. The weight fractions and crystallite sizes of rutile and anatase phases of CT650-R0, R5, R15
and R25.

Samples
Anatase Rutile

WA(%) Crystallite
Size(nm) WR(%) Crystallite

Size(nm)

CT650-R0 - - 100 47.0

CT650-R5 21 37.4 79 33.2

CT650-R15 46 29.9 54 29.7

CT650-R25 100 21.4 - -

These nano-TiO2 were also investigated by TEM and HR-TEM; see Figure 3. It is
shown that the samples all consisted of a large number of nanocrystals. The particle sizes
decreased when the concentration of OA increased. From the HR-TEM image of CT650-R0
in Figure 3e, the uniform interplanar spacings of 3.25 and 2.46 Å were ascribed to the (110)
and (101) crystal planes of rutile, respectively. From Figure 3f, a small amount of anatase
(101) crystals was found in the middle of the rutile (110) crystal. Figure 3g shows that both
anatase and rutile crystal planes were recognized in sample CT650-R15. In Figure 3h, the
nano-TiO2 particles of T650-R25 have uniform anatase crystal planes on the surfaces of the
multiple-layer structures.
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In all, with increased [OA], the temperature of phase transformation from anatase to
rutile TiO2 can be elevated. Thus, the OA was found to enhance the thermal stability of the
anatase phase of TiO2 by ensuring smaller crystal sizes from the analysis of nanostructures
and XRD data.

3.3. Analysis of Photocatalytic Performance of TiO2 Regulated by OA

In order to evaluate the photocatalytic performance of nano-TiO2 regulated by OA,
the samples calcined at 650 ◦C were selected for the degradation of MO and CT. After dark
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reaction for 30 min, the absorbance spectra (Figure S4) of MO in the solution were recorded
every 15 min. For all of the nano-TiO2 samples, no obvious degradation or adsorption
under dark reaction conditions was observed. As for the degradation processes under
light irradiation, the absorbance of MO decreased to various extents. Figure 4a shows the
greatest decrease in MO absorption when using the CT650-R25 sample as photocatalyst.
The variations in the degradation ratio (D) vs. reaction time by using CT650-R0, CT650-R5,
CT650-R15 and CT650-R25 as catalysts are shown in Figure 4b. When the degradation time
was 30 min, the D were 22.0%, 50.8%, 65.7% and 98.7%, respectively. The corresponding
photograph of supernatants is demonstrated in Figure 4c. The significantly faded orange
represents the enhanced degradation abilities of TiO2 regulated by increasing OA. The
CT650-R5, CT650-R15 and CT650-R25 samples completed the degradation in about 90,
60 and 45 min. The degradation reaction rate constants of MO degraded by CT650-R0,
R5, R15 and R25 were calculated to be 0.010, 0.042, 0.066 and 0.098 min−1 from the linear
relationships of −ln(Ct/C0) vs. time in Figure S5. The degradation reaction rate constants
of CT650-R25 were about 10 times that of CT650-R0. Thus, the photocatalytic performances
of samples enhanced obviously as the [OA] in precursors and the WA of corresponding
nano-TiO2 crystals increased.
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of the supernatants reacted for 30 min and (d) the evolution of the degradation rate of TC by using
catalysts CT650-R25, CT650-R15, CT650-R5 and CT650-R0.

The degradation experiments of TC were also performed. The evolution of the ab-
sorbance spectra of TC in the supernatants is shown in Figure S6. Figure 4d shows the
corresponding degradation rates of TC as the catalytical reaction proceeded. It was found
that the concentration of TC decreased gradually. When illuminated for 30 min, the D
of the samples became 0, 9.6%, 35.1% and 59.7%, respectively. When the illumination
time reached 90 min, the D of the samples were 0, 41.3%, 62.1% and 77.3%, respectively.
Calculated in the same way as for Figure S7, the degradation reaction rate constants of TC
degradation by CT650-R0, R5, R15 and R25 were 0, 0.031, 0.044 and 0.131 min−1, respec-
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tively. It was confirmed again that the higher the OA content in the precursor, the higher
the photocatalytic activity of the calcined nano-TiO2 samples. The degradation effect of
sample T650-25 was still the best.

3.4. The Mechanism of the Enhanced Catalytic Performance of TiO2

In order to reveal the mechanism of the enhanced catalytic performance of the nano-
TiO2 regulated by increasing [OA], the Eg of samples CT650-R0, CT650-R5, CT650-R15 and
CT650-R25 were analyzed firstly based on the DRS in Figure 5a. All samples demonstrated
relatively high absorption for UV light. Compared with other samples, CT650-R25 had a
higher absorption band in the UV region. The Eg of the photocatalysts can be calculated by
Formula (4) [10]:

αhv = A(hv − Eg)n (4)

where α, h, v and A are the absorption coefficient, Planck’s constant, the frequency of light
and the proportionality constant. The type of transformation determines the value of the
exponent n, where values of 2 and 1/2 correspond to direct and indirect bandgap transfor-
mations, respectively [38]. Rutile and anatase/rutile mixed crystal were judged as having
direct gap conversion, whereas pure anatase showed indirect band gap conversion [39–41].
A tangent line intersects the x-axis along the climbing part of the curve in Figure 5b. Thus,
the Eg values of CT650-R0, CT650-R5, CT650-R15 and CT650-R25 were judged to be 3.01,
2.97, 2.93 and 3.00 eV, respectively. From the results, the Eg of the obtained TiO2 samples
with the anatase phase almost decreased, relative to theoretical and experimental Eg values,
by 3.2–3.59 eV [30]. Thus, our obtained mixed-phase and anatase TiO2 can allow a wider
range of wavelengths for the activation process. Additionally, the excitation process of
electrons from the valence band (VB) to the conduction band (CB) can be facilitated, thereby
increasing the photocatalytic activity [42]. This improvement can be explained by the C
doping in the anatase [43]. The elemental distribution of the “grains” in CT650-R25 sample
is analyzed in Figure 5e–h. Apart from the Ti (blue) and O (red) elements covering the
grain, the concentrated and obvious distribution of C (yellow) in the whole area of the
particle was also detected. Carbon is an attractive dopant for TiO2, as it has been reported
to reduce the band gap and improve photocatalytic performance in anatase [44]. Thus,
OA molecules were thought to be doped homogeneously during the hydrolysis process
of TBOT and control the growth mode of the precursors. Furthermore, the presence of
OA in precursors can provide C and O doping sources in the calcination process of TiO2,
regulating the crystallization and phase transition process.

The XPS spectra of the CT450-R25, CT550-R25, CT650-R25 and CT650-R25 samples are
exhibited in Figure S8. The high-resolution (HR) spectra of Ti 2p are shown in Figure S9.
The binding energies of Ti 2p3/2 (458.5 eV) and Ti 2p1/2 (464.2 eV) show that the Ti element
had +4 valence [44]. The O 1s HR spectrum in Figure S10 shows the characteristic peaks at
529.4 and 530.0 eV, representing lattice oxygen (O2−) and a surface hydroxyl (OH−) [45],
respectively. The HR spectra of C 1s are shown in Figure S11. The binding energies at 284.8,
285.8 and 288.5 eV were ascribed to C–C (C-H), C–O and C=O [46]. Comparing the HR
spectra of these samples, we can see that the elevated temperatures had little effect on the
element valance of Ti, O and C. The XPS valence band spectra (VB-XPS) for the samples are
recorded in Figure 5c. A tangent line was drawn along the ascending part of the curve, and
the abscissa of the intersection with the horizontal line is marked as the estimated valence
band (EVL) of the sample. The EVL of the samples were measured to be 2.37, 2.66, 2.77 and
2.30 eV, respectively. The real VB value needs to be obtained according to Formula (5) [47]:

ENHE = Φ + EVL − 4.44 (5)

In the formula, ENHE and Φ are the normal hydrogen electrode potential and the work
function of the instrument (4.6 eV), respectively. The final VB values were calculated to be
2.57, 2.66, 2.77 and 2.50 eV, respectively. Thus, the CB of these samples were found to be
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−0.47, −0.11, −0.01 and −0.7 eV, by subtracting the Eg. Figure 5d is the schematic diagram
of the VB and CB of each sample.
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Figure 5. The mechanism of enhanced photocatalytic performance. (a) UV–Vis DRS spectra, (b) the
hv vs (αhv)1/2 and (αhv)2 curves with marked band gaps, (c) VB-XPS spectra and (d) band structure
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mapping of (f) Ti, (g) O and (h) C of a discrete grain of CTR-25.

The active species of CT650-R25 and CT650-R0 during the photodegradation process
were studied. Ammonium oxalate (AO), 1,4-benzoquinone (BQ) and tert-butanol (TBA) [1]
were added to capture superoxide radical species ·O2

−, h+ and hydroxyl radicals (·OH),
respectively. The different degradation results of CT650-R25 are exhibited in Figure 6a.
When AO, BQ and TBA were added, the D of MO decreased from 98.7% to 94.4%, 42.3%
and 75.6%. The photogenerated electrons in CB can populate unoccupied orbitals of
oxygen molecules, yielding a O2

−, then react with H2O to form ·OH. The photo-induced
holes accumulated in the valence band can also react with H2O to form ·OH [37]. Finally,
the MO and TC can be degraded by ·OH. Thus, the oxidizing ability of photogenerated
electron–hole of CT650-R25 is the strongest. The obvious electron spin resonance (ESR)
signals of superoxide (·O2

−) and hydroxyl (·OH) radicals trapped by DMPO in CT650-
R25 dispersion under the Xe lamp are shown in Figure S12. Thus, the O2

− and ·OH
radicals were considered as the main active species of CT650-R25. By comparison to CT650-
R0 in Figure S13, the degradation rate decreased slightly when the radical scavengers
were added.
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Figure 6. (a) The degradation rate of CT650-R25 in the presence of different scavengers. (b) The
specific surface area and (c) PL spectra of CT650-R0, R5, R15 and R25. (d) Photocatalytic performance
of recycled CT650-R25 catalyst.

For catalysts, a larger specific surface area means more abundant catalytic binding
sites, which are more conducive to the catalytic reaction. OA is a kind of polyoxyacid.
In addition to regulating the crystal form, the effect of OA on the surface area cannot be
ignored. The specific surface area data for each sample are shown in Figure 6b. The order
of the specific surface area of TiO2 was CT650-R25 > CT650-R15 > CT650-R5 > CT650-R0.
As the [OA] increased, the specific surface area of nano-TiO2 increased. The order of
the specific surface area data is consistent with the order of the photocatalytic activity in
Figure 4, which further confirms that OA addition improves the performance of nano-TiO2.

Since the energy after the recombination of photo-excited e−-h+ pairs will be released
in the form of photoluminescence (PL), the PL spectra of the TiO2 samples were recorded in
Figure 6c. It can be seen intuitively that the peak intensity of CT650-R25 is the lowest, which
means that the recombination rate of e−-h+ pairs of this sample was the lowest. The peak
fluctuation of CT650-R15 is significantly lower than that of CT650-R5 and CT650-R0. The
peak area of CT650-R5 is slightly lower than that of CT650-R0. The perspective of fluores-
cence quantum yield is basically consistent with the reverse order of photocatalytic activity
of the samples in Figure 4. The results show that the increased [OA] resulted in superior
photocatalytic performance. This can be attributed to the reduction in the recombination
process of the photo-induced charge carriers [39,48]. For further industrial applications, the
stability of CT650-R25 was studied by performing four cycles of experiments. As shown
in Figure 6d, although there might be some performance degradation, the MO was all
removed within 45 min, suggesting considerable catalytic stability.

Therefore, the addition of OA can effectively control the crystalline forms, structure
and photocatalytic performance of TiO2. The further study showed that OA could enhance
the photocatalytic performance of TiO2 mainly in three aspects. First, the addition of OA
can effectively reduce the Eg of TiO2 by C doping in the crystals. Second, the addition of
OA can increase the specific surface area of TiO2, indicating more abundant the catalytic
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binding sites. Third, the more OA added, the less the photo-induced charge carriers are
recombined, thereby improving the catalytic utilization of carriers.

4. Conclusions

In conclusion, controllable adjustment of the dispersion and transformation tempera-
ture of crystalline forms and photocatalytic performances of the nano-TiO2 samples was
achieved by using OA. The study shows that the addition of OA can prevent the crys-
talline form’s transformation from anatase to rutile effectively, which is important for the
applications of anatase at high temperatures. The transformation temperature increased
gradually when increasing the ratio of [OA] in hydrolysis process of TBOT. At the same CT
(650 ◦C), when the molar ratio of OA to TBOT increased from 2:10, to 5:10, to 15:10 to 25:10,
the WA was tuned from 0% to 100%, and the photocatalytic activity could be significantly
enhanced. The mechanism study showed that an increased [OA] can significantly improve
the dispersibility of the catalyst, increase the specific surface area, reduce the recombina-
tion rates of photo-induced charge carriers and decrease the Eg by doping C. Thus, the
purpose of improving the photocatalytic performance was achieved. This work provides a
mild and simple synthetic method for controlling the crystalline forms and photocatalytic
performance of nano-TiO2 effectively.
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