Bismuth Complex Controlled Morphology Evolution and CuSCN-Induced Transport Improvement Enable Efficient BiI3 Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Precursor Solution
2.3. Device Fabrication
2.4. Characterization
2.5. Computational Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xue, Q.; Yao, Q.; Li, N.; Brabec, C.J.; Yip, H.-L. Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Adv. Energy Mater. 2020, 10, 2000183. [Google Scholar] [CrossRef]
- Tai, Q.; Tang, K.-C.; Yan, F. Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 2019, 12, 2375–2405. [Google Scholar]
- Li, Y.; Na, G.; Luo, S.; He, X.; Zhang, L. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites. Acta Phys. Chim. Sin. 2020, 37, 2007015. [Google Scholar] [CrossRef]
- Green, M.A.; Keevers, M.J. Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. Res. Appl. 1995, 3, 189–192. [Google Scholar] [CrossRef]
- Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef]
- Han, H.; Hong, M.; Gokhale, S.; Sinnott, S.; Jordan, K.; Baciak, J.; Nino, J. Defect Engineering of BiI3 Single Crystals: Enhanced Electrical and Radiation Performance for Room Temperature Gamma-Ray Detection. J. Phys. Chem. C 2014, 118, 3244–3250. [Google Scholar] [CrossRef]
- Lintereur, A.T.; Qiu, W.; Nino, J.C.; Baciak, J. Characterization of bismuth tri-Iodide single crystals for wide band-Gap semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 166–169. [Google Scholar] [CrossRef]
- Brandt, R.E.; Kurchin, R.C.; Hoye, R.L.Z.; Poindexter, J.R.; Wilson, M.W.B.; Sulekar, S.; Lenahan, F.; Yen, P.X.T.; Stevanović, V.; Nino, J.C.; et al. Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications. J. Phys. Chem. Lett. 2015, 6, 4297–4302. [Google Scholar] [CrossRef]
- Gumaste, M.R.; Kulkarni, G.A. High mobility and size dependent carrier concentration in CdTe nanoparticles synthesized by single injection hydrothermal method for device applications. Mater. Today Proc. 2021, 45, 3927–3930. [Google Scholar] [CrossRef]
- Lehner, A.J.; Wang, H.; Fabini, D.H.; Liman, C.D.; Hébert, C.-A.; Perry, E.E.; Wang, M.; Bazan, G.C.; Chabinyc, M.L.; Seshadri, R. Electronic structure and photovoltaic application of BiI3. Appl. Phys. Lett. 2015, 107, 131109. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Singh, T.; Jena, A.K.; Pinpithak, P.; Ikegami, M.; Miyasaka, T. Vapor Annealing Controlled Crystal Growth and Photovoltaic Performance of Bismuth Triiodide Embedded in Mesostructured Configurations. ACS Appl. Mater. Inter. 2018, 10, 9547–9554. [Google Scholar] [CrossRef] [PubMed]
- Pandian, M.G.M.; Khadka, D.B.; Shirai, Y.; Umedov, S.; Yanagida, M.; Subashchandran, S.; Grigorieva, A.; Miyano, K. Effect of solvent vapour annealing on bismuth triiodide film for photovoltaic applications and its optoelectronic properties. J. Mater. Chem. C 2020, 8, 12173–12180. [Google Scholar] [CrossRef]
- Hamdeh, U.H.; Nelson, R.D.; Ryan, B.J.; Bhattacharjee, U.; Petrich, J.W.; Panthani, M.G. Solution-Processed BiI3 Thin Films for Photovoltaic Applications: Improved Carrier Collection via Solvent Annealing. Chem. Mater. 2016, 28, 6567–6574. [Google Scholar] [CrossRef]
- Ma, S.; Yang, Y.; Liu, C.; Cai, M.; Ding, Y.; Tan, Z.A.; Shi, P.; Dai, S.; Alsaedi, A.; Hayat, T. Vertically Oriented BiI3 Template Featured BiI3/Polymer Heterojunction for High Photocurrent and Long-Term Stable Solar Cells. ACS Appl. Mater. Inter. 2019, 11, 32509–32516. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Wang, G.; Tong, J.; Pan, D. All-Inorganic and lead-Free BiI3 thin film solar cells by iodization of BiSI thin films. J. Mater. Chem. C 2020, 8, 14066–14074. [Google Scholar] [CrossRef]
- Hamdeh, U.H.; Nelson, R.D.; Ryan, B.J.; Panthani, M.G. Effects of Solvent Coordination Strength on the Morphology of Solution-Processed BiI3 Thin Films. J. Phys. Chem. C 2019, 123, 13394–13400. [Google Scholar] [CrossRef]
- Ahn, N.; Son, D.Y.; Jang, I.H.; Kang, S.M.; Choi, M.; Park, N.G. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699. [Google Scholar] [CrossRef]
- Lee, J.-W.; Dai, Z.; Lee, C.; Lee, H.M.; Han, T.-H.; De Marco, N.; Lin, O.; Choi, C.S.; Dunn, B.; Koh, J.; et al. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. J. Am. Chem. Soc. 2018, 140, 6317–6324. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kim, H.-S.; Park, N.-G. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 311–319. [Google Scholar] [CrossRef]
- Zhang, X.; Han, D.; Chen, X.; Chen, Y.; Chang, S.; Zhong, H. Effects of Solvent Coordination on Perovskite Crystallization. Acta Phys. Chim. Sin. 2021, 37, 2008055. [Google Scholar] [CrossRef]
- Lin, L.; Boopathi, K.M.; Ding, J.; Chu, C.W.; Chang, C.C. NbSex interlayers decrease interfacial recombination in BiI3-Based hybrid solar cells. FlatChem 2017, 5, 18–24. [Google Scholar] [CrossRef]
- Yoo, B.; Ding, D.; Marin-Beloqui, J.M.; Lanzetta, L.; Bu, X.; Rath, T.; Haque, S.A. Improved Charge Separation and Photovoltaic Performance of BiI3 Absorber Layers by Use of an In Situ Formed BiSI Interlayer. ACS Appl. Energy Mater. 2019, 2, 7056–7061. [Google Scholar] [CrossRef]
- Tiwari, D.; Alibhai, D.; Fermin, D.J. Above 600 mV Open-Circuit Voltage BiI3 Solar Cells. ACS Energy Lett. 2018, 3, 1882–1886. [Google Scholar] [CrossRef]
- Kang, J.; Chen, S.; Zhao, X.; Yin, H.; Zhang, W.; Al-Mamun, M.; Liu, P.; Wang, Y.; Zhao, H. An inverted BiI3/PCBM binary quasi-Bulk heterojunction solar cell with a power conversion efficiency of 1.50%. Nano Energy 2020, 73, 104799. [Google Scholar] [CrossRef]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low trap-State density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-Initio total energy calculations for metals and semiconductors using a plane-Wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-Energy calculations using a plane-Wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Perdew, Burke, and Ernzerhof Reply. Phys. Rev. Lett. 1998, 80, 891. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy; Cengage Learning, Inc.: Boston, MA, USA, 2009. [Google Scholar]
- Shin, S.S.; Correa Baena, J.P.; Kurchin, R.C.; Polizzotti, A.; Yoo, J.J.; Wieghold, S.; Bawendi, M.G.; Buonassisi, T. Solvent-Engineering Method to Deposit Compact Bismuth-Based Thin Films: Mechanism and Application to Photovoltaics. Chem. Mater. 2018, 30, 336–343. [Google Scholar] [CrossRef]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy; Academic Press, Inc.: Cambridge, MA, USA, 2012. [Google Scholar]
- Zhu, Y.; Zhang, Q.; Kam, M.; Poddar, S.; Gu, L.; Liang, S.; Qi, P.; Miao, F.; Fan, Z. Vapor phase fabrication of three-dimensional arrayed BiI3 nanosheets for cost-effective solar cells. InfoMat 2019, 2, 975–983. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, Z.; Jain, A.; Voznyy, O.; Kim, G.-H.; Liu, M.; Quan, L.N.; García de Arquer, F.P.; Comin, R.; Fan, J.Z.; et al. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2I7 for Thin-Film Photovoltaics. Angew. Chem. Int. Ed. 2016, 55, 9586–9590. [Google Scholar] [CrossRef]
- Kulkarni, A.; Singh, T.; Ikegami, M.; Miyasaka, T. Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion. Rsc Adv. 2017, 7, 9456–9460. [Google Scholar] [CrossRef]
- Shao, Z.; Le Mercier, T.; Madec, M.B.; Pauporté, T. AgBi2I7 layers with controlled surface morphology for solar cells with improved charge collection. Mater. Lett. 2018, 221, 135–138. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.; Jung, S.; Kim, C.S.; Park, J.; Song, A.; Chung, K.-B.; Jin, S.-H.; Lee, J.H.; Song, M. Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res. 2018, 11, 6283–6293. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J.; Sun, H.; Hou, D.; Gan, X.; Shang, M.-h.; Li, Y.; Hu, Z.; Zhu, Y.; Han, L. Inorganic and Lead-Free AgBiI4 Rudorffite for Stable Solar Cell Applications. ACS Appl. Energy Mater. 2018, 1, 4485–4492. [Google Scholar] [CrossRef]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Miyano, K. Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells. J. Mater. Chem. C. 2019, 7, 8335–8343. [Google Scholar] [CrossRef]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef]
- Abdi-Jalebi, M.; Dar, M.I.; Senanayak, S.P.; Sadhanala, A.; Andaji-Garmaroudi, Z.; Pazos-Outón, L.M.; Richter, J.M.; Pearson, A.J.; Sirringhaus, H.; Grätzel, M.; et al. Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci. Adv. 2019, 5, eaav2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Li, N.; Yang, L.; Dall’Agnese, C.; Jena, A.K.; Sasaki, S.-I.; Miyasaka, T.; Tamiaki, H.; Wang, X.-F. Chlorophyll Derivative-Sensitized TiO2 Electron Transport Layer for Record Efficiency of Cs2AgBiBr6 Double Perovskite Solar Cells. J. Am. Chem. Soc. 2021, 143, 2207–2211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ren, X.; Chen, X.; Mao, J.; Cheng, J.; Zhao, Y.; Liu, Y.; Milic, J.; Yin, W.-J.; Grätzel, M.; et al. Improving the stability and performance of perovskite solar cells via off-The-Shelf post-Device ligand treatment. Energy Environ. Sci. 2018, 11, 2253–2262. [Google Scholar] [CrossRef]
- Unger, E.L.; Hoke, E.T.; Bailie, C.D.; Nguyen, W.H.; Bowring, A.R.; Heumüller, T.; Christoforo, M.G.; McGehee, M.D. Hysteresis and transient behavior in current–Voltage measurements of hybrid-Perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690–3698. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Huang, W.-K.; Chang, Y.-C.; Lee, K.-T.; Chen, C.-T. A solution-Processed n-Doped fullerene cathode interfacial layer for efficient and stable large-Area perovskite solar cells. J. Mater. Chem. A 2016, 4, 640–648. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole diffusion lengths > 175 μm in solution-Grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Jiao, H.; Li, L.; Zheng, G.; Chen, Y.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; et al. Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Adv. Mater. 2017, 29, 1606774. [Google Scholar] [CrossRef]
- Ji, F.; Pang, S.; Zhang, L.; Zong, Y.; Cui, G.; Padture, N.P.; Zhou, Y. Simultaneous Evolution of Uniaxially Oriented Grains and Ultralow-Density Grain-Boundary Network in CH3NH3PbI3 Perovskite Thin Films Mediated by Precursor Phase Metastability. ACS Energy Lett. 2017, 2, 2727–2733. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Ren, X.; Zhu, X.; Yang, Z.; Li, C.; Liu, S. Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport. Adv. Mater. 2016, 28, 5206–5213. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, X.; Yang, R.; Yang, Z.; Yu, W.; Wang, X.; Li, C.; Liu, S.; Chang, R.P.H. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 2016, 9, 3071–3078. [Google Scholar] [CrossRef]
Hole Transport Layer | Active Layer | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) |
---|---|---|---|---|---|
PEDOT:PSS | BiI3 | 2.54 | 0.40 | 46.8 | 0.48 |
PEDOT:PSS | BiI3:DMSO | 3.43 | 0.49 | 48.6 | 0.81 |
CuSCN | BiI3 | 3.68 | 0.47 | 45.9 | 0.80 |
CuSCN | BiI3:DMSO | 6.38 | 0.55 | 51.5 | 1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Yu, R.; Song, W.; Gong, Y.; Li, H.; Tan, Z. Bismuth Complex Controlled Morphology Evolution and CuSCN-Induced Transport Improvement Enable Efficient BiI3 Solar Cells. Nanomaterials 2022, 12, 3121. https://doi.org/10.3390/nano12183121
He Z, Yu R, Song W, Gong Y, Li H, Tan Z. Bismuth Complex Controlled Morphology Evolution and CuSCN-Induced Transport Improvement Enable Efficient BiI3 Solar Cells. Nanomaterials. 2022; 12(18):3121. https://doi.org/10.3390/nano12183121
Chicago/Turabian StyleHe, Zhangwei, Runnan Yu, Wanrong Song, Yongshuai Gong, Hui Li, and Zhan’ao Tan. 2022. "Bismuth Complex Controlled Morphology Evolution and CuSCN-Induced Transport Improvement Enable Efficient BiI3 Solar Cells" Nanomaterials 12, no. 18: 3121. https://doi.org/10.3390/nano12183121
APA StyleHe, Z., Yu, R., Song, W., Gong, Y., Li, H., & Tan, Z. (2022). Bismuth Complex Controlled Morphology Evolution and CuSCN-Induced Transport Improvement Enable Efficient BiI3 Solar Cells. Nanomaterials, 12(18), 3121. https://doi.org/10.3390/nano12183121