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Abstract: The present study provides analytical and numerical solutions for an electromagnetohy-
drodynamic (EMHD) flow using a Caputo time-fractional Maxwell model. The flow is a typical
rectangular channel flow. When the scale of the cross-stream is much smaller than the streamwise and
spanwise scales, the model is approximated as a two-dimensional slit parallel plate flow. Moreover,
the influence of the electric double layer (EDL) at the solid–liquid interface is also considered. The
electro-osmotic force generated by the interaction between the electric field and the EDL will induce
a flow (i.e., electro-osmotic flow). Due to the application of the electric field at the streamwise and the
vertical magnetic field, the flow is driven by Lorentz force along the spanwise direction. Simultane-
ously, under the action of the magnetic field, the electro-osmotic flow induces a reverse Lorentz force,
which inhibits the electro-osmotic flow. The result shows that resonance behavior can be found in
both directions in which the flow is generated. However, compared with the classical Maxwell fluid,
the slip velocity and resonance behavior of fractional Maxwell fluid are suppressed. In the spanwise
direction, increasing the strength of magnetic field first promotes the slip velocity and resonance
behavior, and then suppresses them, while in the streamwise direction, both the electro-osmotic flow
and resonance behavior are suppressed with the magnetic field.

Keywords: electromagnetohydrodynamic (EMHD); fractional Maxwell model; electrokinetic effect;
slip length; resonance behavior

1. Introduction

Microfluidic devices are greatly utilized in many fields, such as biological engineering,
the transport of chemicals in the body and heat transfer in electronic components [1,2].
Microfluidic transport can be realized by pressure-driven micropumps [3,4], electro-osmotic
micropumps [5–8], and electromagnetohydrodynamic (EMHD) pumps [9–11]. The EMHD
micropump is driven by the Lorenz force, which is produced by the interaction of an
external electric field and a magnetic field [12]. Compared with other types of micropumps,
the EMHD micropump has several advantages, namely, a simple manufacturing process,
continuous flow power and two-way pumping capacity. For instance, it can be used in fluid
pumping, flow control in fluidic networks and fluid stirring and mixing [10]. In addition,
the EMHD micropump can reduce energy consumption and save costs in industry, so
related areas of study have always attracted attention from researchers, such as rotating
EMHD pumps [11], stagnation point flow [13], EMHD flow in corrugated walls [14], etc.
Recently, Khan et al. [15,16] considered the impact of gyrotactic microorganisms on the
nonlinear mixed convective MHD flow of thixotropic and Prandtl–Eyring nanofluids.
They examined the variations of heat transfer characteristics subject to nonlinear radiative
flux and heat source/sink, and found that for larger thixotropic fluid parameters, the
velocity field boosts up, while for rising values of the Hartmann number, the velocity
and temperature have opposite behaviors. Furthermore, at the channel walls, most solids
spontaneously acquire surface electric charges when brought into contact with a polar
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medium, and then the number of positive and negative ions in the solution near the solid–
liquid interface is inconsistent, forming an electric double layer (EDL). The electro-osmotic
force generated by the interaction between the electric field and the EDL will move the
fluid along the electric field. In EMHD flow, however, the influence of the electro-osmotic
force is often ignored (such as Refs. [10–14,17,18]). Therefore, the coupling effect between
EMHD flow and electro-osmotic flow needs to be further investigated, which is one of the
intentions of this paper.

Viscoelastic fluids (e.g., blood and polymer solutions) are often used in microfluidic
transports. Since the fluids with both elastic and viscous properties, in the flow field,
deform/flow under external force, the external force is vanished, and the deformation
will return to the specified threshold with time evolution [19]. Due to this characteristic,
a viscoelastic fluid often experiences resonance during the flow process, i.e., it increases
abruptly the oscillation amplitude of a system when an external force matches the system’s
natural frequency [20]. The resonance behavior with viscoelastic fluid flow has been studied
by many researchers. Yin and Zhu [21] studied the unidirectional oscillating flow produced
by a periodic pressure gradient through the fractional Maxwell model. Andrienko et al. [22]
investigated resonance-like phenomena in axisymmetric Poiseuille flows of viscoelastic
fluids. Lambert et al. [23] analyzed the heat transfer enhancement in an oscillatory flow
of a viscoelastic fluid in tubes. Tsiklauri and Beresnev [24] found sharp enhancements
of the flow through researching the process of transition from a dissipative regime to an
elastic regime with Maxwell fluids. Emilio Herrera [25] predicted flow enhancement on
the pulsating flow in an aqueous worm-like micellar solution of cetyltrimethyl ammonium
tosilate for various concentrations. In two-dimensional EMHD flow, will the viscoelastic
fluid also have a similar flow enhancement phenomenon? Another purpose of this paper is
to describe the resonance behavior during flow using a viscoelastic model.

In recent years, fractional calculus has been widely used in the research of abnormal
diffusion, viscoelastic model, and soft materials [21]. Compared with the integer calculus,
fractional calculus can more concisely and accurately describe the physical process with
historical memory and spatial correlation [26]. The germination of fractional calculus can
be traced back to L’ Hospital’s letter to Leibniz in 1695. After a series of work of many
researchers, including Fourier, Abel, Liouville, and Caputo [27], the embryonic form of
fractional calculus came out. Nowadays, fractional calculus has developed into a system-
atic branch of mathematics, and it is widely used in various fields [28]. Feng et al. [29]
used the time-distributed Caputo fractional model to study the rotating electro-osmotic
slip flow of generalized Maxwell fluids in a periodic electric field. Cao et al. [30] nu-
merically investigated the electro-osmotic flow of double layers consisting of Newtonian
fluid and fractional second-order fluid with a rotating frame in a parallel microchannel.
Yang et al. [31] studied the electro-osmotic flow of Maxwell fluids with Riemann–Liouville
fractional derivatives in a rectangular microchannel, and proposed the nonlinear conjugate
gradient method to obtain the viscoelastic parameters. Abdulhameed et al. [32] explored
unsteady pressure-driven and EMHD flow of an incompressible Maxwell fluid with time-
fractional Caputo–Fabrizio derivatives through a circular tube. Abro and Solangi [33]
analytically researched the heat transfer and free convection problem in second-grade fluid
with porous impacts using Caputo–Fabrizoi fractional derivatives. Liu et al. [34] studied
the unsteady EMHD flow of fractional Oldroyd-B fluids between parallel plates on heat
transfer. Inspired by these studies, the fractional Maxwell model was chosen to explore the
characteristics of viscoelastic fluid flow.

Furthermore, the velocity slip on the channel wall is also an important feature in
micro/nano-scale flow [35–37]. In macro-fluid flow, the no-slip boundary condition is
applied successfully to model some experiments. This success may not always reflect the
accuracy of the boundary condition but may reflect the insensitivity of the experiment to
the boundary condition [38]. At the microscale level, slip boundary conditions will become
important when the length scale over which the liquid velocity changes approaches the slip
length in a channel [39], where the slip length is the distance inside the walls at which the
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fluid velocity extrapolates to zero. Pascall and Squires [40] measured the induced charge
of electro-osmosis over gold electrodes; both the magnitude and frequency dependence
of the measured slip velocity are captured quantitatively by accounting for the physical
capacitance and surface chemistry of the dielectric layer. Galea and Attard [41] presented
a model of atomic roughness to study the effect of solid roughness on the slip boundary
condition during shear flow. By using evanescent waves, Bouzigues [42] measured velocity
profiles and diffusion profiles in pressure-driven and electro-osmotic flows, and determine
the hydrodynamic slip lengths with 10 nm accuracy in the Debye layer for hydrophilic and
hydrophobic surfaces. Khair and Squires [43] found that an enhancement occurs in the
electrophoretic motion of a colloidal particle whose surface exhibits hydrodynamic slip.

As already mentioned, viscoelastic fluids have resonance phenomena in a tube/channel
flow. Whether the resonance behavior occurs at the micro-nano scale is exactly what we
want to know. At the micro-nano scale, electrostatic force is particularly important, so on
the basis of previous research [1,12,17,44], we extended the research of Jian [44] to fractional
viscoelastic fluids to study the resonance behavior in channel flow. For this purpose, current
paper investigates the EMHD flow of fractional viscoelastic fluids with electro-osmosis
and velocity slip effects. The special feature of this model is that the Lorentz force has a
component in the direction of the electric field. The scale of the cross-stream (height) is
much smaller than the streamwise (length) and spanwise (width) scales (i.e., approximately
an infinite slit plate). The physical mechanism is as follows. Due to the application of
the electric field at the streamwise direction and the vertical magnetic field, the flow is
driven by Lorentz force, which originates from the interaction between an imposed peri-
odic electric field and the magnetic field, and its direction is along the spanwise direction.
Moreover, the influence of the electric double layer (EDL) at the solid–liquid interface is
also considered. The electro-osmotic force generated by the interaction between the electric
field and the EDL will also induce a flow (i.e., electro-osmotic flow). Therefore, for such a
two-dimensional channel flow, the Fourier transform can be used to obtain an analytical
solution. Meanwhile, a numerical algorithm can also be obtained by the finite difference
method. The effects of several dimensionless numbers, such as the Hartmann number
Ha, fractional parameters α, and slip length L, on the velocity and resonance behavior are
analyzed graphically in detail. The result shows that resonance behavior can be found
in both directions in which the flow is generated. However, compared with the classical
Maxwell fluid, the slip velocity and resonance behavior of fractional Maxwell fluid are sup-
pressed. In the spanwise direction, increasing the strength of magnetic field first promotes
the slip velocity and resonance behavior, and then suppresses them. In the direction of
the electric field, both electro-osmotic flow and resonance behavior are suppressed with
the magnetic field. The rest of this paper is arranged as follows. In Section 2, the problem
is formulated, and solutions of the EMHD velocity are presented. In Section 2.1, the net
charge density is given by solving the linearized Poisson–Boltzmann equation. The Caputo
fractional derivative and the governing equation are presented in Section 2.2. In Section 2.3,
the Fourier transform method is used to obtain velocity expression. A finite difference
scheme is provided for the velocity distribution in Section 2.4. Velocity distribution and the
resonance of fractional viscoelastic fluid are investigated in Sections 3.1 and 3.2, respectively.
Finally, the study is summarized and concluded in Section 4.

2. Mathematical Modeling

In this paper, we studied the slip flow of EMHD pump combined with the EDL
effect in the micro-parallel channel. The model sketch is shown in Figure 1. The electrical
field E(t) and a steady magnetic field of strength B are applied between two negatively
charged micro-parallel plates separated by a distance 2H in the y-axis (streamwise) and
z-axis (cross-stream) directions, respectively. The flow is a typical rectangular channel flow,
as indicated in Section 1, assuming that the scale of the cross-stream is much smaller than
the streamwise and spanwise scales. In this case, the model can be approximated as a
two-dimensional slit-parallel plate flow. It can be seen from Figure 1a that the forces acting
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on the fluid during the entire flow are only electro-osmotic force and Lorentz force, and the
velocity in the x-axis and y-axis directions are functions of z and t. Thus, the velocity vector
can be expressed as U = (u(z, t), v(z, t), 0). The electro-osmotic force acting on the fluid
is ρeE along the y-axis direction. The Lorentz force F = J× B = σB(E− Bu,−Bv, 0) has
two components, one of which is perpendicular to the electric and magnetic fields, and the
other is parallel to the direction of the electric field, where the local ion current density is
J = σ(E + U× B) = σ(Bv, E− Bu, 0). For convenience, we shall denote F1 = σB(E− Bu)
and F2 = −σB2v, respectively.

Figure 1. (a) Sketch of EMHD flow with EDL effect in parallel microchannels. (b) Sketch of the slip
length at the wall, where l is the distance inside the wall where the fluid velocity would extrapolate
to zero and k−1 is the thickness of the electric double layer.

For the walls at z = ±H, the slip boundary condition will be used. The so-called slip
boundary condition means that on the solid wall (on the boundary), the velocity of the fluid
is different from that of the solid wall, that is, the slip velocity is generated (see Figure 1b).
Here, the partial slip boundary condition is used, which means that the tangential velocity
of the boundary has a certain gradient. Navier pointed out that the velocity of the fluid at
the solid wall is proportional to the gradient of the fluid velocity along the normal to the
boundary surface, where the proportionality factor is called the slip length. The slip length
l is the distance inside the wall, where the fluid velocity would extrapolate to zero [45].

2.1. The Local Net Charge Density and the Electrical Potential

The local net charge density ρe and the electrical potential ψ(z) are described by the
following Poisson–Boltzmann equations [19,46]:

∇2ψ(z) = −ρe(z)
ε

,

ρe(z) = zνe(n+ − n−) = −2n0zνe sinh[(zνeψ)/(kbT)],
(1)

where n± = n0 exp[∓(ezνψ)/(kbT)] are the ionic number concentrations for the cations
and anions in the liquid, respectively, ε is the dielectric coefficient of the electrolyte liquid,
e is the electron charge, zν is the valence, kb is the Boltzmann constant, n0 is the ion
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density of bulk liquid, and T is the absolute temperature. When the potential ψ(z) is low,
the Debye–Hückel approximation can be applied to obtain the linearized equation [19,46]

d2ψ

dz2 = k2ψ, with k2 =
2n0z2

νe2

εkBT
. (2)

The boundary conditions of potential are given as follows:

ψ = ψ0, at z = ±H, (3)

where ψ0 is the potential at walls. The solution of Equation (2) subject to the condition
Equation (3) is given by

ψ(z) = ψ0
cosh(kz)
cosh(kh)

, −H ≤ z ≤ H. (4)

Using the above potential distribution, the net charge density can be expressed as

ρe(z) = −εk2ψ0
cosh(kz)
cosh(kH)

. (5)

2.2. Caputo Fractional Derivative and the Governing Equation

The Caputo fractional derivative is defined as [29]

Dp
t f (t) =


1

Γ(n−p)

∫ t
0

f (n)(s)
(t−s)p−n+1 ds, n− 1 < p < n,

dn f (t)
dtn , p = n ∈ N,

(6)

where p is the fractional derivative parameter, and Γ(·) is the Gamma function.
The Navier–Stokes equation is

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇P +∇ · τ + f, (7)

where ρ is the fluid density, P is the pressure, τ is the stress tensor, and f is the external
body force vector.

The fractional Maxwell constitutive equation is given by

(1 + λαDα
t )τ = µλβ−1Dβ−1

t γ̇, with 0 ≤ α ≤ β ≤ 1, (8)

where γ̇ is the shear rate, λ is the relaxation time of the fluid, µ is a dynamic viscosity, and α
and β are the fractional derivative parameters. When α = β = 1, it reduces to the ordinary
Maxwell model, while for α = 0 and β = 1, it is simplified as the classical Newtonian
fluid [47].

In the case of low Reynolds number flow, the inertia term can be ignored. Based on the
assumption that the pressure gradient between the plates is zero, the simplified governing
equations are obtained: 

ρ
∂u
∂t

=
∂τzx

∂z
+ σB(E− Bu),

ρ
∂v
∂t

=
∂τzy

∂z
+ ρeE− σB2v.

(9)

The simplified constitutive equation is
(1 + λαDα

t )τzx = µλβ−1Dβ−1
t

(
∂u
∂z

)
,

(1 + λαDα
t )τzy = µλβ−1Dβ−1

t

(
∂v
∂z

)
.

(10)



Nanomaterials 2022, 12, 3335 6 of 16

Substituting Equation (9) into Equation (10), we obtain
(1 + λαDα

t )

[
ρ

∂u
∂t
− σB(E− Bu)

]
= µλβ−1Dβ−1

t

(
∂2u
∂z2

)
,

(1 + λαDα
t )

[
ρ

∂v
∂t
−
(

ρeE− σB2v
)]

= µλβ−1Dβ−1
t

(
∂2v
∂z2

)
.

(11)

The slip boundary conditions are
[

u± l
∂u
∂z

]
z=±1

= 0,[
v± l

∂v
∂z

]
z=±1

= 0.
(12)

Introduce a set of dimensionless parameters as follows:

z =
z
H

, u =
u

Ueo
, v =

v
Ueo

, K = kH, t =
tµ

ρH2 , L =
l
H

, G =

√
σ

µ

E0H
Ueo

,

Ha = BH
√

σ

µ
, De =

λµ

ρH2 , E =
E
E0

with Ueo = −
εE0ψ0

µ
,

(13)

where E0 is the maximum value of the electric field E. The dimensionless forms of
Equations (11) and (12) are as follows:

(
1 + DeαDα

t

){∂u
∂t
−
[

HaGE− Ha2u
]}

= Deβ−1Dβ−1
t

(
∂2u
∂z2

)
,

(
1 + DeαDα

t

){∂v
∂t
−
[

K2 cosh(Kz)
cosh(K)

E− Ha2v
]}

= Deβ−1Dβ−1
t

(
∂2v
∂z2

)
,

(14)


[

ũ± L
∂ũ
∂z

]
z=±1

= 0,[
ṽ± L

∂ṽ
∂z

]
z=±1

= 0.
(15)

2.3. Analytical Solutions of the EMHD Velocity Field

In order to obtain the analytical solution, we introduce the Fourier transform

X̃(s) =
∫ +∞

−∞
X(t)e−istdt, (16)

where s is a real parameter. It should be mentioned here that the use of Fourier transform or
Laplace transform to solve fractional differential equations is very mature. The analytical
solution obtained by using the method of similarity transformation is currently the most
common method for dealing with fractional differential equations [48]. Then, using the
Fourier transform with respect to t for the Equation (14), we obtain the following equation:

[
1 + (is)αDeα

](
isũ− HaGẼ + Ha2ũ

)
= (is)β−1Deβ−1 d2ũ

dz2 ,[
1 + (is)αDeα

](
isṽ− K2 cosh(Kz)

cosh(K)
Ẽ + Ha2ṽ

)
= (is)β−1Deβ−1 d2ṽ

dz2 ,
(17)
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The simplified form of Equation (17) is
d2ũ
dz2 − Aũ = −BHaG,

d2ũ
dz2 − Aṽ = −BK2 cosh(Kz)

cosh(K)
,

(18)

with the boundary conditions
A =

1 + (isDe)α

(isDe)β−1

(
is + Ha2

)
,

B =
1 + (isDe)α

(isDe)β−1 Ẽ.
(19)

By solving Equation (18), the following equations are obtained:

ũ =
BHaG

A

1−
cosh

(√
Az
)

cosh
√

A + L
√

A sinh
√

A

,

ṽ =
BK2

K2 − A

 (1 + LK tanh K) cosh
(√

Az
)

cosh
√

A + L
√

A sinh
√

A
− cosh(Kz)

cosh(K)

.

(20)

The velocity can be expressed by inverse of a Fourier transform as follows:

u =
1

2π

∫ +∞

−∞

BHaG
A

1−
cosh

(√
Az
)

cosh
√

A + L
√

A sinh
√

A

estds,

v =
1

2π

∫ +∞

−∞

BK2

K2 − A

 (1 + LK tanh K) cosh
(√

Az
)

cosh
√

A + L
√

A sinh
√

A
− cosh(Kz)

cosh(K)

estds.

(21)

For a given external electric field, the velocity can be obtained from Equation (21).

2.4. Numerical Solutions of the EMHD Velocity Field

The numerical solutions can also be provided through the finite difference method.
First, a uniform discretization is introduced over the rectangular computational domain(

D = {(z, t) | z, t ∈ [−1, 1]× [0, T]}
)

by zj = j∆z, j = 0, 1, 2, . . . , M; tn = n∆t,
n = 0, 1, 2, . . . , N, in which ∆z = 2/M, and ∆t = T/N are the spatial and temporal
step sizes, respectively. For given g(z, t), the following approximations are introduced

∂g(z, t)
∂t

|t=tn
z=zj
≈

gn
j+1 − gn

j

∆t
, (22)

∂2g(z, t)
∂z2 |t=tn

z=zj
≈

gn
j+1 − 2gn

j + gn
j−1

∆z2 . (23)

Based on the L1 and L2 approximations of the Caputo fractional derivative [27],
the following approximations are obtained:

Dγ

t g(z, t) |t=tn
z=zj

=
∆t−γ

Γ(2− γ)

n−1

∑
j=0

b(γ)j

(
gn−j

zj
− gn−j−1

zj

)
, 0 ≤ γ < 1, (24)

Dγ

t g(z, t) |t=tn
z=zj

=
∆t−γ

Γ(3− γ)

n−1

∑
j=0

b(γ−1)
j

(
gn−j+1

zj
− 2gn−j

zj
+ gn−j−1

zj

)
, 1 ≤ γ < 2, (25)
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D−γ

t g(z, t) |t=tn
z=zj

=
∆t−γ

2Γ(1− γ)

n−1

∑
j=0

b(1+γ)
j

(
gn−j

zj
+ gn−j−1

zj

)
, γ > 0, (26)

where b(γ)j = (j + 1)1−γ − j1−γ
(

b(γ)0 = 1
)

.
The discretized finite difference scheme of Equation (14) is as follows:

Deα∆t−α−1

Γ(2− α)

n−1

∑
i=0

b(α)i

(
un−i+1

j − 2un−i
j + un−i−1

j

)
+

un+1
j − un

j

∆t

+
Ha2Deα∆t−α

Γ(2− α)

n−1

∑
i=0

b(α)i

(
un−i+1

j − un−i
j

)
+ Ha2un

j

=
Deβ−1∆t1−β

Γ(2− β)

n−1

∑
i=0

b(β)
i

un−i
j+1 − 2un−i

j + un−i
j−1

∆z2

+
HaGDeα∆t−α

Γ(2− α)

n−1

∑
i=0

b(α)i
[
E
(
tn−i

)
− E

(
tn−i−1

)]
+ HaGE

(
tn
)
,

n = 0, 1, 2, · · · , N − 1, j = 1, 2, 3, · · · , M− 1,

(27)

Deα∆t−α−1

Γ(2− α)

n−1

∑
i=0

b(α)i

(
vn−i+1

j − 2vn−i
j + vn−i−1

j

)
+

vn+1
j − vn

j

∆t

+
Ha2Deα∆t−α

Γ(2− α)

n−1

∑
i=0

b(α)i

(
vn−i+1

j − vn−i
j

)
+ Ha2vn

j

=
Deβ−1∆t1−β

Γ(2− β)

n−1

∑
i=0

b(β)
i

vn−i
j+1 − 2vn−i

j + vn−i
j−1

∆z2

+
K2Deα∆t−α

Γ(2− α)

cosh
(
Kzj
)

cosh K

n−1

∑
i=0

b(α)i
[
E
(
tn−i

)
− E

(
tn−i−1

)]
+ K2 cosh

(
Kzj
)

cosh K
E
(
tn
)
,

n = 0, 1, 2, · · · , N − 1, j = 1, 2, 3, · · · , M− 1.

(28)

Here, Equations (27) and (28) are the discrete schemes of the x-axis and y-axis direc-
tions, respectively.

The discretized initial conditions are
u0

j = u(0),
u1

j − u0
j

∆t
= u′(0), j = 0, 1, 2, · · · , M,

v0
j = v(0),

v1
j − v0

j

∆t
= v′(0), j = 0, 1, 2, · · · , M,

(29)

where u(0) and v(0) are the values of Equation (21) at t = 0, u′(0) and v′(0) are the values
at t = 0 after the derivative of Equation (21) with respect to t. The discretized boundary
conditions are

un
0 − L

un
1 − un

0
∆z

= 0, un
M + L

un
M−1 − un

M
∆z

= 0, n = 0, 1, 2, · · · , N,

vn
0 − L

vn
1 − vn

0
∆z

= 0, vn
M + L

vn
M−1 − vn

M
∆z

= 0, n = 0, 1, 2, · · · , N.
(30)

3. Results and Discussion

In the previous section, through the method of Fourier transform, the analytical expres-
sion of the velocity was derived for the EMHD flow of fractional Maxwell fluids between
micro-parallel plates. There are three dimensionless numbers involved in Equation (13),
namely, Hartmann number Ha, dimensionless parameter G and Deborah number De. The
Hartmann number gives an estimate of the magnetic forces compared to the viscous forces,
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and G is a non-dimensional parameter representing the strength of the x direction electric
field [44]. The Deborah number De is a dimensionless quantity in rheology, which is used
to describe the fluidity of materials under certain conditions. It can be used as one of the
parameters to measure the viscoelasticity of the fluid. It is defined as the ratio between the
relaxation time and the observation time of the mechanical response of the material under
the observation conditions. A definition of the Deborah number is given in the research
of Ding [19,49], and this definition is also adopted in this paper to study the resonance
behavior in the flow process.

In this section, an applied periodic electric field E = E0 cos(ωt) with the dimension-
less frequency ω = ρH2ω/µ is considered. The ‘ifourier’ command in Matlab symbolic
calculation is used to obtain the analytical solution of the velocity. The comparison between
the numerical and the analytical solutions is shown in the Figure 2, which shows that
they have a good agreement. The fractional derivative parameters α and β also play a
significant role in the flow, where 0 ≤ α ≤ β ≤ 1. Friedrich [50] proved that the rheo-
logical constitutive equation exhibits fluid-like behavior only in the case where β = 1,
so the fractional Maxwell fluid model with single fractional parameter α is considered.
Based on Ref. [44], the electrical conductivity is σ∼2.2× 10−4–4×103 S/m, viscosity is
µ∼10−3–1.5×10−3 kg/(ms), the imposed electrical field is E0∼0–30 V/m, the imposed
magnetic field is B∼0.01–5 T, and the Hartmann number is from 0 to 10. Thus, the order
of G can be evaluated, and its range is changed from 0 to 6× 103; here, it is fixed as 20.
This means that the physical configuration can be uniquely determined given the values
of these parameters that satisfy the above conditions. For example, when Ueo∼2× 10−4,
σ∼4× 102, µ∼1× 102, E0∼20 V/m, h∼1× 10−4, it corresponds to a physical study of the
influence of magnetic field strength and fluid elasticity on the flow.
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Figure 2. The dimensionless velocity profiles, (a) spanwise; (b) streamwise, of fractional Maxwell
model across half channel width for different dimensionless parameters α at t = π/3, De = 5, β = 0.9,
L = 0.03, K = 50, ω = 1, Ha = 0.5, G = 20, where the symbol represents numerical solutions and the
curve represent the analytical solutions.

3.1. Velocity Distribution

Velocity profiles for different fractional parameters α at Hartmann number Ha = 0.5
are shown in Figure 3. From Figure 3, it can be observed that the amplitude of velocity
increases as the α gradually increases. An increased α increases the slip velocity at the wall.
From Equation (15), the slip velocity is the product of the fluid shear rate at the wall and
the slip length. Therefore, increasing the value of α will increase the fluid shear rate at the
wall since the slip length is fixed, thereby promoting slip velocity. Figure 4 exhibits the
velocity profiles for different dimensionless slip lengths at dimensionless frequency ω = 0.
It can be seen that as the dimensionless slip length increases, the slip velocity at the wall
increases. In addition, when L increases, we can see that the velocity amplitude also has
the same elevated trend as the slip velocity. From Figure 4b, the concave part in the middle
is caused by the Lorentz force, opposite to the electro-osmotic force.
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Figure 3. The dimensionless velocity profiles, (a) spanwise; (b) streamwise, of fractional Maxwell
model across half channel width for different dimensionless parameters α at t = π/6, β = 1, De = 5,
L = 0.03, K = 10, ω = 5, Ha = 0.5.
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Figure 4. The dimensionless velocity, (a) spanwise; (b) streamwise, profiles of fractional Maxwell
model across half channel width for different dimensionless parameters L at α = 0.7, β = 1, De = 5,
K = 30, ω = 0, Ha = 0.5.

The variations of velocity profiles with half channel width at different values of the
electrokinetic width K for α = 0.7 and β = 1 are plotted in Figure 5. There is no change in
the velocity in the x-axis, which means that the flow perpendicular to the direction of the
electric and magnetic fields is induced by the Lorentz force and has nothing to do with the
electric double layer; this can be found from Equation (9). In the direction of flow induced
by electro-osmotic force, both the slip velocity and amplitude of velocity will increase
with the increase in K. Figure 6 shows the effects of the dimensionless Deborah number
De on the velocity profiles of EMHD flow for fractional Maxwell fluids. From the figure,
an increase in De makes the slip velocity and amplitude of velocity increase. In a physical
sense, the relaxation time (its magnitude is characterized by De) refers to the time required
for a viscoelastic fluid to return to its normal state after deformation. Its magnitude can
reflect the elasticity of the fluid. The elastic effect of the fluid can enhance the flow, which
has been verified by experiments [51].
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Figure 5. The dimensionless velocity, (a) spanwise; (b) streamwise, profiles of fractional Maxwell
model across half channel width for different dimensionless parameters K at t = π/3, α = 0.7, β = 1,
De = 5, L = 0.03, ω = 2, Ha = 0.5.
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Figure 6. The dimensionless velocity, (a) spanwise; (b) streamwise, profiles of fractional Maxwell
model across half channel width for different dimensionless parameters De at t = π/3, α = 0.7,
β = 1, K = 50, L = 0.03, ω = 2, Ha = 0.5.

Figure 7 illustrates the relationship between velocity profiles and Hartmann number
Ha for α = 0.7 and β = 1. In order to simplify the discussion, the steady case (ω = 0)
is considered, and for this case, u > 0, v > 0. In the direction perpendicular to the
electric and magnetic fields, the critical value Hac ' 2 can be found in the figure. When
Ha < Hac, the wall slip velocity and velocity amplitude increase with the increase in
Ha, and when Ha > Hac, they decrease with the increase in Ha. Along the direction of
the electric field, the slip velocity and the amplitude of the velocity will decrease with
increasing Ha. Moreover, at the center of the microchannel, it can be found that a larger
value of Ha will have a strong inhibitory effect on the velocity. As Ha increases, the velocity
at the center gradually tends to 0. This result can be explained by the force on the fluid in
the microchannel. From Equation (9), the body force of the fluid in the x-axis direction and
the y-axis direction are σB(E− Bu) and ρeE− σB2v, respectively, and the dimensionless
forms are HaG− Ha2u and K2cosh(Kz)/ cosh(K)− Ha2v. In the x-axis direction, the body
force on the fluid first increases with the increase in Ha, reaches the maximum value at
G/(2u) ' Hac, and then decreases with the increase in Ha. Along the direction of the
electric field, the body force on the fluid always decreases as Ha increases. Increasing the
external force acting on the fluid will increase the velocity amplitude and slip velocity at
the wall.
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Figure 7. The absolute value of dimensionless velocity, (a) spanwise; (b) streamwise, for fractional
Maxwell model across half channel width for different dimensionless parameters Ha at α = 0.7, β = 1,
K = 30, L = 0.03, De = 5, ω = 0.

3.2. Resonance Behavior of Fractional Viscoelastic Fluids

In this part, we discuss the flow behavior of fractional viscoelastic fluids through the
volumetric flow rate of the fluid. The dimensionless volumetric flow rate is defined as

Q =
∫ 1

−1
U(z, t)dz. (31)

The variations of the volumetric flow rate for fractional Maxwell model are given
graphically at four parameters (fractional parameter α, dimensionless slip length L, Deborah
number De, and Hartmann number Ha) in detail. It can be seen from these figures that
drastic enhancements of the volumetric flow rate occur at certain frequencies, which reflect
resonance phenomena. When resonance occurs, it is obvious that the amplitude (peak) of
the enhancement decreases as the frequency increases, and the largest enhancement occurs
at the smallest resonance frequency. In addition, in the x-axis direction, the resonance peak
at the minimum frequency is large, and then the peaks drops sharply. Therefore, in the
x-axis direction, the resonance decay is fast.

Figure 8 illustrates the effects of fractional parameters α on the volumetric flow rate
of the x-axis and y-axis, respectively. From the figure, it can be observed that as the α
increases, the resonance peak increases. When α decreases, the number of resonance peaks
will decrease. This indicates that the resonance behavior of the fractional viscoelastic fluid
is suppressed compared with the classical Maxwell fluid. Figures 9 and 10 depicts the
volumetric flow rate of the x-axis and y-axis with ω. It is noticed that the increase in
slip length L or Deborah number De can not only enhance resonance, but also reduce the
frequency at which resonance occurs.
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Figure 8. The dimensionless mean volumetricflow rate, (a) spanwise; (b) streamwise, of fractional
Maxwell model with the dimensionless frequency ω for different fractional parameters α at β = 1,
K = 20, L = 0.03, De = 5, Ha = 0.3.
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Figure 9. The dimensionless mean volumetric flow rate, (a) spanwise; (b) streamwise, of fractional
Maxwell model with the dimensionless frequency ω for different dimensionless parameters L at
α = 0.8, β = 1, K = 20, De = 5, Ha = 0.3.
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Figure 10. The dimensionless mean volumetric flow rate, (a) spanwise; (b) streamwise, of fractional
Maxwell model with the dimensionless frequency ω for different dimensionless parameters De at
α = 0.8, β = 1, K = 20, L = 0.03, Ha = 0.3.

Figure 11 shows the effects of Hartmann number Ha on volumetric flow rate of the
x-axis and y-axis, respectively. From Figure 11a, a very small Hartmann number will result
in a very small volumetric flow rate. When the Hartmann number increases, the volumetric
flow rate and resonance peak will increase first, and then decrease. The volumetric flow
rate reaches the maximum when Ha ' 1. The volumetric flow rate represents the net flow
of the fluid in the flow process. A slight change in some positions will not affect the value
of Ha, which can maximize the volumetric flow rate. However, in Section 3.1, the critical
number Hac is the value that makes all positions reach the maximum velocity. Therefore,
Ha that makes the volumetric flow rate reach the maximum is different from the critical
number Hac. From Figure 11b, the peaks of the resonance will decrease as Ha increases. It
should be mentioned that a larger Ha always suppresses resonance. This means that when
a suitable external magnetic field is applied, the resonance behavior will be eliminated.
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Figure 11. The dimensionless mean volumetric flow rate, (a) spanwise; (b) streamwise, of the
fractional Maxwell model with the dimensionless frequency ω for different dimensionless parameters
Ha at α = 0.7, β = 1, K = 20, De = 5, L = 0.03.

4. Conclusions

The analytical solutions of combined unsteady electro-osmotic and magnetohydrody-
namic velocity are obtained through using the Fourier transform method for the fractional
Maxwell model in a slit parallel plate microchannel. Similarly, a numerical solution can
also be provided by the finite difference method. The velocity and resonance behavior of
periodic EMHD flow are shown graphically and discussed in detail. The resonance greatly
enhances the relevant quantities, and the appearance of resonance behavior depends on
the value of α, L, De, Ha. The main conclusions are as follows: (i) The fractional derivative
parameter α, the dimensionless slip length L, and the Deborah number De promote the
velocity amplitude and slip velocity, and enhance the resonance behavior. (ii) The electroki-
netic width K promotes the flow along the direction of the electric field, and the change of
K does not affect the flow in the direction perpendicular to the electric and magnetic fields.
(iii) In the direction perpendicular to the electric and magnetic fields, when Ha increases,
the flow will be promoted first and then suppressed; in the direction of the electric field, Ha
has an inhibitory effect on the flow.

Author Contributions: Conceptualization, K.T. and Z.D.; methodology, S.A.; software, G.Z.; valida-
tion, K.T., S.A. and Z.D.; formal analysis, G.Z; writing—original draft preparation, K.T.; writing—
review and editing, K.T.; supervision, Z.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Nos. 11902165
and 11802147) and Inner Mongolia University Graduate Innovation and Entrepreneurship Project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buren, M.; Jian, Y.; Chang, L.; Li, F.; Liu, Q. Combined electromagnetohydrodynamic flow in a microparallel channel with slightly

corrugated walls. Fluid Dyn. Res. 2017, 49, 025517. [CrossRef]
2. Harnett, C.K.; Templeton, J.; Dunphy-Guzman, K.A.; Senousy, Y.M.; Kanouff, M.P. Model based design of a microfluidic mixer

driven by induced charge electroosmosis. Lab Chip 2008, 8, 565–572. [CrossRef] [PubMed]
3. Ding, Z.; Jian, Y.; Tan, W. Electrokinetic energy conversion of two-layer fluids through nanofluidic channels. J. Fluid Mech. 2019,

863, 1062–1090. [CrossRef]
4. Cruz, D.; Pinho, F. Fully-developed pipe and planar flows of multimode viscoelastic fluids. J. Non-Newtonian Fluid Mech. 2007,

141, 85–98. [CrossRef]

http://doi.org/10.1088/1873-7005/aa5ad9
http://dx.doi.org/10.1039/b717416k
http://www.ncbi.nlm.nih.gov/pubmed/18369511
http://dx.doi.org/10.1017/jfm.2019.6
http://dx.doi.org/10.1016/j.jnnfm.2006.09.001


Nanomaterials 2022, 12, 3335 15 of 16

5. Sadek, S.H.; Pimenta, F.; Pinho, F.T.; Alves, M.A. Measurement of electroosmotic and electrophoretic velocities using pulsed and
sinusoidal electric fields. Electrophoresis 2017, 38, 1–16. [CrossRef]

6. Sadr, R.; Yoda, M.; Zheng, Z.; Conlisk, A. An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid
Mech. 2004, 506, 357–367. [CrossRef]

7. Kofler, M.; Lenninger, M.; Mayer, G.; Neuwirt, H.; Grimm, M.; Bechtold, T. Multi-chamber electroosmosis using textile reinforced
agar membranes—A promising concept for the future of hemodialysis. Carbohydr. Polym. 2016, 136, 81–86. [CrossRef]

8. Wang, X.; Xu, H.; Qi, H. Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids. Appl. Math. Lett. 2020,
103, 106179. [CrossRef]

9. Vinita.; Poply, V.; Devi, R. A two-component modeling for free stream velocity in magnetohydrodynamic nanofluid flow with
radiation and chemical reaction over a stretching cylinder. Heat Transfer 2021, 50, 3603–3619. [CrossRef]

10. Buren, M.; Jian, Y.; Chang, L.; Liu, Q.; Zhao, G. AC magnetohydrodynamic slip flow in microchannel with sinusoidal roughness.
Microsyst. Technol. 2017, 23, 3347–3359. [CrossRef]

11. Jian, Y.; Si, D.; Chang, L.; Liu, Q. Transient rotating electromagnetohydrodynamic micropumps between two infinite microparallel
plates. Chem. Eng. Sci. 2015, 134, 12–22. [CrossRef]

12. Si, D.; Jian, Y. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with
corrugated walls. J. Phys. D Appl. Phys. 2015, 48, 085501. [CrossRef]

13. Seth, G.; Mandal, P. Analysis of electromagnetohydrodynamic stagnation point flow of nanofluid over a nonlinear stretching
sheet with variable thickness. J. Mech. 2019, 35, 719–733. [CrossRef]

14. Buren, M.; Jian, Y. Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electrophore-
sis 2015, 36, 1539–1548. [CrossRef] [PubMed]

15. Khan, M.I.; Haq, F.; Khan, S.A.; Hayat, T.; Khan, M.I. Development of thixotropic nanomaterial in fluid flow with gyrotactic
microorganisms, activation energy, mixed convection. Comput. Methods Programs Biomed. 2019, 187, 105186. [CrossRef]

16. Khan, M.I.; Alsaedi, A.; Qayyum, S.; Hayat, T.; Khan, M.I. Entropy generation optimization in flow of Prandtl-Eyring nanofluid
with binary chemical reaction and Arrhenius activation energy. Colloids Surf. 2019.

17. Ivanov, A. Distribution Features of Electromagnetic and Hydrodynamic Fields in the Conductive Electric-Current Treatment of
Melts Using Parallel Electrodes. Surf. Eng. Appl. Electrochem. 2020, 56, 327–333. [CrossRef]

18. Chakraborty, S.; Paul, D. Microchannel flow control through a combined electromagnetohydrodynamic transport. J. Phys. D Appl.
Phys. 2006, 39, 5364. [CrossRef]

19. Ding, Z.; Jian, Y. Resonance behaviors in periodic viscoelastic electrokinetic flows: A universal Deborah number. Phys. Fluids
2021, 33, 032023. [CrossRef]

20. Letelier, M.F.; Siginer, D.A.; Almendra, D.L.; Stockle, J.S. Resonance in laminar pipe flow of non-linear viscoelastic fluids. Int. J.
Non-Linear Mech. 2019, 115, 53–60. [CrossRef]

21. Yin, Y.; Zhu, K. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl. Math. Comput. 2006,
173, 231–242. [CrossRef]

22. Andrienko, Y.A.; Siginer, D.A.; Yanovsky, Y.G. Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow
enhancement. Int. J. Non-Linear Mech. 2000, 35, 95–102. [CrossRef]

23. Lambert, A.A.; Cuevas, S.; del Rio, J.A.; López de Haro, M. Heat transfer enhancement in oscillatory flows of Newtonian and
viscoelastic fluids. Int. J. Heat Mass Transfer 2009, 52, 5472–5478. [CrossRef]

24. Tsiklauri, D.; Beresnev, I. Enhacement in the dymanic response of a viscoelastic fluid flowing through a longitudinally vibrating
tube. Phys. Rev. E 2001, 63, 06304. [CrossRef] [PubMed]

25. Emilio Herrera, E.; Calderas, F.; Chávez, A.; Manero, O. Study on the pulsating flow of a worm-like micellar solution. J.
Non-Newtonian Fluid Mech. 2010, 165, 174–183. [CrossRef]

26. Su, X.; Chen, W.; Xu, W. Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component: Fractal
dashpot. Adv. Mech. Eng. 2017, 9, 1–12. [CrossRef]

27. Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015.
28. Tripathi, D. Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy. Comput. Math. with

Appl. 2011, 62, 1116–1126. [CrossRef]
29. Feng, C.; Si, X.; Cao, L.; Zhu, B. The slip flow of generalized Maxwell fluids with time-distributed characteristics in a rotating

microchannel. Appl. Math. Lett. 2021, 120, 107260. [CrossRef]
30. Cao, L.; Zhang, P.; Li, B.; Zhu, J.; Si, X. Numerical study of rotating electro-osmotic flow of double layers with a layer of fractional

second-order fluid in a microchannel. Appl. Math. Lett. 2021, 111, 106633. [CrossRef]
31. Yang, X.; Qi, H.; Jiang, X. Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Appl. Math. Lett. 2018, 78, 1–8.

[CrossRef]
32. Abdulhameed, M.; Vieru, D.; Roslan, R. Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo—Fabrizio

derivatives through circular tubes. Comput. Math. Appl. 2017, 74, 2503–2519. [CrossRef]
33. Abro, K.A.; Solangi, M.A. Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo—

Fabrizoi fractional derivatives. Punjab Univ. J. Math. 2017, 49, 113–125.
34. Liu, Y.; Zhang, H.; Jiang, X. Fast evaluation for magnetohydrodynamic flow and heat transfer of fractional Oldroyd-B fluids

between parallel plates. Z. Angew. Math. Mech. 2021. [CrossRef]

http://dx.doi.org/10.1002/elps.201600368
http://dx.doi.org/10.1017/S0022112004008626
http://dx.doi.org/10.1016/j.carbpol.2015.09.013
http://dx.doi.org/10.1016/j.aml.2019.106179
http://dx.doi.org/10.1002/htj.22043
http://dx.doi.org/10.1007/s00542-016-3125-7
http://dx.doi.org/10.1016/j.ces.2015.04.036
http://dx.doi.org/10.1088/0022-3727/48/8/085501
http://dx.doi.org/10.1017/jmech.2019.2
http://dx.doi.org/10.1002/elps.201500029
http://www.ncbi.nlm.nih.gov/pubmed/25873183
http://dx.doi.org/10.1016/j.cmpb.2019.105186
http://dx.doi.org/10.3103/S1068375520030072
http://dx.doi.org/10.1088/0022-3727/39/24/038
http://dx.doi.org/10.1063/5.0046861
http://dx.doi.org/10.1016/j.ijnonlinmec.2019.03.015
http://dx.doi.org/10.1016/j.amc.2005.04.001
http://dx.doi.org/10.1016/S0020-7462(98)00090-0
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.07.001
http://dx.doi.org/10.1103/PhysRevE.63.046304
http://www.ncbi.nlm.nih.gov/pubmed/11308942
http://dx.doi.org/10.1016/j.jnnfm.2009.11.001
http://dx.doi.org/10.1177/1687814017699765
http://dx.doi.org/10.1016/j.camwa.2011.03.038
http://dx.doi.org/10.1016/j.aml.2021.107260
http://dx.doi.org/10.1016/j.aml.2020.106633
http://dx.doi.org/10.1016/j.aml.2017.10.012
http://dx.doi.org/10.1016/j.camwa.2017.07.040
http://dx.doi.org/10.1002/zamm.202100042


Nanomaterials 2022, 12, 3335 16 of 16

35. Baudry, J.; Charlaix, E.; Tonck, A.; Mazuyer, D. Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid-Solid
Interface. Langmuir 2001, 17, 5232–5236. [CrossRef]

36. Bonaccurso, E.; Kappl, M.; Butt, H.J. Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and
Electrokinetic Effects. Phys. Rev. Lett. 2002, 88, 076103. [CrossRef]

37. Snoeijer, J.H.; Delon, G.; Fermigier, M.; Andreotti, B. Avoided Critical Behavior in Dynamically Forced Wetting. Phys. Rev. Lett.
2006, 96, 174504. [CrossRef]

38. Bonaccurso, E.; Butt, H.J.; Craig, V.S. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely
wetting system. Phys. Rev. Lett. 2003, 90, 144501. [CrossRef]

39. Craig, V.S.J.; Neto, C.; Williams, D.R.M. Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 2001,
87, 054504. [CrossRef]

40. Pascall, A.J.; Squires, T.M. Induced Charge Electro-osmosis over Controllably Contaminated Electrodes. Phys. Rev. Lett. 2010,
104, 088301. [CrossRef]

41. Galea, T.M.; Attard, P. Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary
during shear flow. Langmuir 2004, 20, 3477–3482. [CrossRef]

42. Bouzigues, C.I.; Tabeling, P.; Bocquet, L. Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces. Phys. Rev.
Lett. 2008, 101, 114503. [CrossRef] [PubMed]

43. Khair, A.S.; Squires, T.M. The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle.
Phys. Fluids 2009, 21, 042001. [CrossRef]

44. Jian, Y. Transient MHD heat transfer and entropy generation in a microparallel channel combined with pressure and electroosmotic
effects. Int. J. Heat Mass Transf. 2015, 89, 193–205. [CrossRef]

45. Yang, J.; Kwok, D.Y. Microfluid Flow in Circular Microchannel with Electrokinetic Effect and Navier’s Slip Condition. Langmuir
2003. [CrossRef]

46. Xu, M.; Jian, Y. Unsteady rotating electroosmotic flow with time-fractional Caputo—Fabrizio derivative. Appl. Math. Lett. 2020,
100, 106015. [CrossRef]

47. Tan, W.; Pan, W.; Xu, M. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel
plates. Int. J. Non Linear Mech. 2003, 38, 645–650.

48. Namias, V. The Fractional Order Fourier Transform and its Application to Quantum Mechanics. Geoderma 1980, 25, 241–265.
[CrossRef]

49. Ding, Z.; Jian, Y. Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: A linear analysis. J.
Fluid Mech. 2021, 919. [CrossRef]

50. Friedrich, C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta 1991, 30, 151–158.
[CrossRef]

51. Casanellas, L.; Ortín, J. Experiments on the laminar oscillatory flow of wormlike micellar solutions. Rheol. Acta 2012, 51, 545–557.
[CrossRef]

http://dx.doi.org/10.1021/la0009994
http://dx.doi.org/10.1103/PhysRevLett.88.076103
http://dx.doi.org/10.1103/PhysRevLett.96.174504
http://dx.doi.org/10.1103/PhysRevLett.90.144501
http://dx.doi.org/10.1103/PhysRevLett.87.054504
http://dx.doi.org/10.1103/PhysRevLett.104.088301
http://dx.doi.org/10.1021/la035880k
http://dx.doi.org/10.1103/PhysRevLett.101.114503
http://www.ncbi.nlm.nih.gov/pubmed/18851287
http://dx.doi.org/10.1063/1.3116664
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.045
http://dx.doi.org/10.1021/la026201t
http://dx.doi.org/10.1016/j.aml.2019.106015
http://dx.doi.org/10.1093/imamat/25.3.241
http://dx.doi.org/10.1017/jfm.2021.380
http://dx.doi.org/10.1007/BF01134604
http://dx.doi.org/10.1007/s00397-012-0620-3

	Introduction
	Mathematical Modeling
	The Local Net Charge Density and the Electrical Potential
	 Caputo Fractional Derivative and the Governing Equation
	Analytical Solutions of the EMHD Velocity Field
	Numerical Solutions of the EMHD Velocity Field

	Results and Discussion
	Velocity Distribution
	Resonance Behavior of Fractional Viscoelastic Fluids

	Conclusions
	References

