Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. Photocatalytic Activity Measurements
2.3.1. Photodegradation
2.3.2. Photocatalytic Concentration and Photodegradation Rate
2.3.3. Scavenger Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinatti, I.M.; Pereira, P.F.S.; de Assis, M.; Longo, E.; Rosa, I.L.V. Rare Earth Doped Silver Tungstate for Photoluminescent Applications. J. Alloys Compd. 2019, 771, 433–447. [Google Scholar] [CrossRef]
- De Abreu, C.B.; Gebara, R.C.; dos Reis, L.L.; Rocha, G.S.; Alho, L.d.O.G.; Alvarenga, L.M.; Virtuoso, L.S.; Assis, M.; Mansano, A.d.S.; Longo, E.; et al. Toxicity of α-Ag2WO4 Microcrystals to Freshwater Microalga Raphidocelis subcapitata at Cellular and Population Levels. Chemosphere 2022, 288, 132536. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.P.; Singh, A.; Ballal, A.; Tyagi, A.K. High Adsorption Capacity for Cationic Dye Removal and Antibacterial Properties of Sonochemically Synthesized Ag2WO4 Nanorods. Eur. J. Inorg. Chem. 2014, 2014, 5724–5732. [Google Scholar] [CrossRef]
- Adib, K.; Sohouli, E.; Ghalkhani, M.; Naderi, H.R.; Rezvani, Z.; Rahimi-Nasrabadi, M. Sonochemical Synthesis of Ag2WO4/RGO-Based Nanocomposite as a Potential Material for Supercapacitors Electrodes. Ceram. Int. 2021, 47, 14075–14086. [Google Scholar] [CrossRef]
- Alvarez-Roca, R.; Gouveia, A.F.; de Foggi, C.C.; Lemos, P.S.; Gracia, L.; da Silva, L.F.; Vergani, C.E.; San-Miguel, M.; Longo, E.; Andrés, J. Selective Synthesis of α-, β-, and γ-Ag2WO4 Polymorphs: Promising Platforms for Photocatalytic and Antibacterial Materials. Inorg. Chem. 2021, 60, 1062–1079. [Google Scholar] [CrossRef]
- George, T.; Joseph, S.; Mathew, S. Synthesis and Characterization of Nanophased Silver Tungstate. Pramana 2005, 65, 793–799. [Google Scholar] [CrossRef]
- Sreedevi, A.; Priyanka, K.P.; Babitha, K.K.; Aloysius Sabu, N.; Anu, T.S.; Varghese, T. Chemical Synthesis, Structural Characterization and Optical Properties of Nanophase α-Ag2WO4. Indian J. Phys. 2015, 89, 889–897. [Google Scholar] [CrossRef]
- Andrade Neto, N.F.; Oliveira, P.M.; Bomio, M.R.D.; Motta, F. V Effect of Temperature on the Morphology and Optical Properties of Ag2WO4 Obtained by the Co-Precipitation Method: Photocatalytic Activity. Ceram. Int. 2019, 45, 15205–15212. [Google Scholar] [CrossRef]
- Laier, L.O.; Assis, M.; Foggi, C.C.; Gouveia, A.F.; Vergani, C.E.; Santana, L.C.L.; Cavalcante, L.S.; Andrés, J.; Longo, E. Surface-Dependent Properties of α-Ag2WO4: A Joint Experimental and Theoretical Investigation. Theor. Chem. Acc. 2020, 139, 108. [Google Scholar] [CrossRef]
- Yu, S.-H.; Liu, B.; Mo, M.-S.; Huang, J.-H.; Liu, X.-M.; Qian, Y.-T. General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach. Adv. Funct. Mater. 2003, 13, 639–647. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Almeida, M.A.P.; Avansi, W.; Tranquilin, R.L.; Longo, E.; Batista, N.C.; Mastelaro, V.R.; Li, M.S. Cluster Coordination and Photoluminescence Properties of α-Ag2WO4 Microcrystals. Inorg. Chem. 2012, 51, 10675–10687. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.F.; Catto, A.C.; Avansi, W.; Cavalcante, L.S.; Mastelaro, V.R.; Andrés, J.; Aguir, K.; Longo, E. Acetone Gas Sensor Based on α-Ag2WO4 Nanorods Obtained via a Microwave-Assisted Hydrothermal Route. J. Alloys Compd. 2016, 683, 186–190. [Google Scholar] [CrossRef]
- Ramezani, M.; Pourmortazavi, S.M.; Sadeghpur, M.; Yazdani, A.; Kohsari, I. Silver Tungstate Nanostructures: Electrochemical Synthesis and Its Statistical Optimization. J. Mater. Sci. Mater. Electron. 2015, 26, 3861–3867. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Zhang, G.-Y.; Cui, G.-W.; Xu, Y.-Y.; Liu, Y.; Xing, C.-Y. Controllable Fabrication of α-Ag2WO4 Nanorod-Clusters with Superior Simulated Sunlight Photocatalytic Performance. Inorg. Chem. Front. 2019, 6, 209–219. [Google Scholar] [CrossRef]
- Nobre, F.X.; Bastos, I.S.; dos Santos Fontenelle, R.O.; Júnior, E.A.A.; Takeno, M.L.; Manzato, L.; de Matos, J.M.E.; Orlandi, P.P.; de Fátima Souza Mendes, J.; Brito, W.R.; et al. Antimicrobial Properties of α-Ag2WO4 Rod-like Microcrystals Synthesized by Sonochemistry and Sonochemistry Followed by Hydrothermal Conventional Method. Ultrason. Sonochem. 2019, 58, 104620. [Google Scholar] [CrossRef]
- Gouveia, A.F.; Gracia, L.; Longo, E.; San-Miguel, M.A.; Andrés, J. Modulating the Properties of Multifunctional Semiconductors by Means of Morphology: Theory Meets Experiments. Comput. Mater. Sci. 2021, 188, 110217. [Google Scholar] [CrossRef]
- Huang, M.H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726. [Google Scholar] [CrossRef]
- Ling, D.; Hackett, M.J.; Hyeon, T. Surface Ligands in Synthesis, Modification, Assembly and Biomedical Applications of Nanoparticles. Nano Today 2014, 9, 457–477. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Liu, C.; Chong, W.H.; Chen, H. Thermodynamics versus Kinetics in Nanosynthesis. Angew. Chem. Int. Ed. 2015, 54, 2022–2051. [Google Scholar] [CrossRef]
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119, 4819–4880. [Google Scholar] [CrossRef] [Green Version]
- Calvin, J.J.; Brewer, A.S.; Alivisatos, A.P. The Role of Organic Ligand Shell Structures in Colloidal Nanocrystal Synthesis. Nat. Synth. 2022, 1, 127–137. [Google Scholar] [CrossRef]
- Kazes, M.; Udayabhaskararao, T.; Dey, S.; Oron, D. Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching Out. Acc. Chem. Res. 2021, 54, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Macedo, N.G.; Gouveia, A.F.; Roca, R.A.; Assis, M.; Gracia, L.; Andrés, J.; Leite, E.R.; Longo, E. Surfactant-Mediated Morphology and Photocatalytic Activity of α-Ag2WO4 Material. J. Phys. Chem. C 2018, 122, 8667–8679. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Longo, V.M.; Sczancoski, J.C.; Almeida, M.A.P.; Batista, A.A.; Varela, J.A.; Orlandi, M.O.; Longo, E.; Li, M.S. Electronic Structure, Growth Mechanism and Photoluminescence of CaWO4 Crystals. CrystEngComm 2012, 14, 853–868. [Google Scholar] [CrossRef]
- Andrés, J.; Gracia, L.; Gonzalez-Navarrete, P.; Longo, V.M.; Avansi, W.; Volanti, D.P.; Ferrer, M.M.; Lemos, P.S.; La Porta, F.A.; Hernandes, A.C.; et al. Structural and Electronic Analysis of the Atomic Scale Nucleation of Ag on α-Ag2WO4 Induced by Electron Irradiation. Sci. Rep. 2014, 4, 5391. [Google Scholar] [CrossRef]
- Teixeira, M.M.; Santos, L.C.; Tello, A.C.M.; Almeida, P.B.; da Silva, J.S.; Laier, L.; Gracia, L.; Teodoro, M.D.; da Silva, L.F.; Andrés, J.; et al. α-Ag2WO4 under Microwave, Electron Beam and Femtosecond Laser Irradiations: Unveiling the Relationship between Morphology and Photoluminescence Emissions. J. Alloys Compd. 2022, 903, 163840. [Google Scholar] [CrossRef]
- Assis, M.; Pontes Ribeiro, R.A.; Carvalho, M.H.; Teixeira, M.M.; Gobato, Y.G.; Prando, G.A.; Mendonça, C.R.; De Boni, L.; Aparecido De Oliveira, A.J.; Bettini, J.; et al. Unconventional Magnetization Generated from Electron Beam and Femtosecond Irradiation on α-Ag2WO4: A Quantum Chemical Investigation. ACS Omega 2020, 5, 10052–10067. [Google Scholar] [CrossRef]
- Longo, E.; Volanti, D.P.; Longo, V.M.; Gracia, L.; Nogueira, I.C.; Almeida, M.A.P.; Pinheiro, A.N.; Ferrer, M.M.; Cavalcante, L.S.; Andrés, J. Toward an Understanding of the Growth of Ag Filaments on α-Ag2WO4 and Their Photoluminescent Properties: A Combined Experimental and Theoretical Study. J. Phys. Chem. C 2014, 118, 1229–1239. [Google Scholar] [CrossRef]
- He, H.; Xue, S.; Wu, Z.; Yu, C.; Yang, K.; Peng, G.; Zhou, W.; Li, D. Sonochemical Fabrication, Characterization and Enhanced Photocatalytic Performance of Ag2S/Ag2WO4 Composite Microrods. Chin. J. Catal. 2016, 37, 1841–1850. [Google Scholar] [CrossRef]
- Izumi, F.; Ikeda, T. Implementation of the Williamson—Hall and Halder—Wagner Methods into RIETAN-FP. Adv. Ceram. Res. Cent. Annu. Rep. 2014, 3, 33–38. [Google Scholar]
- Busato, M.; Melchior, A.; Migliorati, V.; Colella, A.; Persson, I.; Mancini, G.; Veclani, D.; D’Angelo, P. Elusive Coordination of the Ag+ Ion in Aqueous Solution: Evidence for a Linear Structure. Inorg. Chem. 2020, 59, 17291–17302. [Google Scholar] [CrossRef] [PubMed]
- Zinatloo-Ajabshir, S.; Baladi, M.; Amiri, O.; Salavati-Niasari, M. Sonochemical Synthesis and Characterization of Silver Tungstate Nanostructures as Visible-Light-Driven Photocatalyst for Waste-Water Treatment. Sep. Purif. Technol. 2020, 248, 117062. [Google Scholar] [CrossRef]
- Zhang, R.; Cui, H.; Yang, X.; Liu, H.; Tang, H.; Li, Y. Facile Hydrothermal Synthesis and Photocatalytic Activity of Rod-like Nanosized Silver Tungstate. Micro Nano Lett. 2012, 7, 1285–1288. [Google Scholar] [CrossRef]
Samples | LO | VO | SO |
---|---|---|---|
α-Ag2WO4 | 18.35 | 49.63 | 32.05 |
α-Ag2WO4-TA | 33.82 | 47.44 | 18.74 |
α-Ag2WO4-BA | 35.86 | 28.79 | 35.61 |
α-Ag2WO4-CA | 57.68 | 28.39 | 13.93 |
Synthesis | Size of Particles (nm) | Egap (eV) | Photocatalyst Concentration (mg/mL) | Dye Removal (%) | Time (min) | First-Order Kinetics × 10−3 (min−1) | Ref. |
---|---|---|---|---|---|---|---|
Hydrothermal | 200–600 | -- | 1.0 | 100 | 60 | --- | [33] |
CP with SDS ** | 33 | 3.20 | 1.0 | 37 | 120 | 1.6 | [23] |
MAH | 600 | -- | 1.0 | 100 | 210 | 6.84 | [9] |
SC | 248 | 3.03 | 1.0 | 30 | 90 | 3.32 | This work |
SC with TA | 147 | 2.94 | 1.0 | 58 | 90 | 9.43 | This work |
SC with BA | 54.9 | 2.79 | 1.0 | 62 | 90 | 8.86 | This work |
SC with CA | 13.4 | 2.71 | 1.0 | 95 | 90 | 34.96 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, L.K.; Gouveia, A.F.; Silva, F.d.C.M.; Noleto, L.F.G.; Assis, M.; Batista, A.M.; Cavalcante, L.S.; Guillamón, E.; Rosa, I.L.V.; Longo, E.; et al. Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4. Nanomaterials 2022, 12, 3316. https://doi.org/10.3390/nano12193316
Ribeiro LK, Gouveia AF, Silva FdCM, Noleto LFG, Assis M, Batista AM, Cavalcante LS, Guillamón E, Rosa ILV, Longo E, et al. Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4. Nanomaterials. 2022; 12(19):3316. https://doi.org/10.3390/nano12193316
Chicago/Turabian StyleRibeiro, Lara Kelly, Amanda Fernandes Gouveia, Francisco das Chagas M. Silva, Luís F. G. Noleto, Marcelo Assis, André M. Batista, Laécio S. Cavalcante, Eva Guillamón, Ieda L. V. Rosa, Elson Longo, and et al. 2022. "Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4" Nanomaterials 12, no. 19: 3316. https://doi.org/10.3390/nano12193316
APA StyleRibeiro, L. K., Gouveia, A. F., Silva, F. d. C. M., Noleto, L. F. G., Assis, M., Batista, A. M., Cavalcante, L. S., Guillamón, E., Rosa, I. L. V., Longo, E., Andrés, J., & Luz Júnior, G. E. (2022). Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag2WO4. Nanomaterials, 12(19), 3316. https://doi.org/10.3390/nano12193316