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Abstract: Metal–organic frameworks (MOFs) with fascinating chemical and physical properties
have attracted immense interest from researchers regarding the construction of electrochemical
sensors. In this work, we review the most recent advancements of MOF−based electrochemical
sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA,
proteins, and enzymes). The types and functions of MOF−based nanomaterials in terms of the
design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of
MOF−based electrochemical sensing devices are explored. This work should be invaluable for the
development of MOF−based advanced sensing platforms.

Keywords: metal–organic frameworks; electrochemical sensors; small molecules; biomarkers; signal
amplification

1. Introduction

More and more researchers are now committed to developing various novel methods
for the detection of inorganic ions, organic pollutants, and biomarkers with the help of
fluorescence, colorimetry, surface-enhanced Raman spectroscopy, electrochemistry, elec-
trochemiluminescence, and photoelectrochemistry [1–3]. In contrast to the traditional
analytical techniques of mass spectrometry and high-performance liquid chromatography,
these methods offer the inherent merits of simple operation and high sensitivity. Among
them, electrochemical sensors are extensively utilized in the fields of disease diagnosis,
food safety, and environmental science due to their advantages of high sensitivity and
selectivity, rapid response, low investment, and good portability.

Electrochemical sensing performance can be improved by modifying the electrode
surface and integrating various signal-amplified strategies, such as enzyme catalysis,
DNA self-assembly, and nanomaterials-assisted amplification [4–7]. Because of their ver-
satile electrical, mechanical, and physiochemical properties, nanomaterials, including
graphene, quantum dots (QDs), and metal nanoparticles, have endowed electrochemical
sensors with more possibilities in terms of sensitivity, selectivity, and real-time detection.
In fact, the modification of an electrode with nanomaterials can not only increase the ef-
fective surface area, enhance the conductivity, and provide catalytic sites (e.g., oxidation
metal sites and conjugated π-electron systems) but also facilitate the immobilization of
biomolecules (e.g., enzymes, antibodies, DNA, and peptides) with the objective of improv-
ing the specificity and sensitivity. In addition, when acting as signal labels in bioassays,
nanomaterials labeled with biorecognition elements and signal reporters can increase the
number of reporters for each recognition event, finally leading to the amplification of the
electrochemical signal.

As a novel class of organic–inorganic hybrid crystalline porous coordination polymers,
metal–organic frameworks (MOFs) that are self-assembled from metal ions/clusters and
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organic ligands exhibit many outstanding properties, including high tunable porosity, good
stability, large surface area, and adjustable chemical functionalities [8]. A wide range of
building blocks, such as metal ions and organic ligands, can endow MOFs with many effec-
tive functions for application in electrochemical assays (Scheme 1). A wide variety of MOFs
can be prepared using different approaches, including the solvothermal/hydrothermal
method, sonochemical synthesis, electrochemical synthesis, microwave-assisted synthesis,
and so on. The advantages of MOFs perfectly match the materials necessary for sensor
fabrication [9]. For example, the large surface areas and porous nanostructures of MOFs
offer more interfaces and accessible active metal sites by which to catalyze the electrochem-
ical reaction of analysts on the electrode surface [10]. The abundant functional groups and
mesoporous properties of MOFs facilitate their functionalization with various materials, in-
cluding small molecules, antibodies, nucleic acids, enzymes, and nanoparticles. Therefore,
MOFs have been used to construct electrochemical sensors with excellent performances in
a broad range of potential applications [11–13].
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The published MOF−based studies have been summarized in previous reviews [14–18].
For example, Li’s group and Jouyban’s group have reviewed the recent advancements of
aptamer-functionalized MOF−based biosensors [19,20]. The preparation and application of
MOF−based nanozymes in biosensing and cancer therapy have been reviewed by several
groups [21–23]. MOFs can be used as luminescent and electrochemical probes for the
detection of biological molecules and cancer biomarkers [24–27]. Wang et al. focused
on MOF−based sensing platforms for virus detection [28]. Gorle et al. discussed recent
achievements in MOFs−based composites for constructing electrochemical glucose sen-
sors [29]. Wang et al. summarized the recent progress in sensing applications of metal
nanoparticles/MOF composites [30]. Mohammadreza’s group reviewed the advancement
of MOFs in the electrochemical sensing of environmental pollutants [31]. In recent years,
MOF−based electrochemical sensors have aroused intense interest. However, there is little
in the way of a systematic overview of MOF−based electrochemical sensors using MOFs
as the electrode materials or signal tags [32]. Herein, we summarize recent progress in the
design and application of MOF−based sensing platforms (Scheme 2). Firstly, we briefly
introduce the utilization of pristine MOFs and MOF−based composites as electrode ma-
terials for the electrochemical detection of electroactive species. Then, the design and
application of MOF−based sensors were discussed, according to the functions of MOFs
in the sensing devices. Generally, MOFs can be used as electrode substrates, nanocarriers
for signal reporters, electroactive labels, electrocatalysts, and sacrificial templates. Finally,
the limitations and challenges of MOF−based sensors are discussed, which is of great
significance for exploring new multifunctional MOFs for electrochemical analysis. Due to
the explosive growth of academic articles and the highly dynamic development of this
topic, some important papers may be omitted during the review period. We sincerely
apologize to those authors whose studies were overlooked in this article.
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2. MOFs as the Electrode Materials of Electrochemical Sensors

MOFs, with unsaturated active sites, tunable pore sizes, and good electrocatalytic
activity, can effectively enhance the electrochemical response and increase detection sensi-
tivity. In addition, their high porosity, large surface area, and abundant functional groups
are beneficial for concentrating the analytes and improving mass transfer efficiency [33–35].
The specific size and shape of the available cavities and channels can endow MOF−based
sensors with relatively high selectivity. However, the inherent characteristics of low chem-
ical stability in aqueous medium and the poor conductivity of MOFs may dramatically
hinder their electrochemical applications in practical samples. Aiming to overcome the
shortcomings, different conductive materials and nanomaterials have been integrated
with pristine MOFs to improve the electrochemical sensing performance [36]. In this sec-
tion, the advancements of MOFs in sensing electroactive small molecules and metal ions
are briefly discussed, based on the types of additional materials that have been used for
integration with MOFs.

2.1. Pristine MOFs

Inorganic nodes and organic linkers in MOFs play a decisive role in their electro-
catalytic performances [37–39]. MOFs have been considered the ideal materials for non-
enzymatic electrochemical sensors owing to the redox behavior of metal ions
(Table 1) [40,41]. Several small biomolecules (e.g., dopamine (DA), uric acid (UA), ascor-
bic acid (AA), glucose, H2O2, and amino acids) have been catalytically oxidized by the
active metal sites (e.g., Cu2+, Co2+, Cr2+, Zn2+, and Ni2+) in MOFs [42–44]. For example,
Cu−based pristine MOFs could be used to detect small molecules due to the rapid electron
transfer process of Cu(II)−MOF/Cu(I)−MOF couple. Moallem et al. prepared Cu-benzene-
1,3,5-tricarboxylic acid (Cu−BTC) MOFs by the ultrasound-assisted hydrothermal method
and used the composites to modify a carbon paste electrode (CPE) for the simultaneous
detection of DA and UA [45]. Li et al. reported a Cr−MOF−based electrochemical sen-
sor for the simultaneous determination of DA and UA [46]. The large pore volume of
Cr−MOFs provided plenty of active sites to catalyze the oxidation of DA and UA, leading
to an increased peak separation value. Co−MOFs with peroxidase-like activity have also
been used as active substrates for the electrocatalytic reduction of H2O2 [47].

Environmental pollutants (e.g., pesticides, heavy metal ions, phenolics, and toxins) are
harmful to both the environment and human health. MOF−based electrochemical sensors
have been extensively developed for the analysis of environmental pollutants [48–50].
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For example, Cu−TCPP and Cu−BTC were used as electrode modifiers to construct
electrochemical sensors for the detection of glyphosate [51,52]. Hu et al. reported a
Cu−MOFs−based sensor for the detection of carbendazim in water [53]. Dong et al.
developed an electrochemical sensor for 2,4-dichlorophenol, based on Cu−BTC MOFs [54].
Heavy metal ions in natural resources are harmful to living organisms. Because of their
characteristics of a large surface area, high porosity, and tunable chemical functionality,
MOFs modified at the electrode can act as concentrators to accelerate the preconcentration
process of anodic stripping voltammetry (ASV), improving the detection sensitivity [55,56].
For example, Guo et al. developed an electrochemical sensor for Pb2+ detection using
amino-functionalized Ni−MOFs [57]. The fern-leaf-like MIL-47(as) was used to develop
an electrochemical sensor for the simultaneous detection of Pb2+, Cu2+, and Hg2+ [58].
In addition, Guo et al. reported an electrochemical sensor for Pb2+ detection created by
using amino-functionalized Ni(II)−based MOFs to modify the electrode [57]. Pb2+ was
absorbed by the amino group of a 2-aminobenzenedicarboxylic acid (NH2−BDC) linker,
leading to an increase in the current intensity. The Ni−MOFs−modified electrode showed
excellent selectivity toward Pb2+, due to the ion size exclusion.

Compared with monometallic MOFs, bimetallic MOFs with an optimized ratio of
metal ions exhibit higher electrical conductivity, stability, and catalytic efficiency [59,60].
Bimetallic MOFs (e.g., Cu−Co−MOFs, Zn−Ni−MOFs, and Co−Ni−MOFs) have been
used to develop enzyme-free electrochemical sensors for the detection of various targets,
including glucose, adenosine, organophosphate, bisphenol A (BPA), and so on [61–64]. Typ-
ically, Huang et al. developed a three-dimensional (3D) Co−doped Ni−based conductive
MOFs−modified electrochemical sensor for the detection of L-tryptophan (Trp) [65]. Co–
Ni−MOFs showed high catalytic activity toward Trp oxidation due to the porous structure,
larger surface area, and more active sites in the redox process. The proposed sensor for Trp
detection achieved a wide linear range from 0.01 to 300 µM and a low limit of detection
(LOD) (8.7 nM). Compared to the conventional 3D MOFs, 2D MOFs are more attractive
because of their outstanding advantages of larger surface area/volume ratio, easier diffu-
sion, and more available active sites for catalysis. Li et al. fabricated an ultrathin Ni−MOF
nanosheet-based assembly for the detection of AA (Figure 1A) [66]. The nanosheet, with a
uniform thickness of 8 nm, facilitated the interaction between MOF and AA. The Ni−MOF
nanosheet-modified electrode exhibited a satisfactory linear range from 0.5 µM to 8065.5
µM and an LOD of 0.25 µM. Wang et al. prepared a series of Co, Cu, and Zn-based ultra-
thin 2D bimetallic MOF nanosheets using Fe(III) tetra(4-carboxyphenyl)porphine chloride
(TCPP(Fe)) as the ligand (Figure 1B) [67]. The MOF nanosheets obtained by the surfactant-
assisted method formed a multilayer film on the electrode surface. The modified electrode
was used for the sensitive detection of H2O2 secreted by live cells.
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Porphyrins with stable and rigid structures, coordinated with different metal ions,
can be used as electrocatalytic sites in a metal-binding or metal-free state [70]. Por-
phyrinic MOFs with excellent enzyme-mimicking catalytic activity have been utilized
for the electrochemical detection of nitroaromatic compounds, nitrite, UA, H2O2, and so
on [71–75]. For example, Kung et al. demonstrated that the zirconium-based porphyrin
MOF (MOF−525) thin-film-modified electrode showed high conductivity and electro-
catalytic activity for nitrite oxidation [76]. In view of the fast redox reaction and high
catalytic activity of iron phthalocyanine (PcFe), Zeng et al. reported the detection of
trichloroacetic acid (TCAA) using PcFe− and Zn−based MOF (ZIF-8) composites as the
electrode materials (Figure 1C) [68]. In this method, PcFe(II) was first electrochemically
reduced into PcFe(I), then the produced PcFe(I) was immediately re-oxidized by TCAA.
Based on the redox cycling, TCAA has been determined with an LOD of 1.89 nM. More-
over, hexasubstituted triphenylene with good electrical conductivity has been used to
prepare conductive MOFs. Ko et al. prepared an electrochemical sensor for the detection
of redox-active neurochemicals using the 2D layered conductive MOFs−casted electrode,
including AA, DA, UA, and serotonin (5-HT) (Figure 1D) [69]. Among the conductive
MOFs, M3HXTP2 (M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or
O,2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)), the Ni3HHTP2 MOFs exhibited the best
sensing performances and could be used for the detection of 63 nM DA and 40 nM 5-HT,
with a wide linear range. The sensor was further used for the determination of 5-HT in
simulated urine.
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Table 1. Detection performances of pristine MOF−based electrochemical sensors.

Electrode Material Analyte Linear Range LOD Ref.

Zn4O(BDC)3 (MOF-5) Pb2+ 10 nM~1.0 µM 4.9 nM [33]
TMU-16-NH2(Zn) Cd2+ 62.5 nM~1.1 µM 1.8 nM [34]

[H2N(CH3)2]4[Zn3(Hdpa)2]•4DMF Cu2+ 5.0 pM~900 nM 1.0 pM [35]
Co−MOFs glucose 1.0 µM~3.0 mM 1.3 nM [37]
Cu−MOFs BPA 50 nM~3.0 µM 13 nM [38]
Cu−BTC methocarbamol 80 µM~800 µM 50 nM [39]

Cr−MOFs H2O2 25 µM~500 µM 3.52 µM [40]
Cu−BTC DA and UA 50 nM~500 µM and 0.5 µM~600 µM 30 and 200 nM [45]

Cu3(BTC)2 2,4-dichlorophenol 40 nM~1.0 µM 9.0 nM [54]
Co−MOFs H2O2 5.0 µM~9.0 mM 3.76 µM [47]
Ni−MOFs Pb2+ 0.5 µM~6.0 µM 0.508 µM [57]

MIL−101(Cr) DA and UA 5.0~250 µM and 30~200 µM Not reported [46]
Co–Ni−MOFs Trp 10 nM~300 µM 8.7 nM [65]

Ni−MOFs AA 0.5 µM~8.1 µM 0.25 µM [66]
(Co−TCPP(Fe))5 H2O2 0.4 µM~50 µM 0.15 µM [67]

MOF−52(Zr) NO3
− 20 µM~800 µM 2.1 µM [76]

PcFe@ZIF-8 TCAA 20 nM~1.0 µM 1.89 nM [68]

Abbreviations: BDC, 1,4-dicarboxybenzene; MOFs, metal–organic framework; Hdpa, 3,4-di(3,5-
dicarboxyphenyl)phthalic acid; BPA, bisphenol A; BTC, 1,3,5-benzenetricarboxylic acid; DA, dopamine;
UA, uric acid; Trp, L-tryptophan; AA, ascorbic acid; TCPP(Fe), Fe(III) tetra(4-carboxyphenyl)porphine chloride);
PcFe, iron(II) phthalocyanine; TCAA, trichloroacetic acid.

2.2. Carbon Materials-Modified MOFs

Owing to their high conductivity, low cost, and chemical inertness, distinct-dimension
carbon materials have been extensively used to prepare hybrid composites with MOFs,
including 1D carbon nanotubes (CNT), 2D graphene, and mesoporous carbon [77–79].
CNT is considered to be one of the most promising carbon materials to improve the
performance of MOFs because of its unique electrical conductivity, high surface area,
and high thermal/mechanical stability [80]. CNT/MOFs composites have been used for
the electrochemical detection of a wide range of targets, including gallic acid, opioid drugs,
tetracycline, and so on (Table 2) [81–85]. For instance, Li et al. reported an electrochemical
sensor for the detection of DA and acetaminophen (ACOP), using the hybrid composite
of UiO-66-NH2 and CNT as the electrocatalyst [86]. Mn−MOFs were grown in situ on
multi-walled CNTs (MWCNTs) for the simultaneous detection of AA, DA, and UA in
bodily fluids [87]. Moreover, quasi-2D Ni−MOF nanosheets were prepared in situ under
the confinement effect of the cross-linked CNT networks; the resulting hybrid composites
were applied to detect BPA [88]. Ratiometric electrochemical sensors, based on the ratio
of an internal reference signal and a response signal for an analyte, can improve their
accuracy and stability. Recently, Rong et al. designed a ratiometric electrochemical sensor
for the determination of doxorubicin, based on electroactive methylene blue (MB)-loaded
MWCNTs/UiO-66-NH2 [89]. As shown in Figure 2A, the UiO-66-NH2 MOFs were synthe-
sized in the presence of MWCNTs and the composites were further used to load a large
number of MB molecules. The porous UiO-66-NH2 could not only catalyze the oxidation of
doxorubicin but also facilitate the adsorption of MB as an internal reference. The ratiometric
sensor exhibited higher selectivity and stabilization, in contrast to that with a single-signal
response.
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Table 2. The detection performances of carbon nanomaterials-decorated MOF−based electrochemical
sensors.

Electrode Material Analyte Linear Range LOD Ref.

MIL-101(Cr)@rGO 4-nonylphenol 100 nM~12.5 µM 33 nM [90]
Cu−hemin MOF/CS−rGO H2O2 65 nM~0.41 mM 19 nM [91]

Cu(tpa)−EGR ACOP and DA 1.0 µM~100 µM and 1.0 µM~50 µM 0.36 and 0.21 µM [92]
Co−MOF/BP−RGO chlorogenic acid 1.0 nM~391 µM 14 nM [93]

PPy@ZIF-8/GAs dichlorophenol 10 nM~10 µM 0.1 nM [94]

GA-UiO-66-NH2
Cd2+, Pb2+, Cu2+,

and Hg2+
10 nM~1.5 µM, 1.0 nM~2.0 µM,

10 nM~1.6 µM and 1.0 nM~22 µM
9.0, 1.0, 8.0 and

0.9 nM [95]

Ni−MOFs/CNTs H2O2 10 µM~51.6 mM 2.1 µM [80]
UiO-66-NH2/CNTs DA and AC 30 nM~2.0 µM 15 and 9.0 nM [86]

Mn−BDC@MWCNT AA, DA and UA 0.1 µM~1.15 mM, 10 nM~0.5 mM,
and 20 nM~1.1 mM 10, 2.0 and 5.0 nM [87]

3D Ni−MOF@CNTs BPA 1.0 nM~1.0 µM 0.35 nM [88]
MB@MWCNTs/UiO-66-NH2 doxorubicin 0.1 µM~75 µM 51 nM [89]

Co−MOF@MPC hydrazine and
nitrobenzene 5.0 µM~0.63 mM and 0.5 µM~15 µM 1.75 and 0.21 µM [96]

ZIF67−OMC HQ and catechol 0.1 µM~100 µM 52 and 36 nM [97]
DUT-9/MC Baicalein 50 nM~20 µM 15 nM [98]

pFeMOF/OMC H2O2 0.5~70.5 µM 0.45 µM [99]
Cu−MOFs/OMC hydrazine 0.5 µM~0.711 mM 0.35 µM [100]
Ag−ZIF-8/OMC xanthine 1.0 µM~0.28 mM 0.167 µM [101]

Abbreviation: rGO, reduced graphene oxide; MOFs, metal–organic framework; CS, chitosan; tpa, terephthalate;
EGR, electrochemically reduced graphene; ACOP, acetaminophen; PPy, polypyrrole; GA, graphene aerogel; CNTs,
carbon nanotubes; MWCNT, multiwall carbon nanotubes; MB, methylene blue; MPC, mesoporous carbon; OMC,
ordered mesoporous carbon; HQ, hydroquinone.

Graphene and its analogs have been widely used in the development of electro-
chemical sensors, owing to its high electrical conductivity, large specific surface area,
and excellent chemical stability. A combination of graphene and its analogs with MOFs is
an effective approach to increasing the conductivity of MOFs [102,103]. Different hybrid
composites of MOFs and graphene analogs (e.g., graphene oxide (GO) aerogel/Cu−MOFs,
reduced GO/Cr−MOFs, and graphene/ZIF-67) have been applied to construct sensors
for the enzyme-free determination of catechol, 4-nonylphenol, H2O2, glucose, paraquat,
and so on [90,91,104–108]. For example, Wang et al. synthesized the hybrid nanocom-
posites of copper terephthalate MOF−GO (Cu(tpa)−GO) via an ultrasonication method.
The nanocomposites were then used for the determination of drugs (ACOP and DA) [92].
As shown in Figure 2B, the Cu(tpa) was bound with GO through π–π stacking, hydrogen
bonding, and Cu–O coordination interactions. After being cast on the glass carbon electrode
(GCE), the GO in the composite was electrochemically transformed into reduced graphene
with a higher accessible surface area and conductivity. The electroactive Cu(tpa) MOFs in
the composites showed a positive influence on enhancing the electrochemical response of
ACOP and DA. The LOD for DA was 0.21 µM and that for AP was 0.36 µM. Heteroatom
doping can change the electronic structure of GO and improve its electrochemical proper-
ties. Recently, Mariyappan et al. developed an electrochemical sensor for chlorogenic acid
detection by using Co−MOFs/heteroatoms-doped reduced GO (rGO) [93]. The electron-
poor and electron-rich dopants activated the nearby carbon and produced more charged
sites for the adsorption of analytes. Moreover, graphene aerogels (GAs) with high porosity
and low density offer various sites for binding with MOFs. The combination of MOFs with
the GAs matrix can cause a novel synergistic effect for electrochemical sensing [94]. Thus,
Lu et al. developed an electrochemical sensor for the simultaneous detection of multiple
metal ions in aqueous media by using GAs−supported UiO-66-NH2 composites to modify
the electrode (Figure 2C) [95]. In this work, GAs enhanced the conductivity and accelerated
the electron transfer. Moreover, they acted as the backbones for the in situ growth of
UiO-66-NH2. The large specific surface area (707.79 m2 g–1) and the hierarchical porous
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structure of GA-UiO-66-NH2 provided more active sites and mass-transfer pathways for
heavy metal ions.
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Mesoporous carbon (MC), with large pore volumes and superior adsorption capacity,
can also be used as a support platform for MOFs. Different MC/MOFs (e.g., MC/Fe−MOFs,
MC/Co−MOFs, and MC/ZIF-8) composite-based electrochemical sensors have been re-
ported for the detection of H2O2, p-nitrotoluene, hydrazine, pyrazinamide, and isonicotinyl
hydrazide [97,98,109–112]. Typically, Deng et al. reported the synthesis in situ of UiO-
66 on MC and applied the UiO-66/MC composites to determine the dihydroxybenzene
isomers [113]. Zhang et al. demonstrated that the macropores of MC could regulate the
homogeneous growth of Co−MOF crystallites, thus providing a large active area for the ad-
sorption of analytes [96]. Ordered MC (OMC), with well-ordered pores, a shorter mesopore
channel length, and a large specific surface area can significantly improve the sensitivity
of sensors [100,114]. The ZIF-8 and OMC composites were applied to construct an elec-
trochemical sensor for xanthine [101]. In addition, Liu et al. reported the electrochemical
detection of H2O2 in living cells by using porphyrinic iron-based MOF (pFeMOF)/OMC
(Figure 2D) [99]. OMC restricted the growth of pFeMOF crystallites and reduced the ag-
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glomeration of pFeMOF, providing more active sites when they were exposed to H2O2.
The pFeMOF, self-assembled from Fe3+ and porphyrin, possessed a peroxidase-mimic
catalytic ability and amplified the electrochemical signal by the reduction of H2O2.

2.3. Noble Metal Nanomaterials

Noble metal nanomaterials, including gold (Au), silver (Ag), and platinum (Pt), have
been commonly used as electrocatalysts, to develop various electrochemical sensing de-
vices with high sensitivity and excellent conductivity. The incorporation of precious metal
nanomaterials into MOFs can improve the conductivity of MOFs and protect the migration
and agglomeration of metal nanomaterials [115]. AuNP−modified MOFs were used to
construct an electrochemical sensing platform for the detection of nitrite, methyl mercury
species, nitrofurazone, estrone, and DA (Table 3) [116–120]. For example, an AuNP/MOF
composite−modified CPE was constructed for the detection of BPA by Silva and co-
workers [121]. Mollarasouli et al. prepared porous Cu−MOFs/ZnTe nanorods/AuNPs
hybrid composites and used them for the determination of catechol [122]. Wang et al.
prepared AuNP−modified MOF (AuNPs/MMPF-6(Fe)) composites via electrostatic in-
teraction and employed them as the electrode materials to detect hydroxylamine with a
high electrocatalytic response (Figure 3A) [123]. This work provided a simple method for
studying the electrochemical behavior of metalloporphyrin and indicated the potential
application of MOF−based composites for bioassays.
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In addition, hybrid composites of silver nanoparticles (AgNPs) and MOFs have been
used to develop electrochemical assays for the detection of H2O2, nitrite, peracetic acid,
glucose, and so on [125–129]. For example, Peng et al. used MIL-101(Fe) MOFs as the
carriers to load AgNPs and then fabricated an electrochemical sensor for Trp detection [130].
The results showed that the combination of MIL-101(Fe) and AgNPs accelerated the elec-
tron transfer, thus enhancing the oxidation current of Trp. Liu et al. reported the detection
of glutathione (GSH) by using AgNPs to decorate flower-like ultrathin Cu-TCPP MOFs
nanosheets [131]. The nanocomposites could increase the electrical conductivity and
promote the adsorption of GSH on the sensing interface. Under the synergistic electro-
catalysis of MOFs and AgNPs, GSH was sensitively determined in a concentration range
that varied from 1.0 µM to 100 µM, with a LOD of 66 nM. Recently, Fan et al. prepared
ZIF-67/AgNPs/polydopamine (PDA) nanocomposites with a yolk–shell structure and
developed a sensor for the detection of Cl− [132]. In this work, Ag+ ions were reduced to
AgNPs by DA molecules, and the resulting AgNPs were stabilized by the PDA shell on the
ZIF-67/AgNPs surface.
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Table 3. Detection performances of different metal nanoparticle-modified MOF−based electrochemical
sensors.

Electrode Material Analyte Linear Range LOD Ref.

Pt@UiO-66 H2O2 5.0 µM~14.75 mM 3.06 µM [115]
Cu−MOF/Au NPs NO3

− 0.1 µM~4.0 mM 8.2 nM [116]
AuNPs@Cu−MOF BPA 0.2~1.0 mM 37.8 µM [121]

Cu−MOF/ZnTe NRs/Au NPs catechol 250 nM~0.3 mM 16 nM [122]
AuNPs/MMPF-6(Fe) hydroxylamine 0.01~1.0 µM and 1.0~20 µM 4.0 nM [123]

AgNPs@ZIF-67 H2O2 5.0 µM~275 µM 1.5 µM [126]
AgNPs/MIL-101(Fe) Trp 1.0~50 µM 0.14 µM [130]

Ag/Cu−TCPP GSH 1.0~100 µM 66 nM [131]
ZIF-67/Ag NPs/PDA Cl− 2.0~400 mM 1.0 mM [132]

Pt@PMOF(Fe) H2O2 0~10 mM 6.0 µM [124]

Abbreviation: AuNPs, gold nanoparticles; BPA, bisphenol A; AgNPs, silver nanoparticles; PDA, polydopamine;
Trp, L-tryptophan; GSH, glutathione; PANI, polyaniline.

Besides AuNPs and AgNPs, PtNPs were also decorated on the surface of MOFs as a
way to develop electrochemical sensors. For example, Ling et al. reported the preparation
of metalloporphyrinic PMOF(Fe) through Fe porphyrin-Zr4+ interaction (Figure 3B) [124].
The resulting Pt@PMOF(Fe), with many active Fe centers and dispersed PtNPs on the
surface, endowed the nanocomposites with a large surface area and high catalase− and
peroxidase−mimicking activities. The PMOF(Fe) acted as a nanocarrier to hinder the aggre-
gation of PtNPs. The Pt@PMOF(Fe) exhibited high catalytic activity for the electrochemical
reduction of H2O2 and O2, thus facilitating the design of MOF−based sensing platforms.

2.4. Conductive Polymers

The conductive polymers usually involved in polypyrrole (PPy), polythiophene (PTh),
and polyaniline (PANI) have been used to modify MOFs for electrochemical assays, due to
their simple preparation, good adhesion, high conductivity, and excellent environmen-
tal stability [133,134]. Thus, the polymer/MOF (e.g., PANI/Al-MOFs, PPy/Mo-MOFs,
PPy/ZIF-8, and PEDOT/MOF-525) composites were prepared and used to detect vari-
ous targets, such as Zn2+, DA, hydroxylamine, quercetin, and so on (Table 4) [135–139].
For instance, Wang et al. developed an electrochemical sensor for the detection of Cd2+,
based on PANI−functionalized UiO-66-NH2 [140]. In the composite, PANI improved
the conductivity of MOFs by accelerating the electron transfer. In addition, Xu et al. de-
veloped an electrochemical nitrite sensor based on PPy/UiO-66 composites, which were
fabricated through in situ oxidative polymerization [141]. The NH2-MIL-53(Al) MOFs
were electrodeposited on the PPy nanowires and the hybrid nanocomposites were used to
modify an electrode for the detection of Pb2+ and Cu2+ [142]. Due to their good flexibility,
electrocatalytic activity, and ease of doping, poly(3,4-ethylenedioxythiophene) (PEDOT)
has also been used to modify MOFs [70]. Wang et al. prepared Ni−MOF/PEDOT hybrid
composites for the detection of gallic acid and tinidazole [143]. PEDOT acted as the carrier
platform for the in situ growth of MOFs and prevented the aggregation of Ni−MOF.

Table 4. Detection performances of different conductive polymer and modified MOF−based electro-
chemical sensors.

Electrode Material Analyte Linear Range LOD Ref.

PANI@Al−SA Zn2+ 2.8~228.6 µM 0.59 µM [135]
CuTRZMoO4@PPy DA 1.0~100 µM 80 nM [136]

ZIF−PEDOT hydroxylamine 0.1~0.6922 mM 40 nM [137]
PPy@ZIF-8 quercetin 0.01~7.0 µM and 7.0~150 µM 7.0 nM [138]

UiO-66-NH2@PANI Cd2+ 4.5 nM~5.4 µM 2.7 nM [140]
PPy/UiO-66 NO3

– 50 nM~1.0555 mM 37 nM [141]

Abbreviation: PANI, polyaniline; SA, succinate; PPy, polypyrrole; DA, dopamine; PEDOT, poly(3,4-ethylene-
dioxythiophene).
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3. MOFs as Supporting Platforms

For the fabrication of electrochemical biosensors, biomolecules, such as enzymes,
DNA, and antibodies are always used as the recognition elements because of their high se-
lectivity, sensitivity, and signal-to-noise ratio. MOFs with large surface areas, high porosity,
and good biocompatibility can be used as excellent porous supports for the immobilization
of biomolecules on an electrode surface via covalent or non-covalent interaction, thus
improving the stability and reusability of biosensors (Table 5) [144–146].

Natural enzymes can catalyze the redox reaction of analytes through an electron trans-
fer between the enzyme and electrode. As a type of electrode modifier for third-generation
biosensors, MOFs for enzyme immobilization can not only accelerate the electron transfer
but also increase the stability of enzyme molecules during storage and operation [147–153].
The immobilization strategies can be classified into five groups: physical adsorption,
the embedding method, covalent binding, cross-linking, and electrochemical polymeriza-
tion [154,155]. Various MOFs (e.g., Cu−MOFs, ZIF-8, AuNPs/ZIF-8, MIL-100(Fe)/PtNP,
and so on) have been employed to fix glucose oxidase (GOx) and glucose dehydrogenase
(GDH) for the detection of glucose [156–161]. In the composites, MOFs can act as a sec-
ondary biomimetic catalyst for the reduction of produced H2O2. For example, ZIF-8 MOFs
have been employed to prepare enzyme-MOFs composites due to their mild synthesis
conditions. Ma et al. used ZIF-8 as the matrix for immobilizing methylene green and GDH
for the measurement of glucose [162]. The “single-step” co-precipitation in the biomimetic
mineralization method was developed to entrap different enzymes into ZIF-8, including
GOx, organophosphate-degrading enzyme A, and a-chymotrypsin [157,158,163]. Recently,
GOx and hemin were entrained in a 3D nanocage-based ZIF for the electrochemical detec-
tion of glucose via enhanced cascade biocatalysis (Figure 4A) [164]. The outer shell of ZIF
prevented the leakage of enzymes, while the interior nanocage provided a second restriction
to immobilize the enzymes and maintain their conformational freedom. In this biosensor,
GOx catalyzed the oxidation of glucose by O2 to generate gluconic acid and H2O2, which
was initiated by the oxidation of hemin. The design of enzyme/MOF−based electrochem-
ical sensors for the detection of H2O2 is a research hotspot, such as horseradish peroxi-
dase (HRP)/ZIF-67/MWCNTs, HRP/PCN-333(Fe), HRP/ZIF-8/GO, and so on [165–168].
Gong et al. reported an H2O2 sensor using a microperoxidase-11/PCN-333(Al) compos-
ite [169]. Zhang et al. used the mesoporous and microporous ZIF-8 to immobilize cy-
tochrome c (Cyt c) via electrostatic interaction (Figure 4B) [170]. The adsorption capacity
and enzymatic activity of Cyt c were increased when it was immobilized in the ZIF-8
MOFs. An electrode coated with Cyt c/ZIF-8 showed a high sensitivity for the detection
of H2O2 in real samples. Besides this, enzymes/MOFs (e.g., tyrosinase/Ni-Zn-MOFs
and tyrosinase/Cu−MOFs) have also been used to construct electrochemical sensing plat-
forms for the detection of pollutants in food and the environment, such as phenol and
BPA [171–173]. For example, Ma et al. reported the electrochemical determination of BPA,
based on multilayer tyrosinase/Cu−TCPP [174].

When the targets are captured by antibodies or aptamers immobilized on the MOFs-
modified electrode, the electrochemical impedance would significantly increase, thus
inducing a decrease in the voltammetric or amperometric signal, due to the block of mass
diffusion of redox probes to the electrode’s surface [175–177]. MOFs and their composites
(e.g., magnetic Fe3O4@TMU-21, AuNPs/Zn/Ni−ZIF-8-800@graphene, and Al−MOFs)
were used to develop immunosensors for the electrochemical detection of human epidermal
growth factor receptor 2, monensin, vomitoxin, and salbutamol [178–180]. For example,
Biswas et al. reported a label-free electrochemical immunosensor for the detection of carbo-
hydrate antigen 125, based on Zr-trimesic acid MOF (MOF-808)/CNT [181]. The specific
antigen-antibody interaction prevented the transfer of [Fe(CN)6]4−/3− to the electrode
surface. Li et al. reported an electrochemical immunosensor for the detection of alpha-
fetoprotein, using AuNPs/ZIF-8 as the support [182].
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DNA or RNA aptamers can be immobilized on MOFs via electrostatic interactions,
hydrogen bonds, π–π stacking, and van der Waal forces. Many aptamer/MOF−based
electrochemical aptasensors have been developed for the determination of zearalenone,
lysozyme, cocaine, CEA, and so on [183–186]. A CuMOF film electrode prepared using an
electrodeposition method was used for the dual detection of Staphylococcus aureus [187].
As shown in Figure 5A, after the formation of a CuMOF film, AuNPs were electrodeposited
on the film to load the DNA aptamers and enhance the electron transfer. When the micro-
coccal nucleases were secreted by the pathogen, aptamers were cleaved by the nuclease,
and the ion movement was accelerated, resulting in an increase in the electrochemical signal
of [Fe(CN)6]3−/4−. Meanwhile, the pathogen captured by the aptamer led to a decrease
in the electrochemical signal. To avoid the requirement of redox probes in the electrolyte,
label-free, and redox probe-free biosensors can be developed by using electroactive MOFs
as the substrates [188]. For example, Xing et al. reported a probe-free CuMOF−based
electrochemical immunosensor for methyl jasmonate, in which numerous Cu2+ ions in the
Cu−MOFs produced a strong redox signal directly [189].

Considering that DNA-based homogeneous electrochemical analysis allows target
recognition in a homogeneous solution, it is important to develop a continuous homoge-
neous analysis system for rapid diagnosis and high-throughput bioanalysis. [190]. In ho-
mogeneous analysis, the working electrode usually has the ability to capture DNA, but its
sensitivity is limited, due to the lack of signal amplification. Thus, Wang et al. developed
a homogeneous electrochemical biosensor for the detection of miRNA using Co−MOF
nanozyme−modified ITO electrodes (Figure 5B) [191]. The modified electrode could adsorb
ssDNA via π−π interactions and repel the MB−labeled hairpin DNA probe. The target
miRNA could hybridize with the hairpin (HP) probe to form a DNA/miRNA strand.
The DNA probe in the DNA/miRNA strand was cut by duplex-specific nuclease (DSN),
then the released miRNA could hybridize with HP again, thus initiating the next cy-
cle. The released MB−labeled short DNA strands were then adsorbed on the surface of
MOF/ITO electrode. The MB tags could be electrochemically oxidized by the modified
electrode in the presence of H2O2.
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Table 5. Detection performances of different electrochemical sensors using MOFs as support platforms.

Type of MOFs Analyte Linear Range LOD Ref.

Ag@Zn−TSA H2O2 0.3 µM~20000 µM 0.08 µM [148]
ZIF-8@GOx miRNA-21 0.1 nM~10 µM 29 pM [149]

Cu−Hemin−GOx Glucose 10~1555 µM 2.2 µM [158]
PDA/ZIF-8@rGO Glucose 1.2 µM~1.2 mM 0.333 µM [159]

GDH/MG−Tb@MOF−CNTs Glucose 25 µM~17 mM 8 µM [161]
MG−ZIFs−GDH Glucose 0.1~2 mM Not reported [162]

GOx/Hemin@NC−ZIF Glucose 1~20 mM 10 µM [164]
HRP/ZIF-67(Co)/MWCNT H2O2 1.86~1050 µM 0.11 µM [165]

HRP@PCN-333(Fe) H2O2 0.5 µM~1.5 mM 0.09 µM [166]
ZIFs@HRP/GO H2O2 20 µM~6 mM 3.4 µM [167]

MP-11-PCN-333(Al)−GO H2O2 10~800 µM 3 µM [168]
MP-11-PCN-333(Al)- 3D-KSC H2O2 0.387 µM~1.725 mM 0.127 µM [169]

Cyt c@ZIF-8 H2O2 290 µM~3.6 mM Not reported [170]
Tyr@NiZn−MOF NSs Phenol 0.08 µM~58.2 µM 6.5 nM [171]

Tyr@Cu−MOFs BPA 50 nM~3.0 µM 13 nM [172]
Cu−BTABB−MOF@rGO BPA 0~100 µM 0.208 µM [173]

Tyr@Cu–TCPP BPA 3.5 nM~18.9 µM 1.2 nM [174]
AuPd NPs@UiO-66-NH2/CoSe2 Sulfaquinoxaline 1 pg/mL~100 ng/mL 0.547 pg/mL [175]

Zn−MOF-on-Zr−MOF PTK7 1 pg/mL~1.0 ng/mL 0.84 pg/mL [177]
Fe3O4@TMU-21 HER2 1 pg/mL~100 ng/mL 0.3 pg/mL [178]
MOF-808/CNTs CA 125 0.001~0.1 and 0.1~30 ng/mL 0.5 pg/mL [181]
AuNPs@ZIF-8 AFP 0.1 pg/mL~100 ng/mL 0.033 pg/mL [182]

MTV polyMOF(Ti) ZEN 10 fg/mL~10 ng/mL 8.9 fg/mL [183]
493-MOF Lysozyme 5 pg/mL~1 ng/mL 3.6 pg/mL [184]

2D AuNCs@521−MOF Cocaine 1 pg/mL~1 ng/mL 0.44 pg/mL [185]
Cu−MOFs S. aureus 7 − 7 × 106 cfu/mL 1.9 cfu/mL [187]
Cu−MOFs HBsAg 1~500 ng/mL 730 pg/mL [188]

Cu−MOF/COOH−GO Methyl jasmonate 10 pM~100 µM 0.35 pM [189]

Abbreviation: TSA, thiosalicylate; GOx, glucose oxidase; PDA, polydopamine; rGO, reduced graphene oxide;
GDH, glucose dehydrogenases; MG, methylene green; CNTs, carbon nanotubes; HRP, horseradish peroxidase;
MWCNT, multi-walled carbon nanotube; GO, graphene oxide; MP-11, microperoxidase-11; 3D-KSC, three-
dimensional (3D) kenaf stem-derived porous carbon; Cyt c, cytochrome c; Tyr, tyrosinase; BPA, bisphenol A; TCPP,
tetrakis(4-carboxyphenyl)porphyrin; PTK7, protein tyrosine kinase-7; HER2, human epidermal growth factor
receptor 2; CA 125, carbohydrate antigen 125; AFP, alpha fetoprotein; MTV polyMOF(Ti), multivariate titanium
metal–organic framework; ZEN, zearalenone; AuNCs, gold nanoclusters; CEA, carcinoembryonic antigen; S.
aureus, Staphylococcus aureus; HBsAg, hepatitis B surface antigen; COOH-GO, carboxylated graphene oxide.
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4. MOFs as Signal Labels
4.1. Nanocarriers

Because of their excellent properties, such as a large surface area, high porosity, good
adsorption ability, and ease of functionalization, MOFs have been regarded as ideal matrices
to load various functional materials for signal output and amplification, including electroac-
tive small molecules, metal ions, enzymes, and nanoparticles (Table 6). Electroactive small
molecules (e.g., ferrocene (Fc), 3,3′,5,5′-tetramethylbenzidine (TMB), and MB) are always
used as the labels of antibodies or nucleic acids for signal output. However, the weak elec-
trochemical signal and the low marker number may limit the sensitivity of biosensors with
electroactive small molecules as the labels. When many small molecules were loaded into
MOFs, the signal would be greatly amplified, with the recognition element-labeled MOFs
as the signal reporters [192,193]. For this purpose, electroactive molecule-encapsulated
MOFs have been used as signal probes for the detection of the p53 gene, N6-methyladenine,
procalcitonin, exosomes, and so on [194–197]. For example, the electroactive ferrocenecar-
boxylic acid was covalently confined in Zn−MOF as the signal tag for the detection of
amyloid−β [198]. Li et al. developed an immunosensor for C-reactive protein detection
by loading toluidine blue in the channel of the Cu(II)−HKUST-1 [199]. Sun et al. reported
an electrochemical biosensor for the detection of glioblastoma (GBM) −derived exosomes,
with MB−loaded Zr−based UiO-66 MOFs as the signal reporters [200]. As displayed in
Figure 6A, the peptide probes were modified on the electrode for the capture of exosomes
by binding to human epidermal growth factor receptor (EGFR) and the EGFR variant (v)
III mutation (EGFRvIII), overexpressed on the surface of exosomes. Then, the MB@UiO-66
probes were captured by the electrode, via the interaction between Zr4+ ions in the MOFs
and phosphate groups on the surface of exosomes. The method could quantify exosomes
in the concentration range of 9.5 × 103~1.9 × 107 particles/µL by monitoring the signal
change of MB.

The low signal-conversion efficiency based on the ratio of aptamer and target may
severely limit the detection sensitivity. Through the DNA−based target cycling ampli-
fication, Zhang et al. developed a biosensor for enrofloxacin (ENR) detection by using
thionine (Thi)−loaded AuNP-coated bimetallic MOF (Thi−Au@ZnNi−MOF) as the signal
label (Figure 6B) [201]. In this study, the signal was amplified by the Pb2+-dependent
DNAzyme-driven DNA walker. The hairpin DNA (HP1) and the hybrid of wDNA and the
ENR aptamer (APT) were self-assembled on an electrode modified with Au&Pt−coated
hollow cerium oxide (AuPt@h−CeO2) and polyethyleneimine (PEI)−functionalized molyb-
denum disulfide (PEI−MoS2). The APT was released from the electrode surface after
binding to ENR. The resulting wDNA could cleave the HP1 in the presence of Pb2+, thus
resulting in the formation of numerous capture probes. This allowed for the capture of
Thi−Au@ZnNi−MOF through an interaction between the capture probe on the electrode
and the signal probe on the Thi−Au@ZnNi−MOF. By monitoring the signal change with
square wave voltammetry (SWV), ENR was determined with a linear range of 5.0 × 10−6

to 1.0 × 10−2 ng/mL.
MOFs (e.g., Cu−TCPP, UiO-66-NH2) could be employed to carry different signal

molecules for the simultaneous detection of multiple targets, such as CEA and carbohy-
drate antigen 125 (CA125), KANA, and CAP [202,203]. For instance, Chang et al. reported
a DNA−functionalized MOF−based homogeneous electrochemical biosensor for the si-
multaneous determination of multiple tumor biomarkers [204]. As shown in Figure 7A,
two electroactive molecules (MB and TMB) were encapsulated into MOFs, and different
double-stranded DNA (dsDNA) hybrids were used as the gatekeepers to cap the pore
and prevent the release of the electroactive tags, respectively. In the presence of let-7a
and miRNA-21, the corresponding dsDNA hybrids were unfolded through the toehold-
mediated strand-displacement reaction. Then, the signal molecules were released and
quantitatively measured by the electrode. The targets of let-7a and micRNA-21 were si-
multaneously determined, with an LOD down to 3.6 and 8.2 fM, respectively. Due to
the well-defined SWV signals at different potentials, metal ions (e.g., Cd2+, Pb2+, Zn2+
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and Cu2+) have been entrapped into MOFs as the signal labels for the simultaneous de-
tection of different targets. For example, Yang et al. used UiO-66-NH2 to load Cd2+ and
Pb2+ ions for the detection of triazophos and thiacloprid [205]. UIO-66-NH2 was used
to carry many metal ions (Pb2+ and Cd2+) as the labels for the simultaneous detection of
oxytetracycline and kanamycin [206]. Chen et al. proposed an electrochemical method
for the simultaneous determination of multiple antibiotics using an amine-functionalized
nanoscale MOF (NMOF) as the signal label (Figure 7B) [207]. In this work, the NMOF
was modified with the complementary DNA of the kanamycin (KANA) aptamer (cDNA1)
or chloramphenicol (CAP) aptamer (cDNA2). Then, Pb2+ and Cd2+ ions were loaded on
the cDNA1−modified NMOF and cDNA2−modified NMOF, respectively. The two types
of NMOFs could be captured by aptamer-modified magnetic beads. In the presence of
KANA and CAP, the complementary DNA−modified NMOFs were released and were
then determined by SWV under magnetic separation. The detection limits for KANA and
CAP were 0.16 pM and 0.19 pM, respectively.
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Reprinted with permission from Ref. [207]. Copyright 2017, Elsevier.

Hemin is a redox mediator with a reversible Fe(III)/Fe(II) redox pair and shows
peroxidase-like catalytic activity [208]. However, the dimerization and oxidative decompo-
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sition of hemin result in a finite catalytic lifetime. MOFs with high porosity can fix hemin
to prevent dimerization and self-destruction. Meanwhile, hemin can endow MOFs with
excellent enzyme-mimicking catalytic ability. For example, hemin/Fe-MIL-88 was used as
the signal probe for the detection of fibroblast growth factor receptor 3 gene and throm-
bin [209]. Ling et al. employed Cu−MOFs (HKUST-1) to encapsulate redox-active FeTCPP
and the recognition element of streptavidin (SA) for DNA detection (Figure 8) [210]. In the
presence of target DNA, the hairpin DNA on the electrode surface was unfolded to form a
structure with the combinative SA aptamer. Then, the FeTCPP@MOF−SA composites were
immobilized on the electrode surface, based on the specific recognition between SA and its
aptamer. The composites could catalyze the oxidation of ophenylenediamine (o-PD) to 2,2′-
diaminoazobenzene, producing a high electrochemical signal. This “signal-on” aptasensor
showed a wide linear range and an LOD down to 0.48 fM. To avoid the use of the unstable
H2O2 and redox mediate, Xie et al. developed an electrochemical aptasensor for thrombin
(TB) detection with hemin-decorated MOFs [211]. Fe−MOFs-NH2 was used to encapsulate
hemin and AuNPs were used for the conjugation of aptamer and GOx. In the presence of
TB, a large number of hemin molecules in Au/hemin@MOFs, captured by the electrode,
acted as redox mediators to generate a strong electrochemical signal. The signal could
be further amplified by the GOx−catalyzed generation of H2O2. Finally, the aptasensor
exhibited a wide linear range (0.0001~30 nM) and a low LOD (0.068 pM) for TB detection.
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MOFs, as enzyme nanocarriers, show high loading capacity. More importantly,
MOFs can protect enzymes from biological, thermal, and chemical degradation and
still maintain their biological activities. Therefore, enzyme/MOFs, such as GOx/ZIF-
8, HRP/Au@Pt/MIL-53(Al), and HRP/Pt/PCN-224 have been used as the signal labels
of biosensors to detect CA-242, the COVID-19 nucleocapsid protein, and breast cancer
cells [212–214]. For instance, Liu et al. developed an electrochemical immunosensor for
zearalenone (ZEN) detection, with HRP and IgG-encapsulated ZIFs (HRP/Ab@ZIF-L)
as the signal tags (Figure 9A) [215]. The captured HRP/Ab@ZIF-L could catalyze the
electrochemical oxidation of TMB in the presence of H2O2. Li et al. encapsulated GOx and
HRP in ZIF-90 for the enzyme cascade reaction to amplify an electrochemical signal [216].
Alkaline phosphatase (ALP) can catalyze the hydrolysis of inert substrates into redox-active
products. Recently, Feng et al. designed an electrochemical immunosensor, using Thi− and
ALP−loaded ZIFs as the signal tags (Figure 9B) [217]. In this work, bovine serum albumin
(BSA) was attached to the surface of ZIF-8 for the immobilization of antibodies and ALP
through covalent interactions. ALP catalyzed the hydrolysis of p-aminophosphate ester
(p-APP) to produce p-aminophenol (p-AP). The resulting p-AP led to the formation of
AgNPs on the electrode surface by the reduction of Ag+ ions. Because of the excellent
conductivity of AgNPs, an amplified electrochemical signal from the oxidation of Thi was
observed. This method allowed for the detection of carbohydrate antigen 72–4 (CA 72–4),
with a linear range of 1 µU/mL−10 U/mL.
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Figure 9. (A) Schematic illustration of the synthetic process for HRP/Ab@ZIF-L and the corre-
sponding HRP/Ab@ZIF-L−based ELISA for the detection of ZEN. Reprinted with permission from
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anism of a dual-labeling ZIF-8-based immunosensor for the electrochemical detection of tumor
markers. Reprinted with permission from Ref. [217]. Copyright 2021, Elsevier.

The hybrid composites of MOFs and nanomaterials can be prepared via encapsula-
tion or physical adsorption, which shows better performance than the single component
in electrochemical analysis [218–221]. For example, Zhong et al. reported the detection
of Escherichia coli O157:H7 (E. coli O157:H7) using CdS QDs−encapsulated ZIF-8 MOFs
(CdS@ZIF-8) as the signal probes [222]. As shown in Figure 10A, E. coli O157:H7 was cap-
tured by the antibody and poly(p-aminobenzoic acid) (PABA)-modified electrode, which
allowed for the attachment of the antibody-modified CdS@ZIF-8 probes. Then, a large
number of Cd(II) ions were released by treating the electrode with HCl. The released Cd(II)
ions were determined by differential pulse voltammetry (DPV). As a result, E. coli O157:H7
was detected, with a linear range of 10~108 CFU/mL and an LOD of 3 CFU/mL. However,
dissolution by strong acids or oxidants and pre-concentration before electrochemical mea-
surement is complicated and time-consuming. To simplify the experimental procedures,
Wang et al. reported the detection of telomerase, using SA−covered AgNP−loaded PCN-
224 MOFs (SA−AgNPs/PCN-224) as the signal reporter (Figure 10B) [223]. The elongation
of a primer by telomerase led to the formation of an SA aptamer, due to the allosteric
activation hairpin probe on the electrode surface. Then, the SA−AgNPs/PCN-224 probe
was captured by the electrode through SA−aptamer interaction. A strong electrochemical
signal was observed due to the highly characteristic solid-state Ag/AgCl process of AgNPs
in the KCl electrolyte medium. The telomerase concentration could be determined by
monitoring the signal change from AgNPs.

Metal, bimetallic alloy, and metal oxide nanoparticles are of great significance in
electrocatalysis and electrochemical bioassays, due to their excellent electrocatalytic activ-
ity and relatively high stability. They have been integrated with MOFs to exhibit higher
catalytic efficiency and enhance detection sensitivity, due to the synergistic effect [224].
Electrochemical biosensors based on the composites of MOFs and metal nanoparticles
(e.g., hemin−MOFs/PtNPs, AgPt/PCN-223-Fe, and Pd/MIL101-NH2) have been devel-
oped for the detection of FGFR3 gene mutation, ochratoxin A, telomerase activity, and so
on [209,213,225–229]. For instance, Ling et al. synthesized the composites of PtNPs and
UiO-66-NH2 MOFs via a one-step method and then used them to determine the telomerase
activity [230]. Yu et al. developed a Pb2+ sensor by using Pd/Pt−modified Fe−MOFs
(Fe−MOFs/PdPt) as the signal reporters [231]. As displayed in Figure 11, the substrate
DNA strands attached to the rGO−tetraethylene pentamine-gold nanoparticle (rGO-TEPA-
Au)-modified electrode were enzymatically cleaved in the presence of Pb2+, which led to the
formation of short-signal DNA strands. Then, the hairpin DNA-modified Fe−MOFs/PdPt
probes were captured by binding them with the signal DNA strands to catalyze the electro-
chemical reaction of H2O2.
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Ref. [223]. Copyright 2021, Elsevier.

Table 6. Detection performances of different electrochemical sensors, using MOFs as nanocarriers.

Type of MOFs Analyte Linear Range LOD Ref.

Zn−MOF/Fe3O4–COOH/Thi CTnI 0.04~50 ng/mL 0.9 pg/mL [192]
MB@Zr−MOFs patulin 50 fg/mL~5 µg/mL 14.6 fg/mL [193]

MB@MIL-101-NH2(Cr) p53 gene 10 fM~100 nM 1.4 fM [194]
MB@Zr−MOFs N6-methyladenine 1 fM~1 nM 0.89 fM [195]

UiO-66-TB procalcitonin 1 pg/mL~100 ng/mL 0.3 pg/mL [196]
GDH@ZIF-8/[Fe(CN)6]3−/UiO-66 exosome 1.0 × 103~1.0 × 108 particles/mL 300 particles/mL [197]

Fc−Zn−MOF amyloid−β 0.1 pg/mL~100 ng/mL 0.03 pg/mL [198]
Cu−MOFs−TB CRP 0.5~200 ng/mL 166.7 pg/mL [199]
MB@Zr−MOFs exosome 9.5 × 103~1.9 × 107 particles/µL 7.83 × 103 particles/µL [200]

Au@ZnNi−MOF enrofloxacin 5 fg/mL~10 pg/mL 0.102 fg/mL [201]

Cu−TCPP–TB and PB CEA and CA125 0.1~160 ng/mL and 0.5~200 U/mL 0.03 ng/mL and
0.05 U/mL [202]

HP−UIO-66-MB and Fc KANA and CAP 0.1 pM~50 nM 35 fM and 21 fM [203]
UiO-66-NH2-MB and TMB let-7a and miRNA-21 0.01~10 and 0.02~10 pM 3.6 fM and 8.2 fM [204]

UiO-66-NH2-Cd2+ and Pb2+ TRS and THD 0.2~750 ng/mL 0.07 and 0.1 ng/mL [205]
hemin-MOFs/PtNPs FGFR3 gene mutation 0.1 fM~1 nM 0.033 fM [209]

FeTCPP@MOF-SA DNA 10 fM~10 nM 0.48 fM [210]
MB−GOx−ZIF-8/Au−rGO CA 242 0.001~1000 U/mL 69.34 µU/mL [212]
HRP/hemin/G-quadruplex

Au@Pt/MIL-53 (Al) nucleocapsid protein 0.025~50 ng/mL 8.33 pg/mL [213]

HRP/hemin/Gquadruplex
PtNPs/PCN-224 Cancer cells 20~1×107 cells/mL 6 cells/mL [214]

HRP/Ab@ZIF-L ZEN 0.5 ng/L~0.476 µg/L 0.5 ng/L [215]
GOx/HRP/ZIF-90 CA-125 0.1 pg/L~40 µg/L 0.05 pg/mL [216]

CdS@ZIF-8 Escherichia coli
O157:H7 10~108 CFU/mL 3 CFU/mL [222]

AgNPs/PCN-224 telomerase activity 1 × 10−7~1 × 10−1 IU/L 5.4 × 10−8 IU/L [223]
Cu2O@Cu−MOF@AuNPs CEA 50 fg/mL~80 ng/mL 17 fg/mL [224]

AgPt/PCN-223-Fe ochratoxin A 20 fg/mL~2 ng/mL 14 fg/mL [225]
Pd/MIL101-NH2 telomerase activity 5 × 102~1.62 × 107 HeLa cells/mL 11.25 HeLa cells/mL [226]

Pd@UiO-66 miRNA-21 20 fM~600 pM 0.713 fM [227]
PdNPs@Fe−MOFs miRNA-122 0.01 fM~10 pM 0.003 fM [228]

Pd@PCN-222 ochratoxin A 10 fg/mL~10 ng/mL 6.79 fg/mL [229]
Pt@UiO-66-NH2 telomerase activity 5 × 102~1 × 107 HeLa cells/mL 2.0 × 10−11 IU/L [230]

Fe−MOFs/PdPt NPs Pb2+ 5 pM~1 µM 2 pM [231]

Abbreviation: Thi, thionine; CTnI, cardiac troponin-I; MB, methylene blue; TB, toluidine blue; GDH, glucose de-
hydrogenase; Fc, ferrocene; CRP, C-reactive protein; TCPP, tetrakis(4-carboxyphenyl)porphyrin; PB, Prussian blue;
CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; KANA, kanamycin; CAP, chloramphenicol;
TMB, 3,3′,5,5′-Tetramethylbenzidine; TRS, triazophos; THD, thiacloprid; SA, streptavidin; GOx, glucose oxidase;
rGO, reduced graphene oxide; HRP, horseradish peroxidase; ZEN, zearalenone.
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4.2. Electroactive Labels

The elaborate selection of metal ions and organic ligands can endow MOFs with
unique functionality, including optical and electrochemical properties and catalytic activity.
MOFs with redox-active metal ions or ligands as the precursors can be directly utilized as
the electrochemical signal labels of biosensors without acid dissolution (Table 7). Taking
advantage of their specific voltammetric signals at different potentials, MOFs with redox-
active metal ions (e.g., Cu−MOFs, Cd−MOFs, and Co−MOFs) are used as the electroactive
probes for the detection of endotoxin, CEA, thrombin, prostate-specific antigen, microRNA,
and so on [232–240]. Liu et al. reported an electrochemical immunosensor for the detection
of C-reactive protein by using Cu−MOFs as signal probes [241]. In this study, AuNPs
were used to decorate Cu−MOFs with improving conductivity, and PtNP−modified cova-
lent organic frameworks were utilized as the electrode substrates. After the formation of
sandwich-like immuno-complexes, the MOFs composites with a large amount of Cu2+ ions
produced a high electrochemical signal. The immunosensor showed a wide linear range
(1~400 ng/mL) for C-reactive protein detection. Recently, Dong et al. reported an aptasen-
sor for Pb2+ detection, with PtNPs@Cu−MOF as the signal reporter (Figure 12A) [242].
In this work, DNA walker signal amplification was used to improve the sensitivity through
the recognition of an rA site in the DNA walker-substrate strand (SS). In the presence of
Pb2+, the SS mixture on the electrode surface could be split, thus producing two single
S1 and S2 chains. After DNA walker signal amplification, the hairpin DNA−modified
PtNPs@Cu−MOF nanocomposites were captured by an electrode covered with the residual
DNA fragments. The Pb2+ concentration was determined by the current change from
Cu−MOF.

To meet the requirements of the point-of-care (POC) test applications, Chen et al.
reported a dual-response biosensor for the electrochemical and glucometer detection of
DNA methyltransferase activity, based on invertase−modified Cu−MOFs [243]. As shown
in Figure 12B, the Cu−MOFs were sequentially modified with AuNPs, capture probes
(CP), and invertase (invertase/CP/Au/CuMOFs). The Au/CuMOFs hybrid composites
served as electroactive probes for the production of electrochemical signals and as the
support matrixes for the immobilization of invertase. In the presence of Dam MTase,
the hairpin probe 1 (HP1) was methylated and then hydrolyzed with the assistance of
restriction endonuclease (DpnI). The released binding sequence opened the hairpin probe
2 (HP2) that was immobilized on the electrode surface via hybridization. The exposed
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sticky terminus on the electrode surface was then hybridized with the CP to tether the
invertase/CP/Au/CuMOFs. The electrochemical response of Cu2+ ions in Cu−MOFs was
recorded by DPV. Invertase in the conjugate catalyzed the hydrolysis of sucrose to generate
glucose, which could be readily detected using a personal glucometer.
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walker-SS/AuE sensor and the mechanism of Pb2+ detection. Reprinted with permission from
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biosensor for Dam MTase activity assay. Reprinted with permission from Ref. [243]. Copyright 2019,
Elsevier.

MOFs with NH2-BDC as the ligand can be directly used as electroactive signal re-
porters, which is attributed to the oxidation of amino groups in the ligands [244]. For this
view, Li et al. developed an electrochemical biosensor by integration of magnetic separation
with nuclease-assisted walking DNA nanomachine [245]. As shown in Figure 13A, the hy-
brid formed between the MUC1 aptamer and blocker DNA probe (BDP) was immobilized
on the surface of a magnetic bead. In the presence of the MUC1 protein, the BDP was
released from the surface of the magnetic bead, thus opening the hairpin DNA attached
to the AuNPs/MXene−modified electrode. With exonuclease III (Exo III)-assisted cycle
amplification, the 3′-end part of DNA in the BDP/DNA hybrid was cut, and the released
BDP was moved on the electrode surface to trigger other enzymatic reactions. The residual
DNA fragments on the electrode could hybridize with the hairpin DNA probes attached
to the AuNPs/UiO-66-NH2 MOFs, thus producing an enhanced DPV signal from the
oxidation of 2-ATPA ligands in the MOFs. Recently, Dong et al. reported a ratiometric
dual-signal electrochemical biosensor for the detection of miRNA, based on Fe−MOFs and
UiO-66-NH2 [246]. As displayed in Figure 13B, the Fe−MOFs-NH2 composites were func-
tionalized, with hairpin H2 probes as the signal tags. The MB-GA-UiO-66-NH2 composites
were used to modify the electrode for the electrodeposition of AuNPs to immobilize the
captured hairpin H1 probes. In the presence of target miRNA-155, the catalytic hairpin
assembly (CHA) reaction was triggered, and numerous Fe−MOFs were tethered on the
electrode, generating an increased electrochemical signal. Meanwhile, the nanoprobes
with poor conductivity hindered the electron transfer, leading to a decrease in the DPV
response from MB. The target concentration was determined by monitoring the change in
the ratio response of IFe-MOFs/IMB with a LOD of 50 aM. A ratiometric biosensor with an
electroactive species acting as the inner reference probe can improve detection accuracy.
Xie et al. reported a sandwich ratiometric electrochemical aptasensor by using Fe−MOF
(Fe−MIL-88) and [Fe(CN)6]3−/4−as the signal reporter and inner reference probe, respec-
tively [247]. A three-dimensional DNA-nanotetrahedron that can eliminate non-specific
adsorption from biomolecules was immobilized on the surface of an AuNPs@IL-MoS2
electrode for the capture of a target (TB). The signal DNA−modified Au NPs@Fe-MIL-88
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could be attached to the electrode surface by binding with the captured target, thus produc-
ing an oxidation peak at 0.8 V. With the increase in target concentration, the current from
the signal reporter increased, while there was no significant change in the peak current of
the inner reference probe. The target concentration was determined according to the ratio
response of Isignal reporter/Iinner reference, with a LOD down to 59.6 fM.

Table 7. Detection performances of different electrochemical sensors by using MOFs as electroactive
labels.

Type of MOFs Analyte Linear Range LOD Ref.

Cu−BTC MOFs lipopolysaccharide 1.0 pg/mL~1.0 ng/mL 0.29 pg/mL [232]
Ag−MOFs CEA 0.05~120 ng/mL 8 fg/mL [233]

PtPd NPs/Co−MOFs thrombin 1 pM~30 nM 0.32 pM [234]
AuNPs/Cu−MOFs miRNA-155 1.0 fM~10 nM 0.35 fM [235]

ZIF-67/ZIF-8 PSA 5 pg/mL~50 ng/mL 0.78 pg/mL [236]
Cd−MOFs ochratoxin A 0.05~100 ng/mL 10 pg/mL [237]

Cd−MOFs-74 p53 gene 0.01~30 pM 6.3 fM [238]
Cu−MOFs@PtPd NPs Hg2+ 0.001~100 nM 0.52 pM [239]

Co−MOFs@AuNPs Mucin 1 0.004~400 pM 1.34 fM [240]
Cu−MOFs@AuNPs CRP 1~400 ng/mL 0.2 ng/mL [241]
PtNPs@Cu−MOF Pb2+ 3.0 pM~5 µM 0.2 pM [242]

Invertase/Cu−MOF DNA methyltransferase
activity 0.002~1 U/mL 0.001 U/mL [243]

MIL-101(Fe) telomerase activity 1 × 10−6~5 × 10−2 IU/L 1.8 × 10−7 IU/L [244]
UiO-66-NH2 Mucin 1 5 pg/mL~ 50 ng/mL 0.72 pg/mL [245]

Fe−MOFs/MB−GA−UiO-66-NH2 miRNA 1 fM~100 nM 50 aM [246]
Fe−MOFs@AuNPs thrombin 0.298~29.8 pM 59.6 fM [247]

Abbreviation: BTC, 1,3,5-benzenetricarboxylic acid; CEA, carcinoembryonic antigen; AuNP, gold nanoparticles;
PSA, prostate-specific antigen; CRP, C-reactive protein; MB, methylene blue; GA, graphene aerogel.
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4.3. Electrocatalysts

Several types of MOFs have been documented to possess enzyme-mimicking catalytic
activity, such as Ce−MOFs, Cu−MOFs, and Fe−MOFs, which are denoted as nanozymes.
Compared with natural enzymes, these nanozymes have comparable catalytic perfor-
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mances. More importantly, they can remain stable in different, harsh, conditions. Thus,
the MOF nanozymes (e.g., Ce−MOFs and Cu−MOFs) have been used to develop elec-
trochemical biosensors for the determination of bacterial lipopolysaccharide, hantavirus,
carbohydrate antigen 15–3, and so on (Table 8) [248–251]. For example, Ce−MOFs can be
used as electrocatalysts to design electrochemical biosensors in view of the redox property
of Ce3+/Ce4+. Shen et al. developed an electrochemical aptasensor for lipopolysaccha-
ride detection by using Ce−MOFs and Zn2+−dependent DNAzyme-assisted recycling
for dual signal amplification [252]. As illustrated in Figure 14A, the CeMOFs were dec-
orated with AuNPs and the thiolated HP2 (HP2/AuNPs/CeMOFs). The presence of
lipopolysaccharides triggered the release of the reporter DNA from the duplex. The re-
leased reporter DNA as a DNAzyme promoted the circular cleavage of HP1 probes. Then,
the HP2/AuNPs/CeMOFs were recruited on the electrode to catalyze the electrochemical
oxidation of AA. In addition, the CeMOFs were employed by Yu and co-workers to catalyze
the oxidation of Thi for the detection of thrombin [253]. Dong et al. developed a ratiometric
CeMOFs-based electrochemical biosensor for the detection of telomerase activity [254].
In this study, the MB−modified hairpin probe was hybridized with telomerase primer
(TP) and then anchored to the electrode surface. After the telomerase-catalyzed extension,
the hairpin probe was unfolded and the MB tag was farther away from the electrode surface,
resulting in a decreased signal. Meanwhile, the CeMOFs/AuNPs catalyzed the oxidation
of hydroquinone, leading to a “signal-on” electrochemical response.
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Because of their peroxidase-like catalytic ability, porphyrinic MOFs (PCN-222 and
(Fe-P)n-MOF) can be utilized as novel electrocatalysts for the analysis of DNA, T4 polynu-
cleotide kinase, and prostate-specific antigen (PSA) [256–259]. Ling et al. reported a
nanoscaled porphyrinic MOF (PorMOF)−based electrochemical biosensor for the detection
of telomerase [255]. As shown in Figure 14B, the SA−modified PorMOF was synthesized,
with iron porphyrin as the linker and Zr4+ ion as the node. In the presence of telomerase,
the assistant DNA 1 (aDNA1) was catalytically extended to self-fold into a hairpin struc-
ture and the released assistant DNA2 (aDNA2) opened the cDNA through hybridization.
Then, the PorMOF@SA nanoprobe was immobilized on the electrode surface through the
biotin−SA interaction, which generated an enhanced signal via the electrocatalytic reduc-
tion of O2. Cui et al. reported the electrochemical detection of Pb2+ with PorMOF decorated
with AuNPs and Pb2+-dependent DNAzyme [260]. In this work, the PorMOF/AuNPs
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catalyzed the electrochemical oxidation of TMB by H2O2, greatly amplifying the current
intensity.

Table 8. Detection performances of different electrochemical sensors by using MOFs as electrocatalysts.

Type of MOFs Analytes Linear Ranges LOD Ref.

Cu2+−NMOFs lipopolysaccharide 0.0015~750 ng/mL 0.61 pg/mL [248]
CuMOF hantavirus 1 fM~1 nM 0.74 fM [249]

Cu−MOFs@GOx CA15-3 10 µU/mL~10 mU/mL 5.06 µU/mL [250]
pSC4−AuNPs/Cu−MOFs Fractalkine 10 pg/mL~10 µg/mL 7.4 pg/mL [251]

AuNPs/Ce−MOFs lipopolysaccharide 10 fg/mL~100 ng/mL 3.3 fg/mL [252]
Thi/AuNPs/Ce(III, IV)−MOF thrombin 0.1 fM~10 nM 0.06 fM [253]

AuNPs/Ce−MOF telomerase activity 2 × 102~2 × 106 cells/mL 27 cells/mL [254]
PorMOF@SA telomerase activity 1 × 102~1 × 107 cells/mL 30 cells/mL [255]
PCN-222@SA DNA 10 fM~100 nM 0.29 fM [256]

L/(Fe-P)n-MOF T4 polynucleotide kinase 1.0 mU/mL~1.0 U/mL 0.62 mU/mL [257]
GR−5/(Fe−P)n−MOF Pb2+ 0.05~200 nM 0.034 nM [260]

Abbreviation: GOx, glucose oxidase; CA15-3, carbohydrate antigen 15–3; pSC4−AuNPs, para-sulfonatocalix [4]
arene−coated gold nanoparticles; Thi, thionine; SA, streptavidin.

4.4. Sacrificial Templates

Prussian blue (PB), a mixture of ferric and ferrous cyanide, has been widely used in
the fields of biomedicine and electrochemistry. It can be used as a redox and electrocat-
alytic label for bioassays. However, its low stability in water limits the usage of PB in
bioassays. Recently, porous Fe−MOFs have been used as metal precursors to produce
electroactive PB NPs in situ for signal output and amplification. For example, Bao et al.
reported a sensing platform for the detection of miRNA-21, based on the electrochemical
conversion of Fe−MOFs into PB NPs [261]. As shown in Figure 15A–C, multipedal poly-
dopamine nanoparticles-DNA (PDANs−DNA) nanomachines were designed that worked
on the electrode via multiple legs under exonuclease III-driving. After the formation of
DNA dendrimers through the assembly of two hairpins, the Fe-MIL-88-NH2 MOFs were
immobilized on the electrode. Under a high potential, an acid microenvironment was
produced due to the generation of H+ on the electrode surface via the water-splitting
reaction [262], which made the release of Fe3+ ions from MOFs. The released Fe3+ ions were
then electrochemically transformed into Prussian white (PW) in the presence of Fe(CN)6

3−.
The PW was oxidized into PB by O2 in the environment. The biosensor could determine
miRNA-21 in the concentration range of 10 aM~10 pM with a LOD of 5.8 aM. Based on the
conversion of Fe−MOFs into PB NPs in the presence of Fe(CN)6

3−, other biomarkers, such
as non-small cell lung cancer ctDNA, T4 polynucleotide kinase, and miRNA-21 have been
sensitively detected [263–265].
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5. Conclusions and Future Aspects

In summary, MOF−based nanomaterials have shown outstanding performances in the
development of electrochemical sensors. In this review, we comprehensively summarized
the different roles of MOFs in the applications of electrochemical sensors. The intrinsic
advantages that they offer have promoted the practicability of electrochemical sensors, in-
cluding large surface area, high porosity, chemical functionality, tunable channel structure,
and so on. To overcome the disadvantages of MOF−based nanomaterials (e.g., low con-
ductivity and weak stability), multifunctional conductive materials have been integrated
with MOFs to improve the performances of sensors by synergistic effects. Besides, various
effective signal amplification strategies have been perfectly integrated into MOF−based
electrochemical sensors, such as enzyme catalysis, DNA−based nanomachines, and func-
tional nanomaterials.

Although extensive efforts are being made to improve the performance of MOF−based
sensors, certain issues should be further researched to realize the full potential of MOFs.
First, the utilization efficiency of electroactive or electrocatalytic metal ions in MOFs should
be improved. In recent years, the quasi-MOFs prepared by the controlled deligandation of
MOFs and the single-atom catalysts derived from MOFs have attracted extensive attention
in different fields. Second, the size of MOFs has an important influence on their activity and
stability; however, it is difficult to effectively adjust the size and shape of MOFs, which is un-
favorable when comprehensively comparing the performance of MOFs in different projects.
Third, due to the complicated structures and compositions of MOFs, the structure-activity
relationship has not been clearly investigated and documented. Fourth, the exploration of
more redox-active ligands is an urgent need for the development of novel electrocatalysis
and electrosensing methods. Lastly, the development of portable devices and simple op-
eration is necessary for in situ and practical applications. Therefore, there are still many
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undeveloped fields worthy of in-depth and systematic research, in view of the important
value of MOFs for the development of electrochemical sensing platforms.
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