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Abstract: The development of efficient electrocatalysts for the oxygen evolution reaction (OER) is
of paramount importance in sustainable water-splitting technology for hydrogen production. In
this context, this work reports mixed-valence oxide samples of the MnXCo3-XO4 type (0 ≤ X ≤ 1)
synthesized for the first time by the proteic sol-gel method using Agar-Agar as a polymerizing
agent. The powders were calcined at 1173 K, characterized by FESEM, XRD, RAMAN, UV–Vis,
FT-IR, VSM, and XPS analyses, and were investigated as electrocatalysts for the oxygen evolution
reaction (OER). Through XRD analysis, it was observed that the pure cubic phase was obtained for all
samples. The presence of Co3+, Co2+, Mn2+, Mn3+, and Mn4+ was confirmed by X-ray spectroscopy
(XPS). Regarding the magnetic measurements, a paramagnetic behavior at 300 K was observed for
all samples. As far as OER is concerned, it was investigated in an alkaline medium, where the best
overpotential of 299 mV vs. RHE was observed for the sample (MnCo2O4), which is a lower value
than those of noble metal electrocatalysts in the literature, together with a Tafel slope of 52 mV dec−1,
and excellent electrochemical stability for 15 h. Therefore, the green synthesis method presented in
this work showed great potential for obtaining electrocatalysts used in the oxygen evolution reaction
for water splitting.

Keywords: electrocatalyst; green synthesis; proteic sol-gel; mixed-valence oxides

1. Introduction

In recent decades, with the exponential growth of the population, the intensification
of using fossil fuels has generated great impacts on the environment [1]. Given this, the
energy transition from fossil fuels to clean energy sources has become necessary, and major
renewable energy technologies have been developed [2], such as geothermal [3], wind [4],
solar [5,6], and biomass [7]. However, to benefit resources even more, it is necessary to use
efficient devices for energy storage and conversion [8,9].

One of the energy conversion processes that has received a lot of attention is water
splitting via electrolysis for the production of hydrogen [10], which consists of two semi-
reactions: the hydrogen evolution reaction (HER) [11] and the oxygen evolution reaction
(OER) [12–14]. During the water-splitting process, the kinetic reaction that takes place at
the anode (OER) is slow and requires high energy consumption (overpotential) due to the
four electrons transferred in the reaction, causing its efficiency to decrease [15]. Therefore,
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the use of effective electrocatalysts is necessary to accelerate the reaction and reduce the
overpotential [16]. However, the most widely used and effective electrocatalysts for water
splitting are compounds based on noble metals such as ruthenium and iridium, but the
high cost and scarcity of these elements have limited their large-scale application [17,18].
Therefore, one of the main challenges is to develop new electrocatalysts made of low-cost
and abundant materials while also offering high electrochemical performance [19].

In this context, mixed-valence transition metal oxides such as the MnXCo3-XO4 (Mn-Co-
O) system have attracted attention, as they represent an important class of multifunctional
materials for electrocatalysis [20], oxygen evolution reaction [21], oxygen reduction reac-
tion [22], fuel cells [23], and batteries [24]. These applications are related to the intrinsic
properties of Mn-Co-O due to the multiple oxidation states of the metal ions [25]. This
material has a spinel-like structure, with general formula A[B]2O4, where A is represented
by a cation in the tetrahedral site (Coordination Number 4), and B is a cation in the octahe-
dral site (Coordination Number 6) [26]. Depending on the occupancy of the divalent (A)
and trivalent (B) cations, spinels are classified into three categories, normal, inverse, and
complex [27], which gives them interesting physical, chemical [28], and electrochemical
properties [29].

Furthermore, the distribution of cations between the different coordination sites
strongly depends on the synthesis conditions [30]; thus, several syntheses have been
developed in recent years to obtain mixed-valence transition metal oxides. Among the
most common methods for obtaining (Mn-Co-O) are the sol-gel [31], combustion [32],
solvothermal [33], solid-state [34], co-precipitation [35], spray pyrolysis [36], and hydrother-
mal [37] methods. These processes directly influence the morphology and/or structure
of the materials, especially the sol-gel method, which allows crystalline materials to be
obtained [38,39].

However, another method that has been attracting the attention of many researchers is
that named proteic sol-gel synthesis, which is defined as a modification of the traditional sol-
gel method, and allows ceramic materials to be obtained at the nanometer scale [40]. This
method involves the following steps: preparation of a composite solution, formation of an
amorphous network via polymerization reactions, followed by hydrolysis, gel formation,
removal of organic residues and water, and finally calcination [41,42]. In this context,
the proteic sol-gel method has several advantages over the traditional method, such as
simplicity, low cost, higher speed, and generation of less waste to the environment [43,44],
since it employs organic precursors, which are called polymerizing agents, having the
function of replacing citric acid and ethylene glycol as driving agents of the reaction.
Furthermore, these agents have hydroxyl and carboxyl groups that promote the chelation
of metal ions during the synthesis process [45]. Some examples of organic precursors are
flavorless gelatin [46], coconut water [47], and Agar-Agar [48].

Agar-Agar is a biopolymer [49], hydrocolloid [50] and polysaccharide source [51],
extracted from red algae of the class Rhodophyceae [52], which is composed of two main
parts: agarose, which is responsible for the gelling ability, and agaropectin, which is the
polymeric part resulting from the existence of various substituent groups, such as sulfates
and methyl ethers among others [53]. Due to its gelling properties, biocompatibility,
biodegradability, and non-toxicity [54], Agar-Agar is used in the food, leather, cosmetic,
beverage, and pharmaceutical industries [55].

The present work aims to investigate the structural, optical, and magnetic properties
through the Co/Mn ratios in the structure, as well as the electrochemical properties of
MnXCo3-XO4-type mixed-valence transition metal oxide powders synthesized by the proteic
sol-gel method using Agar-Agar as a polymerizing agent.

2. Experimental Section
2.1. Materials

Cobalt nitrate (Co(NO3)2·6H2O, (Sigma-Aldrich 99%, Saint-Louis, MO, USA), man-
ganese nitrate (Mn(NO3)2·4H2O, Vetec 99%, Saint-Louis, MO, USA), and Agar-Agar
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(Gelialgas-Agargel, João Pessoa, Brazil) were used in the present study. Nickel foam
(Ni 99.8%, porosity >95%) was purchased from QiJing Ltd., Ninghai, China.

2.2. Synthesis of the Proteic Sol-Gel Using Agar-Agar

The scheme of MnXCo3-XO4 (0 ≤ X ≤ 1) preparation is shown in Figure 1. The mixed
oxides were synthesized using Co(NO3)2 6H2O and Mn(NO3)2 4H2O, while Agar-Agar
was used as the polymerizing agent. First, 2.0 g of Agar-Agar was dispersed in 50 mL of
distilled water at 60 ◦C, then the proper amounts in mols of the metal salts were added
as follows for samples with X = 0.0 (cobalt nitrate: 0.0249 mol), X = 0.2 (cobalt nitrate:
0.0233 mol and manganese nitrate: 1.6673 mmol), X = 0.4 (cobalt nitrate: 0.0217 mol and
manganese nitrate: 3.3437 mmol), X = 0.6 (cobalt nitrate: 0.0201 mol and manganese nitrate:
5.0337 mmol), X = 0.8 (cobalt nitrate: 0.0185 mol and manganese nitrate: 6.7332 mmol), and
X = 1.0 (cobalt nitrate: 0.0169 mol and manganese nitrate: 8.4459 mmol), and the resulting
solution was kept under stirring at 90 ◦C until the formation of a gel. The resulting gel
was kept at 350 ◦C for 2 h. Hence, the obtained powders were ground and calcined in
air at 900 ◦C. The samples MnXCo3-XO4 were labeled as: for X = 0.0 (Co3O4), X = 0.2
(Mn0.2Co2.8O4), X = 0.4 (Mn0.4Co2.6O4), X = 0.6 (Mn0.6Co2.4O4), X = 0.8 (Mn0.8Co2.2O4) and
X = 1.0 (MnCo2O4).
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Figure 1. Procedure for the synthesis of samples MnXCo3-XO4 (0 ≤ X ≤ 1).

2.3. Structural and Morphological Characterization

X-ray powder diffraction patterns (XRD) were obtained by a Shimadzu XRD-7000
diffractometer using Kα(Cu) = 1.5481 Å radiation. The 2θ range was investigated from
10◦ to 80◦ with a step size of 0.02◦ and acquisition time of 1 s. The crystallite size, lattice
parameters, and atomic positions were determined by Rietveld refinement using the soft-
ware Materials Analysis Using Diffraction (TOPAS). FT-IR spectra were performed by a
Shimadzu IRPrestige21 spectrophotometer between 500 and 4000 cm−1, using KBr pellets.
The ultraviolet–visible spectra (UV–Vis) were obtained in the UV-2600i spectrophotometer
from Shimadzu. SEM images were obtained by a field-emission scanning electron mi-
croscope (FESEM, Carl Zeiss, Supra 35-VP Model) equipped with a Bruker EDS detector
(XFlash 410-M). Surface chemical states were studied by X-ray photoelectron spectroscopy
(XPS) using a SPECS Phoibos 150 spectrometer with a high-intensity monochromatic Al-Ka
X-ray source (1486.6 eV). Samples were dispersed in acetone and deposited on silicon
by drop-coating. Adventitious carbon C 1s with binding energy at 284.8 eV was used as
reference energy. CasaXPS software was used for spectra deconvolution, thus obtaining
the height, area, and position of the analyzed peaks. All the symmetric peaks were fitted
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using Gaussian and Lorentzian functions. Magnetic measurements were obtained using a
vibrating sample magnetometer (VSM) from Lakeshore, model 7400, at room temperature,
with a maximum magnetic field applied up to +15.0 KOe.

2.4. Electrochemical Characterization

All electrochemical studies were performed in an alkaline aqueous solution (KOH,
1 M pH = 13.6) at room temperature by a PGSTAT204 with FRA32M module (Metrohm
Autolab) using a three-electrode setup with a platinum plate and Hg/HgO as counter and
reference electrodes, respectively. The samples MnXCo3-XO4 (0 ≤ X ≤ 1) were used for the
fabrication of the working electrodes. Catalytic inks were prepared by mixing 5 mg of each
catalyst with 50 µL of Nafion solution (5 wt%) and dispersing the mixture in 500 µL of
isopropyl alcohol. Then, inks were drop-casted onto Ni foams (1× 1 cm) on clean substrates
and dried at room temperature for 5 h to prepare the working electrodes. Linear sweep
voltammetry (LSV) was performed at 5 mV s−1. Electrochemical impedance spectroscopy
(EIS) was carried out using dc potentials (1.4 V vs. RHE) in the frequency range of 0.1 Hz–10
kHz and voltage amplitude of 10 mV. All measured potentials (with iR correction) were
converted to the reversible hydrogen electrode (RHE) using the Nernst equation (ERHE =
EHg/HgO + 0.059×pH + 0.098). Overpotential (ï) values were calculated by the equation ï=
ERHE—1.23 V. The stability tests were conducted by chronopotentiometry analysis using
multi-steps of 10–20 mA cm−2. Figure 2 shows the complete characterization process.
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3. Results
3.1. X-ray Diffraction (XRD)

The refined X-ray diffraction patterns of the MnXCo3-XO4 (0 ≤ X ≤ 1) are shown in
Figure 3a. As noted, all peaks are characteristic of the cubic phases of Co3O4 (structure
of Spinel#MgAl2O4 type, with lattice parameter a = b = 8.072(3) Å, ICSD n◦ 36256, space
group Fd-3mS (227)) [56] and MnCo2O4 (structure of Spinel#MgAl2O4 type, with lattice
parameter a = b = 8.28(2) Å, ICSD n◦ 18544, space group Fd-3mZ (227)) [57]. No secondary
phases corresponding to impurities were detected. The ICSD n◦ 36,256 was used to fit the
MnXCo3-XO4 samples (X < 1), while the 18,544 ICSD file was applied to refine the sample
with composition X = 1. The observed patterns are similar to those reported previously for
pure and doped cobaltites [16,20,58]. All crystallographic parameters, including crystallite
size and lattice parameter, as well as the agreement indices (Rwp, Rexp e χ2) for samples of
MnXCo3-XO4 (0 ≤ X ≤ 1) are gathered in Table 1.
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Figure 3. (a) XRD patterns of MnXCo3-XO4 (0 ≤ X ≤ 1) samples (b) Peaks (311) for each sample
and their positions and FWHM. Blue lines below the diffractograms are the difference between the
calculated and experimental data.

Table 1. Crystallographic parameters, including crystallite size, lattice parameter, and agreement
indices (Rwp, Rexp e χ2) for samples of MnXCo3-XO4 (0 ≤ X ≤ 1).

Samples
Co3O4—ICSD 36256 MnCo2O4—ICSD 18544 Agreement Factors

DXRD (nm) a (Å) DXRD (nm) a (Å) Rwp (%) Rexp (%) χ2

Co3O4—ICSD 36256 — 8.072(3) — — — — —
MnCo2O4—ICSD 18544 — — — 8.28(2) — — —

X = 0 90.6 [100%] 8.0757(1) — — 7.16 6.92 1.04
X = 0.2 82.5 [100%] 8.0759(8) — — 7.95 6.59 1.21
X = 0.4 80 [100%] 8.0754(1) — — 7.97 6.60 1.21
X = 0.6 71 [100%] 8.1183(7) — — 8.14 6.67 1.22
X = 0.8 68.8 [100%] 8.1675(8) — — 8.01 6.66 1.20
X = 1 — — 66 [100%] 8.2381(6) 8.69 6.70 1.30

Figure 3b shows the magnification of the most intense diffraction peak (311), located
between 36◦ and 37.5◦. As shown, increasing Mn content shifts the (311) peak to lower
angles, indicating a continuous increase in the lattice parameter from 8.0757(1) for x = 0,
8.0759(8) for x = 0.2, 8.1183(7) for x = 0.6, 8.1675(8) for x = 0.8 to 8.2381(6) for x = 1. The total
width at half maximum intensity (FWHM) also increases gradually with the increase in
Mn (0.1322 for x = 0, 0.1433 for x = 0.2, 0.1513 for x = 0.4, 0.1613 for x = 0.6, 0.1633 for x =
0.8 and 0.1692 for x = 1), signaling a progressive reduction in crystallite size and increase
in strain (90.6 nm for x = 0, 82.5 nm for x = 0.2, 80 nm for x = 0.4, 71 nm for x = 0.6, 68.8
nm for x = 0.8, 66 nm for x = 1, with the only exception of the sample corresponding to X
= 0.4 for which the 2θ angle is slightly higher than the one displayed by the sample with
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X = 0.2). The largest variations of FWHM occur in the 0 ≤ X ≤ 0.6 range. The Mn+2 has a
radius of 0.80 Å and it is larger than the radii of Co+3 (0.63 Å) and Co+2 (0.65 Å); thus, it
causes distortion and strain in the Co3O4 lattice, resulting in a decrease in crystallite size.
In addition, other manganese oxidation states may be present in the samples such as Mn+3

and Mn+4. Mn+3 (3d4) is responsible for the Jahn–Teller phenomenon, which also develops
a distortion in the lattice and an intrinsic strain that leads to a decrease in the crystallite
size [20,59–61]. The trends of lattice parameter and crystallite size are in agreement with
previous reports [16,20]. The maximum values of the agreement factors Rwp and Rexp from
the Rietveld analyses are 8.14% and 6.92%, respectively. The low values of fitting quality
(χ2 ≤ 1.30) indicate excellent agreement between the data and the refined models.

3.2. Field-Emission Scanning Electron Microscopy (FESEM)

The FESEM images of the MnXCo3-XO4 nanoparticles (0≤ X≤ 1) are shown in Figure 4.
A non-uniform morphology was observed, specifically polyhedral-shaped particles, and
a few smaller spherical-like particles, mostly agglomerated [38]. Another observation is
that as the amount of Mn increases, the morphology of particles tends to be octahedral like.
The average particle size distribution was 208 nm for X = 0.0, 162 nm for X = 0.2, 145 nm
for X = 0.4, 142 nm for X = 0.6, 140 nm for X = 0.8, and 133 nm for X = 1.0. From the size
distribution histograms, it is evident the shift of main sizes to smaller values as the Mn
content increased.

3.3. Transmission Electron Microscopy (TEM)

Additional morphological characterization was carried out by the TEM technique.
Typical images of the nanoparticles are presented in Figure 5. They show particles with
non-uniform morphologies of different sizes. These pictures agree well with the images
acquired by FESEM (Figure 4). Figure 5b,e,h,k,n,q shows high-resolution TEM images (5
nm scale) of particles larger than 10 nm in size, with fringes related to atomic planes with
spacings of 0.24, 0.296, 0.282, 0.252, 0.303, and 0.486 nm that may be due to the planes (311),
(220), (220), (311), (220) and (111) for samples X = 0.0, X = 0.2, X = 0.4, X = 0.6, X = 0.8 and
X = 1.0, respectively. Furthermore, it appears that the particles are coated with a carbon
layer with a thickness smaller than 5 nm. Figure 5c,f,i,l,o,r shows the small-area electron
diffraction (SAED) patterns of the samples. They exhibit diffraction rings originating
from crystal planes (111), (220), (311), (400), (422), (333), and (440). The planes are listed
beginning from the smallest ring.

3.4. Fourier-Transform Infrared (FT-IR) Spectroscopy

The FT-IR technique shows the vibrational fingerprint of the sample, with absorption
peaks that correspond to the frequencies of vibrations of the bonds among the atoms that
make up the material [62]. Figure 6 shows the spectra of the MnXCo3-XO4 samples (0 ≤
X ≤ 1) in the range from 400 to 4000 cm−1, where two bands with the highest intensities
are located at 552–570 and 643–663 cm−1, which are related to the stretching vibrations of
the metal–oxygen bond, which confirms the formation of the pure Co3O4 phase [63]. The
v1 band at 552–570 cm−1 is characteristic of the vibration of Co3+ at the octahedral site,
and the ν2 band at 643–663 cm−1 is related to the vibration of Co2+ at the tetrahedral site,
confirming the formation of the spinel-like oxide [64], in agreement with the XRD study.
The low-intensity band that appears at 1100 cm−1 is due to C-O stretching vibrations. The
band at 1383 cm−1 is attributed to the symmetric deformations of C-N and CH2 groups,
originating from the residues of nitrate ions and agar-agar [65–67]. The band at 1635 cm−1

was attributed to the angular deformation of the adsorbed water molecules [68]. The broad
absorption band in the region of about 3440 cm−1 is due to OH stretching of the water
molecules adsorbed from the moisture during the storage process [69]. Furthermore, it is
observed that the bands at 554–643 cm−1 for sample X = 0.8 and the bands at 552–643 cm−1

for sample X = 1.0 are similar, which may be related to the oxidation states of manganese
(Mn+2, Mn+3, and Mn+4) or to the vibrational intensity between the manganese and oxygen
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bond. In general, the frequency of the peaks of the absorption bands at (552–570) and
(643–663) cm−1 (Table 2) decreases with the replacement of cobalt with manganese ions,
i.e., they shift to the right as the amount of manganese increases, and this is related to the
increase in the metal–oxygen distance, as indicated by the increase in the lattice parameter
of the unit cells (Table 1), since Mn ions are larger than Co ions [21].
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Figure 6. FT-IR spectra for all MnXCo3-XO4 (0 ≤ X ≤ 1) samples.

Table 2. Assignment of the FT-IR band frequencies observed for MnXCo3-XO4 (0 ≤ X ≤ 1) samples
and their comparison with the literature.

Observed Frequencies (cm−1)

(X = 0.0) (X = 0.2) (X = 0.4) (X = 0.6) (X = 0.8) (X = 1.0) Reference Mode Assignment

3440 3440 3440 3440 3440 3440 [68–72] O-H stretching vibration

1635 1635 1635 1635 1635 1635 [65,68,71,
73,74]

Angular deformation of
adsorbed water molecules

1383 1383 1383 1383 1383 1383 [65–67] Deformations of C-N and
CH2 groups

1100 1100 1100 1100 1100 1100 [62,68,74] C-O stretching vibrations

663 662 661 653 643 643 [65,68,70,
71,75]

Stretching vibrations of
Mn–O

570 568 568 561 554 552 [21,63,64,
72,73]

Stretching vibrations of
Co–O

3.5. Ultraviolet–Visible Spectroscopy (UV–Vis)

The electronic properties of MnXCo3-XO4 samples, as illustrated in Figure 7, were
investigated by UV–Vis spectroscopy in the wavelength range from 300 to 1400 nm. The
absorptions at 528 and 792 nm for the sample X = 0 correspond to the ligand–metal O(-II)
→ Co(III) and O(-II) → Co(II) electron transfer, respectively [76–78]. The variation of
absorption in the range from 1033 to 1110 nm shows that when the amount of manganese
increases, the absorption peak wavelength increases, and this is related to the higher
O2/O1 ratios according to the XPS results, and it will affect the overpotential in the oxygen
evolution reaction for the MnCo2O4 (X = 1.0) sample, which would mean a better catalytic
activity for the oxidation reactions.
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Figure 7. UV–Vis Absorbance spectra of MnXCo3-XO4 (0 ≤ X ≤ 1) samples.

3.6. Raman Spectroscopy

Figure 8 shows the Raman spectra of the MnXCo3-XO4 samples in the range from
100 to 1000 cm−1. The observed bands in the intervals 193–688 cm−1 for x = 0.0, 186–682
cm−1 for x = 0.2, 186–675 cm−1 for x = 0.4, 185–667 cm−1 for x = 0.6, 183–661 cm−1 for x =
0.8, and 182–660 cm−1 for x = 1.0 correspond to the active Raman modes A1g+Eg+3F2g
(Table 3), confirming the formation of the pure phase of mixed-valence oxides of spinel-like
structure [79–83]. The most intense band at 688–660 cm−1 is assigned to the octahedral site
MO6 related to the A1g mode of the O7h spectroscopic symmetry, which corresponds to the
stretching vibrational modes of these oxides M-O, where M = {Co, Mn}, thus substantiating
the formation of MnCo2O4. The Raman bands with medium intensity in the intervals
468–488 cm−1 and 508–518 cm−1 are assigned to Eg and F2g, respectively; meanwhile, the
Raman bands with lower intensities in the interval 603–617 cm−1 are caused by the F2g
mode. Moreover, the Raman bands with very low intensity at 182–193 cm−1 are attributed
to the F2g mode related to the tetrahedral sites of CoO4 [82–84]. In general, when comparing
the positions of the peaks, it is observed that as the amount of manganese increases, the
peaks shift to the left, analogously to what was noticed in the FT-IR spectra. This change
may be due to the greater ionic radius of Mn2+, in comparison to that of Co2+/Co3+ [85–87],
which when entering the structure of Co3O4, generates a large distortion in the crystalline
structure and increases the distance between the metal and the oxygen, and consequently a
weakening of bonds occurs. Another reason would be due to vibrations in the structure,
where the Co2+ and Co3+ cations are located in tetrahedral and octahedral sites in the cubic
crystal structure [88].
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Figure 8. Raman spectra for all MnXCo3-XO4 (0 ≤ X ≤ 1) samples.

Table 3. Raman active band positions for MnXCo3-XO4 (0 ≤ X ≤ 1) samples and their comparison
with the literature.

Raman Band Position (cm−1)

MnXCo3-XO4
(0 ≤ X ≤ 1) F2g Eg F2g F2g A1g Reference

(X = 0.0) 193 480 518 617 688 [82–84]
(X = 0.2) 186 473 512 611 682 [20,88]
(X = 0.4) 186 471 510 605 675 [81,82]
(X = 0.6) 185 468 508 603 667 [20,83]
(X = 0.8) 183 480 - - 661 [82,89]
(X = 1.0) 182 488 - - 660 [79,80]

3.7. X-ray Photoelectron Spectroscopy (XPS)

The surface oxidation states of the samples were analyzed by XPS. Figure 9 shows the
high-resolution Co 2p, Mn 2p, and O 1s spectra obtained from the analysis. All data were
corrected for the carbon peak position. In the case of the Co 2p spectra (Figure 9a), four
peaks were deconvoluted, at lower binding energies, corresponding to Co3+ and Co2+, as
well as two satellite peaks at higher binding energies. The binding energies obtained for
Co3+ were found to fall in the 779.64–780.19 eV range, while for Co2+, in the 781.19–781.85
eV range, in agreement with previous work [90]. We also found a Co2+/Co3+ ratio varying
from 0.31 to 0.40 among the samples, for which the sample X = 0.8 was found to have the
lowest value of Co2+/Co3+ = 0.31. Higher oxidation states can induce more bonded oxygen
species, which may have a positive impact on oxidation reactions.
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Figure 9. High-resolution XPS spectra of MnXCo3-XO4 (0 ≤ X ≤ 1) for (a) Co 2p, (b) Mn 2p and
(c) O 1s.

Conversely, in the case of the Mn 2p spectra (Figure 9b), the data were deconvoluted
into three peaks, which were ascribed to Mn4+ (ranging from 644.154 eV to 645.146 eV),
Mn3+ (ranging from 642.790 eV to 643.125 eV), and Mn2+ (641.223 eV to 641.459 eV), in
agreement with previous reports [90,91]. The lowest oxidation state species, Mn2+, was
found to represent the largest fraction of the total species present at the surface, with a
relative value varying from 0.42 to 0.51 among the samples. Conversely, the presence of
Mn4+ and Mn3+ oxidation states is related to the relatively high calcination temperature
used in this work, i.e., 900 ◦C, as found in previous literature [92]. In this respect, we
also noted a higher Mn3+/Mn4+ ratio for the tested samples, which correlates well with
the previously discussed Jahn–Teller phenomenon, with a concurrent distortion of the
crystal lattice.

Finally, the O 1s high-resolution spectra (Figure 9c) display three deconvoluted peaks:
O1 (529.94–530.27 eV), O2 (531.16–531.72 eV), and O3 (532.55–533.19 eV). Based on the char-
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acteristic binding energies determined for these peaks, they are likely related to surface lat-
tice oxygen (Olat, O2−), adsorbed oxygen species (Oads, O2−, O2

2−, and O−), and adsorbed
water species (OH2O), in agreement with earlier reports on similar compounds [91,93]. From
the analysis of the O 1s high-resolution spectra (Table 4), we determined higher O2/O1
ratios with increasing Mn content, with a maximum value obtained for the X = 1.0 sample.
This suggests that the compounds with the highest Mn content possess increased catalytic
activity, as a likely result of increased oxygen-ion vacancies in these samples.

Table 4. Gaussian-fitted peaks for O 1s XPS spectra for MnXCo3-XO4 (0 ≤ X ≤ 1) samples.

Sample X = 0 X = 0.2 X = 0.4 X = 0.6 X = 0.8 X = 1

Peak (eV) 531.717 531.386 531.448 531.158 531.195 531.618
O2 area (nm) 9859.487 12887.39 13100.65 13363.590 15330.310 19922.580
O2/O1 0.495 0.498 0.502 0.517 0.693 0.940

3.8. Vibrating Sample Magnetometer (VSM)

Magnetization measurements were done to study the magnetic behavior of samples
at room temperature and to determine the cation magnetic moment in an approximate
manner. For all samples, the isothermal magnetization at T = 300 K showed a linear
behavior with the magnetic field, and their magnetization at a given field increased with
the Mn concentration, as shown in Figure 10.
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Figure 10. Magnetization curve of MnXCo3-XO4 (0 ≤ X ≤ 1).

This trend was observed for all samples and it is typical of paramagnetic samples
as shown in Figure 10. From the classical theory of paramagnetism we know that the
relationship between the magnetization (M) and magnetic field (H) is given by the Langevin
function L(a) = M/Mo = coth(a)-1/a, where M and Mo are the mass magnetizations per total
amount of Mn and Co (without oxygen), a = µH/KBT, µ is the average magnetic moment
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per cation, KB is the Boltzmann constant (1.3807 × 10−16 cm2gK/s2), and T = 300 K. It
is known that L(a) tends to a/3 when a is less than about 0.5 [94]. In the present case, if
µ~4.51 × 10−20 Erg/Oe (theoretical magnetic moment for Mn3+ and Co3+) and H = 15 ×
103 Oe, then, one can get a = 0.01633, which is smaller than 0.5. Thus, L(a) = M/Mo ≈ a/3
and, therefore, M = [Moµ/(3KBT)]H. In a paramagnetic system Mo = Nµ/A, where N is
the Avogadro’s number and A = (x*54.938 + (3-x)*58.933)/3 is the average atomic mass
provided by Mn and Co in MnXCo3-XO4 (where X = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}). Thus, the
DC susceptibility is χ = M/H= Nµ2/(3AKBT) [94]. One can study the M-H data by fitting
the curve to a linear equation and comparing the slope to Nµ2/(3AKBT). Then, to obtain µ

in Bohr magnetons (µB), one has to calculate µ/0.9274 × 10−20. The results provided an
effective magnetic moment per cation of 2.204 2.294, 2.342, 2.344, 2.348, 2.378 µB for the
samples prepared with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively.

The magnetic moments expected for low spin configuration have a total spin of
S(Mn2+) = 0.5, S(Mn3+) = 0, S(Mn4+) = 0.5, S(Co2+) = 0.5, S(Co3+) = 0, whose magnetic
moments are, µ = 2

√
S(S + 1) µB, i.e., µ(Mn2+) = 1.732 µB, µ(Mn3+) = 0, µ(Mn4+) = 1.732

µB, µ(Co2+) = 1.732 µB, µ(Co3+) = 0. Furthermore, for high spin configuration S(Mn2+) =
2.5, S(Mn3+) = 2.0, S(Mn4+) = 1.5, S(Co2+) = 1.5, S(Co3+) = 2, whose magnetic moments are
µ(Mn2+) = 5.916 µB, µ(Mn3+) = 4.899 µB, µ(Mn4+) = 3.873 µB, µ(Co2+) = 3.873 µB, µ(Co3+) =
4.899 µB. Therefore, the magnetic moments for Co and Mn seem to be mainly in the low
spin configuration; however, we cannot rule out the presence of some moments in the high
spin configuration.

3.9. Oxygen Evolution Reaction (OER)

The samples were also evaluated as electrocatalysts for the oxygen evolution reaction
(OER). According to the results of the anodic polarization (Figure 11a), the electrodes pre-
sented values of 515 (Ni foam), 342 (X = 0.0), 342 (X = 0.2), 339 (X = 0.4), 337 (X = 0.6), 323 (X
= 0.8), 299 (X = 1.0) and 235 (RuO2/Ni foam benchmark, extracted from reference [95]) mV
vs. RHE, respectively, to record a current density J = 10 mA cm2. Among the investigated
materials, the MnCo2O4 (X = 1.0) samples displayed the best catalytic activity for OER,
i.e., the lowest overpotential because the incorporation of Mn into the structure enhanced
the defect concentrations, thus increasing the amount of catalytically active sites, which
facilitated the mass transfer process, favoring OER [96]. Moreover, the crystalline size
decreased with the increase of manganese content, which indicates that the Co3O4 sample
(X = 0.0) has larger average crystal sizes than the other samples, especially MnCo2O4 (X
= 1.0); thus, Co3O4 was the sample that had the highest overpotential. This indicates that
the presence of Mn, has a suppressive effect on Co3O4 [97]. The obtained values are in
agreement with others reported in the literature for MnXCo3-XO4 nanostructures, as shown
in Table 5.

Table 5. Comparison of OER performance of nanostructured MnXCo3-XO4 (0 ≤ X ≤ 1) catalysts
reported in the literature. Data refer to an overpotential to generate j = 10 mA cm2 (η10).

Catalyst Substrate * ï10 (mV vs. RHE) Tafel Slope (mV dec−1) Reference

MnXCo3-XO4(0 ≤ X ≤ 1) powders (ágar-ágar) Ni foam 299 55 This work
MnXCo3-XO4(0 ≤ X ≤ 2) powders Ni foam 327 79 [16]

MnCo2O4 GC 510 123 [98]
Co3O4 nanoparticles CFP 361 87.5 [99]

Co3O4 Nanosheet Ni foam 190 103 [100]
MnXCo3-XO4 (X = 0.3) Ni foam 390 N.R. [101]
MnXCo3-XO4 (X = 0.6) GC 365 50.6 [91]

MnCo2O4 Ni foam 358 N.R. [102]
MnXCo3-XO4 (1:3 ratio) Ni foam 222 162 [103]

MnCo2O4 Ni foam 400 90 [104]
MnCo2O4 carbon cloth 400 190 [105]
MnCo2O4 GC 510 123 [98]

* CFP (carbon fiber paper); GC (glassy carbon).
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Figure 11. (a) LSV collected at 5 mV s−1 in 1 mol L−1 KOH for MnXCo3-XO4 (0 ≤ X ≤ 1) electrodes,
where X = 0.0, X = 0.2, X = 0.4, X = 0.6, X = 0.8, and X = 1.0, and (b) the corresponding Tafel slopes;
(c) anodic current (ia) versus scan rate to determine CDL; (d) chronopotentiometry analysis measured
at 10 mA cm−2.

The electrocatalytic kinetics for OER was investigated by the Tafel plots extracted from
the LSV (linear sweep voltammetry) curves (Figure 11a), using the Tafel equation (η = a +
b log j), where b is the Tafel slope, η is the overpotential, j is the current density, and a is
a constant. The values of the Tafel slope (Figure 11b) were 63 (X = 0.0), 73 (X = 0.2), 72 (X
= 0.4), 69 (X = 0.6), 68 (X = 0.8), and 52 mV dec−1 (X = 1.0). Therefore, the results did not
follow exactly a sequence like the ï10 values (Figure 11a), but it can be observed that the
electrode based on the MnCo2O4 sample (X = 1.0) exhibited the best reaction kinetics for
OER, as it showed the lowest Tafel slope, which demonstrates a higher efficiency for oxygen
evolution. The Tafel slope of 63 mV dec−1 for the Co3O4 sample (X = 0.0) corresponds
to slightly slower kinetics, indicating limitation in charge and mass transfer processes
compared to the x = 1.0 sample. The Co3O4 sample was also the one with the highest
overpotential, with no distortion in the structure, which reduces defects and consequently
the oxygen vacancies [106,107]. These results are consistent with the XPS values as well as
the electrochemical impedance spectroscopy. The samples with X = 0.2, 0.4, 0.6, and 0.8
show values next to 70 mV dec−1, which means much slower kinetics for OER.

All this evidence can be explained by the distortion of the lattice with the increase of
the amount of Mn in the Co3O4 structure, which changes the electronic charge distribution
and increases the disorder in the crystalline system [106–109]. Furthermore, with increasing
Mn percentages, the availability of oxygen and flexibility in the lattice is greater, which in
turn is related to the M-O bond length [110]. In any case, the samples (X = 0.2), (X = 0.4),
(X = 0.6) and (X = 0.8) show values of Tafel slope below 80 mV dec−1, and these results
indicate the adsorption of intermediate species as the rate-determining step (rds), based on
the Krasil’shchikov reaction model for OER in alkaline medium [111,112].

The double-layer capacitance (CDL) can be obtained from the relationship between
the anode current density (ia) and the scan rate (υ), according to (ia = υ x CDL) [100].
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Figure 11c shows the double-layer capacitance values obtained for the samples: 1.78 (X =
0.0), 2.75 (X = 0.2), 2.57 (X = 0.4), 2.41 (X = 0.6), 3.16 (X = 0.8), and 2.03 mF cm−2 (X = 1.0).
These results suggest that the largest number of active sites is organized on the electrode
surfaces. Although among the samples of this series, the one with X = 0.8 had the second
lowest performance for OER, it displays the highest CDL value, which may be linked to
the high amount of oxygen vacancies that improves the absorption of reactive species (like
OH¯) [113]. For the samples (X = 0.2), (X = 0.4), and (X = 0.6), the values of 2.75, 2.57, and
2.41 mF cm−2, respectively, are consistent with the XPS data (Figure 9b), where the species
in the lowest oxidation state, Mn2+, represented the largest fraction of the total species
present on the surface, with a relative fraction ranging from 0.42–0.51 among the samples.
However, even with a low CDL value for the sample (X = 1.0), the presence of Mn ions in
the structure is essential for superior electrocatalytic properties. This was proven by the
best overpotential extracted from the LSV curves (Figure 11a) and the XPS data (Figure 9c),
as the substitution of Mn in spinel oxide cobalt occurs selectively in the (Co3+) lattices, and
the energy required for Mn2+ to substitute Co3+ is lower than that of Co2+, [114]. Moreover,
Mn+2, Mn+3, and Mn+4 have ionic ratios of 0.80, 0.66, and 0.60 Å, respectively, and the ratios
of Mn+2 and Mn+3 are larger than that of Co3+ (0.63 Å). Therefore, Mn doping results in
the expansion of the Co3O4 lattice, generating defects, which influences the mass diffusion
and charge transfer properties, contributing to oxygen-ion vacancies, which are consistent
with the O2/O1 ratio that was highest for the MnCo2O4 sample (X = 1.0), with a value of
0.940 [108,109,115,116].

Durability is another important indicator of catalytic performance. The stability of the
electrocatalysts was evaluated by chronopotentiometry. Tests were performed at a current
density of 10 mA cm−2 for 15 h. According to the curves shown in Figure 11d, it can be
seen that the samples (X = 0) and (X = 0.6) exhibited a potential decrease until about 2 h,
but then they remained stable, whereas for the samples (X = 0.8) and (X = 1.0), the potential
was practically stable for the entire time period tested. In general, all samples showed
satisfactory stability over 15 h of testing [117].

3.10. Electrochemical Impedance Spectroscopy (EIS)

The electrocatalytic activity also was investigated by electrochemical impedance spec-
troscopy (EIS). The EIS spectra of all samples were collected at 1.4 V vs. RHE. As seen
in the Bode plots (Figure 12b), the OER is composed of complex processes involving
electrosorption of intermediate species during the reaction progress. This suggests an
equivalent circuit model (ECM) able to describe these processes [118,119] that is composed
of RS (uncompensated solution resistance), RP (polarization resistance, which denotes the
overall rate of the OER), QDL (double-layer pseudo-capacitance), R-ad (resistance associated
with adsorption of intermediate species), and Q-ad (pseudo-capacitance of these species
throughout the reaction). A constant phase element (Q) was used to model an imperfect
capacitor, and its impedance was obtained by:

ZQ = (Q(iω)n)−1 (1)
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Then, the values were used to calculate true capacitance (CDL or C-ad) by:

C = R(1−n)/n Q1/n (2)

In Figure 12a, the impedance of the electrodes is composed of two incomplete semi-
circles. The first is attributed to the polarization process (charge transfer), and the second
indicates limitations on mass transfer processes, related to the intermediate species ad-
sorption process [120]. For the electrodes, the obtained RP values were consistent with
the OER performance, i.e., the X = 1.0 sample showed the lowest value (6.02 Ω), followed
by X = 0.8 (9.70 Ω). The other samples revealed RP values very close, but the result was
expected as their overpotential values were close. The CDL values varied slightly (Table 6)
due to the oxidation peak shown in Figure 11a. The RadCad loop associated with relaxation,
which was attributed to the adsorbed intermediate species, revealed the difficulty of these
electrodes to work in the diffusive processes observed at low frequencies. The high R-ad
(>1100 Ω) values displayed by the electrodes in those low frequency (>1 Hz) confirm that
the adsorption of intermediates should be a rate-limiting step as predicted by Tafel analysis
(Figure 11b) [118,121]. The values obtained from the fitting of the spectra are listed in
Table 6.

Table 6. EIS—Results of fitting of the impedance spectra reported in Figure 12.

Sample RS (Ω) RP (Ω) CDL (mF) R-ad (Ω) C-ad (mF)

X = 1.0 0.41 6.02 2.55 1292 6.07
X = 0.0 0.62 28.15 1.49 1276 3.36
X = 0.2 0.48 30.69 6.01 1917 8.47
X = 0.4 0.52 20.29 4.55 1374 8.86
X = 0.6 0.43 19.21 3.88 2149 10.34
X = 0.8 0.46 9.70 8.27 1135 11.77

4. Conclusions

The MnXCo3-XO4 (0 ≤ X ≤ 1) samples were synthesized by the proteic sol-gel method
(green synthesis) using Agar-Agar as a polymerizing agent in order to investigate their
structural, optical, magnetic, and electrochemical properties. X-ray diffraction indicated for
all samples the obtainment of the pure cubic phase without any secondary phase, which
was also confirmed from Raman, TEM, FT-IR, and UV–Vis studies. Regarding the magnetic
measurements, it was observed for all samples a magnetization in a certain field increasing
with the Mn concentration, which is typical of a paramagnetic behavior. From the XPS
analysis, the species in the Mn2+ oxidation state represented the largest fraction of the
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total species present on the surface, and as the amount of Mn increased, the O2/O1 ratio
also increased, reaching a value of 0.940 for the sample MnCo2O4 (X = 1.0). For OER, the
same sample exhibited the best catalytic activity when compared with the others, with an
overpotential of 299 mV, which is lower than those of noble metal electrocatalysts reported
in the literature. In addition, the samples showed superior long-term stability for efficient
water oxidation activities at J = 10 mA/cm2 per 15 h. Thus, it can be concluded that
proteic sol-gel synthesis is an excellent method to produce nanosized mixed-valence oxides
MnXCo3-XO4 for the fabrication of electrodes for water electrolysis.
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