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Abstract: For a safe environment, humanity should be oriented towards renewable energy technology.
Water splitting (WS), utilizing a photoelectrode with suitable thickness, morphology, and conductivity,
is essential for efficient hydrogen production. In this report, iridium oxide (IrOx) films of high
conductivity were spin-cast on glass substrates. FE-SEM showed that the films are of nanorod
morphology and different thicknesses. UV-Vis spectra indicated that the absorption and reflectance
of the films depend on their thickness. The optical band gap (Eg) was increased from 2.925 eV to
3.07 eV by varying the spin speed (SS) of the substrates in a range of 1.5 × 103–4.5 × 103 rpm. It
was clear from the micro-Raman spectra that the films were amorphous. The Eg vibrational mode
of Ir–O stretching was red-shifted from 563 cm−1 (for the rutile IrO2 single crystal) to 553 cm−1.
The IrOx films were used to develop photoelectrochemical (PEC) hydrogen production catalysts
in 0.5M of sodium sulfite heptahydrate Na2SO3·7H2O (2-electrode system), which exhibits higher
hydrogen evaluation (HE) reaction activity, which is proportional to the thickness and absorbance
of the used IrOx photocathode, as it showed an incident photon-to-current efficiency (IPCE%) of
7.069% at 390 nm and −1 V. Photocurrent density (Jph = 2.38 mA/cm2 at −1 V vs. platinum) and
PEC hydrogen generation rate (83.68 mmol/ h cm2 at 1 V) are the best characteristics of the best
electrode (the thickest and most absorbent IrOx photocathode). At −1 V and 500 nm, the absorbed
photon-to-current conversion efficiency (APCE%) was 7.84%. Electrode stability, thermodynamic
factors, solar-to-hydrogen conversion efficiency (STH), and electrochemical impedance spectroscopies
(EISs) were also studied.

Keywords: IrOx films; nanorod morphology; water splitting; solar-to-hydrogen conversion

1. Introduction

Photoelectrochemical water splitting (WS) for hydrogen production plays a crucial
role in renewable (sustainable and eco-friendly) energy technology, where humanity should
be oriented to decrease reliance on fossil fuels that harm the environment [1–3]. In the WS
process, the film’s thickness, morphology, and conductivity can affect the performance of
the photoelectrode (catalyst) [4]. The thickness affects the light permeability across the film.
Increasing the light absorption efficiency is decisive in the overall solar to H2 conversion
efficiency where the photo-generated carriers perform the hydrogen evaluation (HE) reac-
tion and the oxygen evolution (OE) reaction, considering that the HE reaction is a simple
process (two electron-transfer reactions) compared with the OE reaction that involves
four electron–proton-coupled reactions and consumes a higher amount of energy [5–7].
Although the ultralow-earth availability, no low-priced and convenient replacement for the
Ir-based catalyst has been proposed so far [8]. IrOx is one of the few materials that can re-
main stable under harsh acidic media where most other metal oxides corrode. IrOx proved
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to be the most promising photocatalyst for high-efficiency solar WS devices, where it has
shown the smallest over-potential (<0.5 V) [1]. Additionally, the unique advantages of IrO2
include excellent sensitivity, electronic structure, atom arrangement, bonding geometry,
and appropriate electric conductivity. The wonderful biocompatibility makes it attractive
as a bio-stimulating electrode for implantable bio-medical and pH-sensing devices [9–11].

Two-dimensional materials (thin films) are highly favorable for surface-sensitive reac-
tions due to their nearly complete utilization, i.e., the surface-active sites are of maximized
density [12]. Ir oxides are usually divided into two types: anhydrous crystalline and highly
defective amorphous (hydrous). The amorphous (IrOx) with a high surface concentration
of Ir3+, electrophilic oxygen (O−), and active sites, combined with the high level of bulk
defects, shows a higher OE reaction activity (at least an order of magnitude larger) relative
to crystalline IrO2, in which only 1–2% of the Ir atoms participate in the reaction [6,8]. Vari-
ous physical and chemical approaches have been applied to prepare IrO2 or IrOx thin-film
electrodes with exceptional activity and stability [3]. The physical methods include the
sputtering technique, thermal oxidation, pulsed laser deposition (PLD), and atomic layer
deposition (ALD). These techniques are based on converting the metallic Ir to IrO2, which is
a difficult (complex and costly) process, besides the volatility of nonstoichiometric iridium
oxides [9]. By controlling the substrate temperature and using O2 or H2O as atmospheric
gases, Ito et al. [13] prepared amorphous and crystalline iridium oxides using the sputtering
technique, for electrochromic device applications. Yet, besides the poor adhesion and the
possible damage to the substrate due to the ion collision, the sputter system’s design affects
the film’s quality, which requires a complicated high-vacuum system. In addition, it is not
suitable for electrodes with a large surface area due to undesirable crack formation [7,11].
Pan et al. [10] utilized the potent oxidative characteristics of the molten Li2CO3 to ther-
mally oxidize the Ir film in a reactor at a high temperature (750 ◦C), resulting in an IrOx
electrode with a dense and homogeneous surface made up of cone-shaped nanoparticles.
Hou et al. [9] fabricated IrO2 thin films on TiO2 substrates by PLD at 500 ◦C and 100 mTorr
O2 pressure. Matienzo et al. [14] prepared IrO2 and NiO thin films (<60 nm in thickness)
on Ni substrates using the ALD technique. These crystalline films showed good activity for
the OE reaction, but only under high temperatures and high pHs.

The reported chemical methods include sol–gel deposition, electrochemical, elec-
trodeposition, and chemical bath deposition (CBD), which are cost effective, low temper-
ature, and yield films of controlled thickness, density, crystallinity, and oxygen content.
Chung et al. [11] used CBD to prepare IrO films of excellent charge storage capacity, charge
injection capability, and magnificent biocompatibility useful for biomedical device appli-
cations. Korkmaz et al. [15] fabricated GO/IrO2 films on glass, PMMA, FTO, and ITO
substrates by CBD to act as supercapacitors for energy storage applications. These compo-
sitions achieved maximum capacitance of 551.7, 837.7, 433.2, and 569.7 F/g, respectively.
XRD showed that the first two films were amorphous and the other two were of polycrys-
talline structure. Sachse et al. [16] prepared mesoporous IrOx films of 64–79 nm thickness
on Si and glass substrates using the sol–gel dip-coating method, using (Ir(CH3COO)n, 48%
Ir) dissolved with a copolymer (polyethylene oxide–polybutadiene) in ethanol.

One of the most interesting and facile chemical methods is the sol–gel spin casting
method. Guan et al. [17] expatiated this technique to prepare amorphous IrOx films by
casting the H2IrCl6/(polyvinyl pyrrolidone) PVP on FTO substrates followed by annealing
at 300 ◦C and air plasma treatment. They reported excellent catalytic performance towards
OE reaction in 0.5 M H2SO4 electrolyte at room temperature (RT) with an overpotential
of 0.291 V@10 mA/cm2, a Tafel slope of 0.0554 V/dec, and ultrahigh mass activity of
993 A/g at 1.55 V. Chandra et al. [5] prepared IrOx and IrO2 thin films by spin casting of
the K2IrCl6 solution onto FTO-coated glass substrates. The film annealed at 300 ◦C was
IrOx (OH)y and showed a low overpotential of 0.24 V and a Tafel slope of 0.042 V/dec at
pH = 7, which is comparable with the value for IrOx·nH2O film (0.04–0.05 V/dec). Moreover,
the spin-casting process allows us to control the films’ thickness by adjusting the solution
molarity, repeating the coating/pre-heating step or spin-casted layers, and choosing the
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number of rotations per minute (rpm) or the spin speed (SS). Previously, it was reported that
the film thickness (d) is inversely proportional to

√
rmp, i.e.,

√
SS [18]. The film’s thickness

can be evaluated accurately by X-ray fluorescence (XRF) spectroscopy and cross-sectional
scanning electron microscopy (SEM) [4].

It has been a problem for a while to find the optimal electrode thickness. IrO2 with a
thickness of 23–84 nm was used as the bottom electrode by Shimizu et al. [19] to investigate
the electrical characteristics of PZT thin films. They discovered that the thick electrode
performed well as a good barrier for the elements Pb, Zr, Ti, and O and that an intermediate
amorphous layer was formed to serve as a diffusion barrier layer between PZT and the
electrode. Additionally, Sardarinejad et al. [20] reported that among the R.F. sputtered
RuO2 films used as pH sensors (thickness in a range of 50–425 nm), the film with a
thickness of 300 nm displayed the best sensitivity of 68.63 mV/pH, steady output potentials
for all pH values in the range of 2–12, fast response, good stability, and reversibility.
Liu et al. [21] recently created 2D Ni3(hexaiminotriphenylene)2 films with one to four layers
and discovered that the film with three layers had the best OER performance and maximum
stability during 103 CV cycles. IrOx is widely thought to be one of the best OER catalysts.
However, because IrOx has a low cathodic current compared to platinum, it is not very
often looked into for its HER activity. Herein, IrOx exhibits higher HE reaction activity
and, as mentioned above, the amount of electrode material or thickness can influence the
catalytic activity and stability of IrOx films, i.e., its solar to H2 conversion efficiency, which
is less investigated. This work aims to prepare IrOx films by sol–gel spin casting with
different thicknesses, to account for the influence of SS and d values on the structure of IrOx
and the related optical properties and photocatalytic activity through the WS process.

2. Experimental Section
2.1. Materials and Preparation

Iridium (III) chloride hydrate (IrCl3.xH2O, 54.1% Ir, molecular weight = 298.58 g/mol.,
Aspira Chemica) was used as the Ir source. Absolute ethanol and acetic acid (CH3COOH)
were served as solvents and chelating agents, respectively. The solution molarity was fixed
at 0.035 and the determined amount of IrCl3.xH2O was dissolved in 10 mL of ethanol by
utilizing a magnetic stirrer for 2 h @50 ◦C. The solution was stirred for a few minutes before
acetic acid was added. Prior to spin casting, the solutions were matured for more than
20 h. Cleanup was done on the glass substrates with detergent acetone and ethanol in an
ultrasonic bath, in separate steps for 10 min for each and finally air dried. The IrOx solution
was spin cast at the SS of the substrate in a range of SS = 1.5 × 103–4.5 × 103 rpm for 30 s.
After each coating, the substrates were pre-annealed at 200 ◦C for 10 min to remove any
leftover solvent and volatile compounds. The casting and drying procedure was completed
six times. The obtained samples were given the names SS1.5, SS2.5, SS3.5, and SS4.5, which
corresponded to SS = 1.5 × 103, 2.5 × 103, 3.5 × 103, and 4.5 × 103 rpm. The final annealing
procedure took done for an hour at 500 ◦C in a ceramic air furnace.

2.2. Characterization and Photocatalytic Performance

The films’ surface morphology and thickness evaluation were analyzed using FE-
SEM (model: ZEISS SUPRA 55 VP and ZEISS LEO, Gemini Column). Raman data were
recorded using the spectrometer of model: i-Raman Plus from B&W Tek of high sensitivity
portable, in a range of 200–1450 cm−1. The films’ chemical composition was investigated by
Energy Dispersive X-ray Spectrometer (JED-2300T, JEOL). The optical absorption spectra
were recorded at RT by the double-beam Shimadzu spectrophotometer (UV/VIS/NIR
3700) in a wavelength range of 200–1800 nm. The photocatalytic activity measurements
were performed by OrigaFlex potentiostat (OGFEIS linked to an OGF500 Pack, Rillieux-la-
Pape, France) in 100 mL of 0.5 M (Na2SO3·7H2O) solution at RT with the nanocomposite
electrode with a 1 cm2 surface area as the photocathode (working electrode), and a Pt-
electrode of the same area as the counter electrode (auxiliary electrode). The simulated solar
light was incident on the electrode surface with a standard white illuminance (AM 1.5 G,
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100 mW/cm2) provided by a mercury xenon light source (Newport, MODEL: 66926-500HX-
R07, Newport, Oxfordshire, UK).

3. Results and Discussion
3.1. Film Morphology and Thickness Evaluation

FE-SEM microscope was used to study the surface morphologies and the dependence
of the thickness of the film on the SS or the number of rpm for the substrate during the
deposition process. Figure 1 shows the cross-sectional SEM images of films spin casted
at SS in a range of 1.5 × 103–4.5 × 103 rpm. The surface of the films is well covered with
IrOx of nanorod morphology. The density of the nanorods reduced and the uniformity
improved with increasing SS value. Moreover, increasing the SS from 1.5 × 103 rpm to
4.5 × 103 rpm results in a continuous reduction in the average thickness (dav.) of the films
from 0.417 µm to 0.193 µm according to Table 1. The values of dav./(SS)−1/2 are in a range
of 13.78–16.04, which can be considered constant. Therefore, one can conclude that the
deposited amount of IrOx is inversely proportional to

√
SS, which is consistent with the

previously published data [18].
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Table 1. Values of the average thickness (dav.) and direct bandgap (Eg) of the IrOx films.

Sample dav. (µm) 1/
√

SS (min.1/2Rad−1/2) dav./(SS)−1/2(µm ·min.1/2Rad−1/2) Eg (eV)

SS1.5 0.417 0.026 16.04 2.925

SS2.5 0.281 0.020 14.05 3.00

SS3.5 0.244 0.017 14.35 3.03

SS4.5 0.193 0.014 13.78 3.07

3.2. Optical Properties and Raman Spectra

The films exhibit strong absorption (Abs.) at very low wavelengths associated with an
absorbance band at λ ≈ 270 nm, Figure 2a. This band is commonly found in the absorption
spectra of the nano-sized metal (M) oxides and owing to the M–O band [22]. The Abs.
sharply decreases with increasing λ till about 544 nm, then increases till 925 nm. After
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that, it reaches nearly a constant value at higher wavelengths. As seen, increasing the
metal loading via improving the IrOx thickness, by decreasing SS from 4.5 × 103 rpm to
1.5 × 103 rpm, yields enhanced Abs. Figure 2b indicates that the reflection changes in an
unordered manner with thickness but is proportional to the film thickness at λ > 700 nm.
This indicates the possible use of these films in the sensing application for IR radiation.
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Figure 2. The optical absorbance (a) and reflectance spectra (b) of the spin-casted films at different SS.

To account for the optical band gap (Eg) of the films, the absorption coefficient α
was determined (α = Abs./film thickness) and then introduced in the Tauc’s relation
(αhυ)2 = C(hυ − Eg), where the incident energy of electromagnetic photons; hυ = 1242/λ,
and C is a constant. Extrapolating the linear parts of (αhυ)2 and hυ curves to the x-axis,
Figure 3a, provides the Eg values. As seen, the Eg of the films is affected by their thickness,
where it increases from 2.925 eV to 3.07 eV with decreasing the thickness or increasing SS
from 1.5 × 103 to 4.5 × 103 rpm. Similarly, increasing the solution flow rate and deposition
time during the spray deposition process for CdS thin films yields thick films with lower
Eg values [23]. The obtained Eg values (2.925–3.07 eV) represent the separation between
the t2g and eg sub-levels of the Ir 5d band [16]. The Eg of the IrO2 single crystal is 3.5 eV.
These lower Eg values are a result of the amorphous nature of our IrOx films and the poorly
defined band edges, which cause disorder-induced tails to extend into the band gap.

Raman spectroscopy is a powerful technique to investigate the lattice vibrations and
the structural evidence about the materials. In the literature, the Eg vibrational mode
of IrO2 with the rutile structure, originating from Ir–O stretching, appears at 563 cm−1.
Figure 3b shows the Raman spectra of SS1.5–SS4.5 films. As seen, the Eg mode appears at
~553 cm−1, indicating deviation in our IrOx films regarding that of an IrO2 single crystal.
This redshift is related to the mixed-valence states for iridium in IrOx [24]. Further, this
shift can be a result of the stress effect between IrOx and the substrate and it has been
observed that it is minimized as the coating becomes more crystalline [25]. The broadness
of this band (extending from 510–670 cm−1) indicates a lack of crystallinity (amorphous
films) or poor crystallinity [26] The weak and broad peak at 762 cm−1 is ascribed to the
A1g mode. Gao et al. [2] detected Ir–O vibrations at Eg, A1g and B2g modes for IrO2 and
amorphous Li-doped IrOx at 540 and 710 cm−1, respectively. Saeed et al. [27] reported that
the peak position of Ir–O–Ir stretching is due to the Ir3+ species appearing at 608 cm−1.
Pavlovic et al. [28] predicted a vibrational mode for the Ir = O stretching between
771 and 829 cm−1. Finally, the sharp peak at 1092 cm−1 originated from the 2ed-order of
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2ALO
1 mode [29]. The sharpness of this band reduced with reducing the film thickness or

increasing SS from 1.5 × 103 to 4.5 × 103 rpm. These results verify the amorphous nature
of the prepared films and the influence of film thickness on their microstructure.
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4. Photoelectrochemical (PEC) Water Splitting Measurements
4.1. Photoelectrochemical Behaviour of IrOx, Stability, Number of Hydrogen Moles, and the
Benchmark Efficiency

The products of water splitting (such as hydrogen and oxygen) can be precisely
measured using gas chromatography (GC); however, in this case, we performed poten-
tiometry and amperometry measurements under white light and monochromatic light
illumination to assess the photoelectrode’s catalytic activity [30]. The photoelectrochemical
properties of the IrOx photocathodes were measured under a standard white illuminance
(AM 1.5 G, 100 mW/cm2) and evaluated with the use of a 400 W mercury xenon light
source (Newport, MODEL: 66926-500HX-R07, Newport, Oxfordshire, UK). The OrigaFlex
potentiostat (OGFEIS linked to an OGF500 Pack, Rillieux-la-Pape, France) was used to
obtain all measurements. We used 0.5 M (Na2SO3·7H2O) as an electrolyte to avoid sam-
ple degradation in both acidic and alkaline electrolytes, with IrOx films as the working
electrode, while a platinum electrode was used as the auxiliary electrode. The working
electrode and the auxiliary electrode were dipped in the 0.5 M (Na2SO3·7H2O) electrolyte.
The Jph–V characteristics illustrate that the largest Jph values can be found in the negative
voltage range, which means that the electrodes are made of P-type (photocathode) semi-
conductors with the majority of free carriers being holes. The photoelectrochemical current
density (Jph) is shown in Figure 4a to be affected by the applied voltage as it changes from
−1 V to +1 V. The photoelectrochemical Jph rose for all photoelectrodes when the negative
applied voltage was raised. The photocurrent density enhanced as the SS was reduced
and the thickness increased, as shown in Figure 4a. This might be owing to the expansion
of the optical bandgap into the visible light range as a result of the increasing SS from
2.925 eV to 3.07 eV. At−1 V, SS1.5 photocathode produced a maximum Jph of 2.38 mA/cm2

when compared to SS2.5, SS3.5, and SS4.5 photocathodes (1.98, 0.54, and 0.38 mA/cm2 at
−1 V, respectively). This indicates that the current density improved by decreasing SS and
the bandgap of IrOx photocathodes while increasing absorption. The change in current
density vs. time is seen in Figure 4b. Within 60 s, the current density had plummeted to
around 0.15, 0.05, 0.022, and 0.019 mA/cm2 for each of the SS1.5, SS2.5, SS3.5, and SS4.5
photocathodes, respectively. Despite the early reduction in photocurrent density, there is
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a minor drop in current density at periods longer than 60 s until it approaches constant
values of roughly 0.124, 0.44, 0.015, and 0.01 mA/cm2 for each of the SS1.5, SS2.5, SS3.5, and
SS4.5 photocathodes, respectively. Further, the stability of the SS1.5 (Thick, 417 nm) and
SS4.5 (Thin, 193 nm) electrodes is tested as a function of the number of runs (10 runs). The
data are provided in Figure S1 (Supplementary Data), which shows that the SS1.5 retains
~95.0% of its efficiency versus 65.8% for SS4.5 after 10 runs. This clearly showed that SS1.5
is more stable than the SS4.5 electrode. This demonstrates that the optimized IrOx film is
extremely stable and may be used as photocathodes in the hydrogen-splitting process for a
long period.
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Figure 4. (a) Variation in current density vs. applied voltage for all photocathodes in standard
white-light luminance, (b) variation in current density vs. exposure time for all photocathode @−1 V
current density, and (c) number of hydrogen moles versus production time for all photocathodes in
white-light luminance.

Faraday’s equation, Equation (1), was used to calculate the number of moles of hydro-
gen generated by the photoelectrochemical WS technique [31].

H2(moles) =
∫ t

0

Jph
F

dt (1)

where Jph is photocurrent density, F is the Faraday constant (96,500 C/mol), and t is the
period. The ratio of H2 moles generated as a function of generation time is plotted in
Figure 4c using the reported Jph-time data in Figure 4b. The estimated hydrogen output
rate was 83.68, 32.93, 7.06, and 5.47 mmole/h.cm2 for each of the SS1.5, SS2.5, SS3.5, and
SS4.5 photocathodes, respectively. The solar-to-hydrogen conversion efficiency (STH) is the
ratio of total hydrogen energy output to total sunlight energy input. Equation (2) [32] is
applied to find the total efficiency of the PEC water splitting cell:

STH = [ (H2/S)× QUOTE (237 KJ/mol)]/[Ptotal QUOTE × A] (2)

where H2/S is the rate of H2 generation per second, Ptotal represents the total power density
of the incident light (mW/cm2), and A is the photoelectrode area. The estimated STH was
2.97, 1.17, 0.25, and 0.19% for each of the SS1.5, SS2.5, SS3.5, and SS4.5 photocathodes,
respectively. According to the results, the SS1.5 electrode with the lowest bandgap and
highest absorption is the best photocathode for hydrogen evolution.

4.2. PEC Behaviour of the SS1.5 Photocathode under the Effect of Monochromatic Light
Illumination and Photoelectrochemical Efficiencies

In 0.5 M (Na2SO3·7H2O) at RT, bandpass filters of wavelength ranging from 390 to
636 nm have been utilized to investigate the SS1.5 photocathode’s response to monochro-
matic light and to evaluate its efficiencies in water splitting process for hydrogen generation.
According to Figure 5a, the maximum photocurrent was measured at 500 nm and −1 V and
was determined to be Jph = 2.26 mA.cm−2, while the lowest photocurrent was determined
to be Jph = 1.91 mA.cm−2 at 470 nm. From 390 to 636 nm, the SS1.5 photocathode’s current
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values are shown to be in a small range. This current density–wavelength range depen-
dency may be related to the SS1.5 photocathode’s absorption behavior at each wavelength,
as at 544 nm, SS1.5 has the lowest absorbance and has good absorbance as wavelength
changes after and before that value, which confirms the PEC catalytic response of the
optimum photoelectrode for the H2 production process. Generally, this shows that the
SS1.5 photocathode is sensitive to a lot of the sun’s light and is good at absorbing a lot of it
in the visible range. The SS1.5 photoelectrode’s improved solar absorption and application
to efficient H2 generation from H2O splitting are further demonstrated by estimating the
external quantum efficiency or incident photon-to-current conversion efficiency (IPCE%).
At various wavelengths in Figure 5a, Equation (3) [31] is used to estimate the IPCE% at a
fixed voltage of −1 V:

IPCE% = 1240× Jph
(λ.P)

× 100% (3)

where λ is the wavelength of the incident photons and P is the illuminating light power
density of the Xenon lamp as a function of the monochromatic light wavelength. The
change in IPCE% with wavelength is represented in Figure 5b. At 390 nm, the maximum
IPCE% of the SS1.5 photoelectrode is obtained. At 390 nm, it was 7.96% and at 500 nm, it
was 5.61%, with an IPCE% of 4.18% at 636 nm being the lowest. The influence of optical
losses, such as transmission (Tr) or reflection (R), was still not considered in the IPCE%
computations. To compensate for optical losses, the internal quantum efficiency, also
known as the absorbed photon-to-current conversion efficiency (APCE%), is calculated.
The photocurrent generated by each absorbed photon is made up of the number of PEC-
generated carriers. APCE% is calculated using Equation (4) [33,34]:

APCE(λ) =
IPCE(λ)

A(λ)
=

IPCE(λ)
1− R− Tr

(4)

where A(λ) denotes optical absorption.
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Figure 5. SS1.5 photocathode: (a) variation in current density vs. the applied voltage under monochro-
matic luminance, (b) IPCE% and (c) ABCE% versus the incident wavelength at −1 V.

The change in APCE% versus incident wavelength is illustrated in Figure 5c. This
graph shows two significant APCE% values: 7.84% around 500 nm and 7.72% around
405 nm, with the lowest value being 5.67% at 636 nm. These findings support the obser-
vation in Figure 2 that absorbance falls significantly as wavelength increases until around
544 nm, then increases until 925 nm. As we noted in the calculation of the applied bias
photon-to-current efficiency (ABPE) for the employed electrodes, Figure S2 (Supplementary
Data), the optimal applied potential for the best PEC performance should alter with the
change in electrode thickness [35,36]. As the film thickness increases, the optimum potential
value decreases [37]. Based on the highest recorded value of ABPE, the optimum potential
is reduced from 0.86 V (SS4.5) to 0.71 V (SS1.5) by rising the film thickness from 193 to
417 nm.
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4.3. Effect of Temperature and Thermodynamic Parameters

If you increase the temperature in the SS1.5 photoelectrodes in the 0.5 M (Na2SO3·7H2O)
electrolyte from 30 ◦C to 90 ◦C, the PEC Jph-voltage of the photoelectrodes changes. This is
shown in Figure 6a. The Jph significantly improved from 2.36 mA/cm−2 to 28.99 mA/cm−2

when the temperature was raised to 90 ◦C at −1 V. This significant rise in Jph with the
rise in T can be explained this way: (i) There would be more electrons and holes in the
conduction and valence bands, respectively, if the photogenerated carriers had higher Ts.
This would speed up redox reactions and Jph, which is how quickly electrons and holes
move around. (ii) In the equation µ= qτn/m*, where µ is the charge carriers’ mobility,
q total charge of charge carriers, τn is the carrier’s lifetime, and m* is its effective mass,
increasing T would make it easier for charge carriers to move around as it increases charge
carriers’ mobility. This would make the charge carriers last longer as their lifetime is
increased. (iii) The minority carrier diffusion length is enhanced by increasing the Jph,
which is directly proportional to the square root of the absolute T based on the relationship:

Jph α Ldi f f =
√

µ kBT
q τn [38]. Additionally, thermodynamic factors, such as activation

energy (Ea), enthalpy (∆H*), and entropy (∆S*), must be evaluated. Figure 5b illustrates
the connection between the reciprocal of the absolute T (1/T) and Jph (rate of reaction) for
the SS1.5 electrodes. The Arrhenius Equation (5) [39] is used to determine the value of Ea
based on the linear fitting slope seen in Figure 5b.

Ln
(

Jph

)
= −Ea

R

[
1
T

]
(5)

where R = 8.314 J/(K.mol), the universal gas constant. According to Figure 6b, slope equals
−Ea/R and the SS1.5 photoelectrode’s Ea value is 37.473 kJ/mol. The values of ∆H* and ∆S*
for the H2 production process are also computed using the Eyring equation by charting
the relationship Ln (Jph/T) against (1/T) in Figure 6c. The Eyring equation is denoted by
(6) [33]:

Ln
Jph

T
= −∆H∗

R
.

1
T
+ Ln

(
KB
h

)
+

∆S∗

R
(6)

where KB = 1.38 × 10−23 J/K, the Boltzmann’s constant, and h = 6.626 × 10−34 J.s, the
Planck’s constant. The linear fitting’s slope indicates that the ∆H* value for SS1.5 is
34.736 kJ/mol and the intercept indicates that the ∆S* value is −122.79 J.mol−1.K−1.
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According to Table 1, the PEC performance in this work was evaluated against several
photoelectrodes that had previously been published. The reported Jph, IPCE%, and APCE%
values confirmed that SS1.5 is efficient PEC electrode for WS in visible light. Thus, it has
been determined that the SS1.5 electrode is very suitable for PEC hydrogen generation.
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4.4. PEC Impedance Spectroscopy (PEC-IS)

In all electrochemical processes, electrochemical impedance spectroscopy (EIS) has
become a highly essential research technique. The electrochemical interphase is frequently
characterized by an equivalent circuit applicable to the conditions of the experiment,
utilizing circuit parts that reflect the numerous physical processes involved, as in the
interpretation of impedance data. The charges transport between the active photoelectrode
and the electrolyte contact determines the photoelectrochemical system’s impedance. The
Warburg impedance, which simulates semi-infinite linear diffusion—that is, diffusion in one
dimension that is only constrained on one side by a planar electrode—is the simplest and
most frequent circuit element for modelling diffusion behavior. The Warburg impedance
generates a nearly straight line with a phase of 45◦ in the Nyquist plot, which is extremely
noticeable in EIS. When you see a 45◦ line on the Nyquist plot, it typically means diffusion.
To explore the charge carriers’ dynamics of the optimized SS1.5 photocathode, PEC-IS
data were obtained at RT using an OrigaFlex potentiostat (OGFEIS linked to an OGF500
Pack, Rillieux-la-Pape, France). Under white-light illumination, PEC-IS data were made
in a frequency (f) ranging from 100 mHz to 1 kHz. Figure 7a shows a Nyquist plot of
SS1.5 submerged in 0.5 M (Na2SO3·7H2O). The results are also shown in the Bode plots
(Figure 7b,c). The Warburg equivalent circuit was utilized to simulate the PEC-IS spectra
using the OrigaSoft PC Software, as shown in Figure 7a. This analogous circuit of SS1.5
photocathode has a Warburg impedance (W = 775.23 µS) in series with a charge transfer
resistance (RCT = 59.24 Ω). These values were the best for the IrOx photocathodes as SS2.5,
SS3.5, and SS4.5 photocathodes showed higher charge transfer resistances (110.09, 240.54,
and 281.7 Ω) and higher Warburg impedances (645.78, 1851.1, and 2120.6 µS, respectively).
This means that Rct and total impedance are decreased with increasing the photoelectrode
thickness, as shown in Figures S3 and S4 (Supplementary Data). Similar findings were
reported by A.A. Saif and P. Poopalan [40], who found that the impedance of sol–gel
Ba0.6Sr0.4TiO3 thin films is inversely related to film thickness. This demonstrates that
the optimized electrode can generate a significant quantity of hydrogen. Electron hole
recombination, in addition to the charge transfer process (CTP), is the principal controller of
the hydrogen evolution reaction (HER). The reordered value of RCT for the SS1.5 electrode
is very small, indicating that charges recombination at the electrode/electrolyte interfaces
has been significantly decreased, implying that HET has improved [41].
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Figure 7. The SS1.5 photocathode impedance in 0.5 M (Na2SO3·7H2O) electrolyte at RT under white-
light illumination; (a) the Nyquist Z plot and the equivalent circuit, (b,c) Bode plots: (b) the variation
in phase with frequency and (c) the change in total impedance with frequency.

5. Conclusions

IrOx thin films with nanorod morphology vertically aligned on glass substrates were
successfully spin casted with films thickness in a range of 0.417 µm ≥ d ≥ 0.193 µm. UV-
Vis-NIR results indicated that changing the SS of the substrates is an effective route to
control the films’ absorptivity and reflectivity and the films are a candidate for IR sensing
applications. The Eg values were decreased from 3.07 eV to 2.925 eV by reducing SS from
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4.5 × 103 to 1.5 × 103 rpm. Raman spectra illustrated the poor or lack of crystallinity
and the mixed-valence state of iridium in IrOx. The obtained samples were employed
for effective photoelectrochemical hydrogen generation from the water after employing
0.5 M (Na2SO3·7H2O) electrolyte and optimizing electrode reusability, applied temperature,
and monochromatic-light illumination. Electrode stability, thermodynamic characteristics,
conversion efficiencies, amounts of hydrogen moles, and PEC impedance were also assessed
and discussed. The SS1.5 photocathode had the greatest photocurrent of 2.38 mA/cm2@−1 V,
the number of hydrogen moles rate of 83.68 mmol/h.cm2, the conversion efficiency of
incoming photons to the current (IPCE%) of 7.96% @390 nm, absorbed photon-to-current
conversion efficiency (APCE%) of 7.84% @500 nm, and solar-to-hydrogen efficiency (STH) of
2.97% @−1 V. The optimized photoelectrode may be appropriate for industrial applications
due to its excellent stability, high conversion efficiency, and inexpensive cost.
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Figure S4: The total impedance versus frequency for IrOx samples.
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