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Abstract: In this study, core–shell-hairy-type melanin particles surface modified with a polydopamine
shell layer and a polymer brush hairy layer were fabricated and assembled to readily obtain bright
structural color films. The hot pressing of freeze-dried samples of melanin particles decorated with
a hydrophilic, low glass transition temperature polymer brush results in films that exhibit an angle-
dependent structural color due to a highly periodic microstructure, with increased regularity in the
arrangement of the particle array due to the fluidity of the particles. Flexible, self-supporting, and
easy-to-cut and process structural color films are obtained, and their flexibility and robustness are
demonstrated using compression tests. This method of obtaining highly visible structural color films
using melanin particles as a single component will have a significant impact on practical materials
and applications.

Keywords: photonic materials; structural color; colloidal particles; biomimetics; melanin; polydopamine

1. Introduction

The construction of periodically structured assemblies consisting of particles of uni-
form size has attracted much attention for its potential applications in various fields, such
as electronics, photonics, and plasmonics [1–3]. Among them, many studies have reported
on the progress for structural color materials obtained by the assembly of uniformly sized
colloidal particles because of their high level of expandability and ease of handling [4–6].
Structural color films composed of colloidal particles, however, generally have low mechan-
ical strength and require proper curing before they can be used as a material. The immo-
bilization of microstructures using gelation [7,8], sol–gel processes [9,10], and UV curing
techniques [11,12], as well as the use of inverse opals with porous structures [13,14], have
been reported to be effective in developing materials for practical applications. Furthermore,
the use of colloidal particles with polymers grafted onto their surfaces is also useful [15,16].
Ohno et al. [17] reported that structural color films can be easily obtained by hot pressing
a mixture of silica and carbon black particles decorated with a polymethyl methacrylate
(PMMA) brush at a temperature higher than the glass transition temperature (Tg) of the
PMMA brushes [17]. However, in a binary assembly of colloidal particles, differences in
the specific gravity and sphericity of the particles often result in uneven coloration [18].
Thus, developing a method to obtain vivid structural color films in the unary assembly of
colloidal particles is an important issue.

In general, the whitish structural color obtained via the assembly of colloidal particles
is due to multiple scattering. Therefore, improvement of the visibility of the structural
color has been investigated by adding light-absorbing reagents such as carbon black [19,20]
and graphene [21,22] to the system to appropriately suppress the scattered light. In or-
ganisms such as peacocks and Morpho butterflies, natural melanin, a biopolymer with
excellent light absorption capacity, is used as a component of microstructures to achieve
vivid structural coloration [23,24]. Polydopamine (PDA), obtained by the self-oxidative
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polymerization of dopamine (DA), is known as artificial melanin because its components
closely resemble natural melanin [25]. While PDA-based synthetic melanin particles have
been used as antioxidants [26] and metal recovery agents [27], we have serendipitously
discovered that forming periodic microstructures with uniformly sized melanin particles
yields a new type of biomimetic structural color material with excellent visibility [28].
Artificially synthesized melanin particles effectively suppress multiple scattering, resulting
in bright structural coloration from periodic structures created by monodisperse melanin
particles as a single building block [29]. We have conducted a series of fundamental studies,
including the influence of the shape, composition, and assembly conditions of melanin
particles on structural coloration [30–35] and the visualization of structural color using
melanin precursors [36,37].

In this study, we demonstrated the preparation of flexible and robust structural color
films using surface-modified melanin particles with poly hydroxyethyl acrylate (PHEA),
which has a low Tg. First, melanin particles with an initiator for atom transfer radical
polymerization (ATRP) on their surface were artificially synthesized by copolymerizing
dopamine (DA) and ATRP-initiator-modified DA in the presence of cerium oxide (CeO2)
core particles. The resulting samples were designated CeO2@PDA core–shell particles.
Next, a hydrophilic PHEA brush layer was formed on the CeO2@PDA particles by surface-
initiated (SI) ATRP of the HEA monomer. The synthesized samples were designated
CeO2@PDA@PHEA(X) core–shell-hairy particles (X: the thickness of the PHEA hairy layer
(nm)) (Figure 1a). Aqueous dispersions of the obtained particles were dried to prepare solid
pellet samples, and the effect of the PHEA hairy thickness on the structural coloration of
the pellets was investigated. Finally, freeze-dried samples of CeO2@PDA@PHEA particles
were hot-pressed and cured to prepare structural color films, and their coloration and
physical properties were investigated in detail (Figure 1b).
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Figure 1. (a) Preparation of CeO2@PDA core–shell and CeO2@PDA@PHEA core–shell-hairy particles.
(b) Schematic diagram of the preparation of the structural color film by the hot-press method.

2. Materials and Methods
2.1. Materials

Dopamine hydrochloride (DA) was obtained from Sigma-Aldrich Japan Co., LLC.
(Tokyo, Japan). Tris(hydroxymethyl)aminomethane (Tris) was obtained from Kanto Chemi-
cal Co., Inc. (Tokyo, Japan). Copper(II) bromide (CuBr2), L(+)-ascorbic acid sodium salt
(NaAsc), N,N-dimethylformamide (DMF), and triethylamine (TEA) were obtained from
FUJIFILM Wako Pure Chemical Industries Ltd. (Osaka, Japan). 2-Bromoisobutyryl bromide
(BiBB), hydroxyethyl acrylate (HEA), and tris [2-(dimethylamino)ethyl]amine (Me6TREN)
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were obtained from Tokyo Chemical Industry (Tokyo, Japan). Deionized water with a
resistance of 18.2 MΩ·cm was obtained using a Millipore Simplicity UV system. The
CeO2 particles coated with polyvinylpyrrolidone (PVP) were provided by Hokko Chemical
Industry Co., Ltd. (Tokyo, Japan).

2.2. Measurements

Scanning electron microscopy (SEM) micrographs of the samples were obtained using
a scanning electron microscope (JSM-6510A; JEOL, Tokyo, Japan). Transmission electron
microscopy (TEM) micrographs were obtained using a transmission electron microscope
(H-7650; Hitachi, Tokyo, Japan). Reflection spectroscopy was performed using a micro-
scopic spectrophotometer (MSV-370; JASCO, Tokyo, Japan). Angle-changing reflection
spectroscopy was obtained using a reflection spectrophotometer (V-650; JASCO, Tokyo,
Japan) equipped with a reflection spectroscopy unit (ARSV-732; JASCO, Tokyo, Japan).
Photographs of the samples were taken with a digital camera (OM-D E-M10; Olympus,
Tokyo, Japan). Infrared absorption spectra were obtained using an attenuated total re-
flection Fourier transform infrared (ATR–FTIR) spectrometer (FT/IR 4700; JASCO, Tokyo,
Japan). The hydrodynamic diameter of the particles in water was measured by dynamic
light scattering (DLS) (Zetasizer Nano ZS; Malvern Panalytical, Tokyo, Japan). The thermo-
physical properties of the polymers were examined using a thermogravimetric analysis
(TGA) system (NEXTA-STA; Hitachi, Tokyo, Japan) and a differential scanning calorimetry
(DSC) system (DSC7020; Hitachi, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS)
measurements were performed using a photoelectron spectrometer (JPS-9030; JEOL, Tokyo,
Japan). Freeze drying of samples was conducted using a lyophilizer (FDS-1000; EYELA,
Tokyo, Japan). Hot pressing of the samples was performed using a hot-press machine
(H300-15; ASONE, Osaka, Japan). Compression tests were performed using a mechanical
testing machine (EZ-SX; Shimadzu, Kyoto, Japan). The origin of the compression strain
was defined as the point at which the compression stress reaches 0.05 N. Young’s modulus
was defined as the slope of the initial linear of the stress–strain curve in the first 5–15%
strain range [38].

2.3. Preparation of the CeO2@PDA Core–Shell Particles

The CeO2@PDA core–shell particles were prepared by modifying the method of
our previous paper [18,39]. Briefly, a mixture of DA (0.10 g, 0.53 mmol), BiBB (0.10 mL,
0.81 mmol), and TEA (0.11 mL, 0.79 mmol) in DMF (20 mL) was stirred at room temperature
for 3 h under nitrogen (N2) gas. CeO2 core particles (198 nm, 0.20 g), Tris (2.4 g, 20 mmol),
and deionized water (180 mL) were added, and the mixture was stirred at r.t. for another
20 h. The resulting samples were separated and purified repeatedly by centrifugation
(12,000 rpm for 10 min) and redispersion to obtain CeO2@PDA core–shell particles. The
diameter of the particles was determined by analysis of the TEM images of 50 particles.
The PDA shell layer thickness of the core–shell particles was calculated according to the
following formula:

shell layer thickness = [(diameter of core-shell particles) − (diameter of core particles)]/2

2.4. Preparation of the CeO2@PDA@PHEA(X) Core-Shell-Hairy Particles

HEA (0.31–2.2 mL, 3–21 mmol), CuBr2 (20 mg, 0.090 mmol), Me6TREN (49 µL,
0.18 mmol) and the CeO2@PDA particles (30 mg) dispersed in deionized water (30 mL)
were placed in a three-necked flask. The mixture was deoxygenated by purging with N2
gas for 15 min. A N2-purged aqueous solution of NaAsc (36 mg, 0.18 mmol) was then
added to the mixture and stirred at r.t. After 5 h, the polymerization was stopped by
purging with oxygen, and the resulting particles were separated and purified repeatedly by
centrifugation (12,000 rpm for 10 min) and redispersion, forming CeO2@PDA@PHEA(X)
core–shell-hairy particles. The diameter of the particles and the hairy layer thickness of the
core–shell-hairy particles were determined by the same methods shown above.
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2.5. Preparation of the Pellet Samples

The pellet samples were obtained by drop casting an aqueous suspension of particles
(solid concentration: 10 wt %) onto a silicone rubber plate and drying at room temperature
overnight. The average center-to-center distances between the nearest particles (d) were
determined by 100 pairs of particles obtained from SEM images.

2.6. Preparation of Structural Color Films

Solid samples of the CeO2@PDA@PHEA(X) particles were prepared by freeze-drying.
These samples were sandwiched between two Teflon plates along with a silicone sheet as a
spacer and hot-pressed at 50 ◦C for 15 min to obtain structural color films.

3. Results and Discussion
3.1. Preparation of CeO2@PDA@PHEA Core–Shell-Hairy Particles

The CeO2@PDA core–shell particles were prepared by the copolymerization of DA and
ATRP initiator-bearing DA, i.e., DA-BiBB, in the presence of CeO2 core particles. IR mea-
surements of the prepared CeO2@PDA particles revealed a broad peak at 3200–3500 cm−1

due to hydroxyl group structures such as catechol groups, and the characteristic signals
were observed at approximately 1500 and 1600 cm−1 due to indoline and indole struc-
tures [40], suggesting the construction of PDA layers on the particle surface (Figure 2a). To
evaluate the introduction of BiBB moieties into the PDA shell layer, the XPS spectrum of the
CeO2@PDA particles was measured. As shown in Figure 2b, in addition to strong C1s, O1s,
and N1s signals originating from PDA, weak Br3d signals indicating the presence of BiBB
moieties were observed. The Br/N value can be regarded as the BiBB/DA ratio in the PDA
shell layer [41], which was determined from the peak areas for the XPS narrow scan spectra
for N1s and Br3d to be 0.24 (Figure 2b insets). The volume fraction of the PDA layer within
the particles was determined from TGA measurements to be approximately 0.7 wt %. The
density of the ATRP initiators on the particle surface, determined by Equation (1) below,
was approximately 0.87 molecules nm−2.

Density
[
molecule nm−2

]
=

αorganics
χ × NA

Sall
(1)

where αorganics is the weight of organics estimated from TGA and XPS measurements, χ
is the molecular weight of the organics, NA is the Avogadro constant, and Sall is the total
surface area of the core particles.

The CeO2@PDA@PHEA core–shell-hairy particles were then prepared by SI-ATRP of
HEA in the presence of CeO2@PDA particles. The IR spectrum for the CeO2@PDA@PHEA
particles shows characteristic peaks at 2900 and 1730 cm−1 due to C-H and C=O stretch-
ing vibrations of the PHEA moiety, indicating that the PHEA layers are formed on the
particle surface (Figure 2a). Figure 3a–f show TEM images of CeO2, CeO2@PDA, and
CeO2@PDA@PHEA(X) particles. The CeO2@PDA particles contain a slight shell layer,
which is not observed for the CeO2 particles. The PDA shell thickness was calculated from
the TEM image to be approximately 2 nm. As the HEA monomer feed concentration is
increased, a PHEA hairy layer is clearly observed. As shown in the left axis of Figure 3g, the
thickness of the PHEA layer, calculated from the TEM image, is controlled from 5 to 24 nm.
TEM images of CeO2@PDA@PHEA(24) particles measured at low magnification show that
all particle surfaces are covered with PHEA hairy layers, demonstrating the usefulness
of the present process (Figure S1). Partial coalescence and agglomeration of particles is
observed in the TEM images, which may have occurred during the drying of the samples on
the TEM grid. To evaluate the presence of aggregation in the obtained particles, the hydrody-
namic diameter (Dh) of CeO2@PDA@PHEA(X) particles dispersed in water was measured
by DLS. As shown in Figure S2, a monodisperse peak with a relatively low polydispersity
index (PDI) was observed for all particles, which increases in size without aggregation.
Note that the Dh determined by DLS and the diameter determined by TEM measurements
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were different because the hydrophilic PHEA hairy chains swelled in water. TGA measure-
ments show that the PHEA amount on the surface of the CeO2@PDA@PHEA(X) particles
ranges from 5.7 to 36.8 wt %, also indicating controlled PHEA layer building (Figure 3g
right axis). DSC measurements for the CeO2@PDA@PHEA(24) particles showed a peak at
approximately 15 ◦C, corresponding to the Tg of PHEA (Figure S3).
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Figure 3. TEM images of (a) CeO2, (b) CeO2@PDA, (c) CeO2@PDA@PHEA(5),
(d) CeO2@PDA@PHEA(11), (e) CeO2@PDA@PHEA(16), and (f) CeO2@PDA@PHEA(24) par-
ticles. (g) Effect of HEA monomer feed concentration on PHEA hairy thickness and PHEA amount in
CeO2@PDA@PHEA particles.

3.2. Effect of PHEA Hairy Layer Thickness on the Coloration of Pellet Samples

The aqueous dispersion of CeO2 particles was milky white, while that of CeO2@PDA
and CeO2@PDA@PHEA(X) particles were both light brown due to the absorption of
melanin (Figure S4). Pellet samples were prepared from these aqueous dispersions by drop
casting. The green structural color was observed in both pellets prepared from CeO2 and
CeO2@PDA particles (Figure 4a,b, insets). Comparing the reflection spectra for the pellets
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of CeO2 and CeO2@PDA particles (Figure 4g), the maximum reflection wavelength of the
reflectance spectrum (λmax) is slightly redshifted due to the increase in particle size due
to the PDA shell layer construction. A bright green color is observed for the CeO2@PDA
pellets, whereas the CeO2 pellets are whitish green. The difference in the brightness of
the structural color is probably due to absorption by the PDA shell in the CeO2@PDA
pellet, which suppresses reflections due to multiple scattering in the visible region and
emphasizes peaks derived from the structural color [29]. In addition, an increase in the
reflection peak intensity is observed. This is probably due to the improved periodicity of
the arrangement of the CeO2@PDA particles compared to the CeO2 particles, as observed
from the SEM images shown in Figure 4a,b. The PDA coating fills the surface gaps of the
distorted CeO2 core particles, resulting in a smooth spherical shape and improving the
periodicity of the particle array [18]. When CeO2@PDA@PHEA(X) particles are used as
components, the color of the pellets shifts from green to red as the interparticle distance
affecting the structural color is increased with increasing PHEA hairy layer thickness
(Figure 4c–f, insets). As shown in Figure 4g, the λmax for the pellet samples is redshifted
due to the construction of the PHEA hairy layer. Under practical conditions, Bragg’s law,
as expressed by Equation (2), can be applied by considering the effective refractive index
(RI) of the system [42]:

mλ =

√
8
3

d2(neff
2 − sin2θ) (2)

where m is the order of diffraction, λ is the wavelength of light, neff is the effective RI of the
system, d is the center-to-center distance between the nearest particles, and θ is the angle
between the incident light and the sample normal. The SEM images shown in Figure 4c–f
indicate that the particles in the pellet samples formed a face-centered cubic (FCC) structure
to which Equation (2) can be adapted. The value of neff can be calculated as a weighted
sum of the RI of the particles and the gap portion using Equation (3) below [42].

neff
2 = ∑

i
ni

2Φi (3)

where ni and Φi are the RI and volume fraction of their i portion, respectively. For an
FCC structure, for the colloidal particles, Φ is 0.74. The RIs for the CeO2, CeO2@PDA, and
CeO2@PDA@PHEA(X) particles were calculated using the following Equation (4) [43]:

nparticle = nhairy

[
1 −

(
b
c

)3
]
+ nshell

[(
b
c

)3
−
( a

c

)3
]
+ ncore

( a
c

)3
(4)

where nparticle is the RI of the particles, nhairy is the RI of the PHEA hairy layer (1.50 [44]),
nshell is the RI of the PDA shell layer (1.74 [45]), ncore is the RI of the CeO2 particles coated
with PVP, and a, b, and c symbolize the radii of the core, core–shell, and core–shell-hairy
particles, respectively. The reflection spectra shown in Figure 4g show that the reflectance
for the pellet samples decreases as the thickness of the PHEA hairy layer is increased. In
general, the reflectance of light passing from medium 1 to medium 2 is determined by
following Fresnel’s equation (Equation (5)) [46]:

R =

(
n1 − n2

n1 + n2

)2
(5)

where R is the reflectance of light and n1 and n2 are the RIs for medium 1 and medium 2,
respectively. Considering the phenomenon that light passing in the air is reflected at the
surface of the pellet samples, n1 can be regarded as the RI of air (1.00) and n2 can be
regarded as the RI of the particles (nparticle). The nparticle values calculated using Equa-
tion (4), the d values, the diameter of the particles, and the λmax values calculated using
Equations (2) and (3) (θ = 5◦) are summarized in Table 1. The nparticle is decreased with
increasing thickness of the PHEA hairy layer due to the RI of PHEA (1.50). As shown
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by Equation (5), R is a function of the RI of the air and that of the particles. Thus, the
reduction in nparticles may be one of the reasons for the lower reflectance of the pellet
samples. The value of d, the center-to-center distance between the nearest particles, is
smaller than the particle diameter for the CeO2 core particles and larger than that for the
CeO2@PDA@PHEA(24) core–shell-hairy particles, whereas it is nearly equal to the particle
diameter for the other particles. It has been reported that the Tg of PVP decreases below
room temperature with increasing water content [47]. Therefore, due to the low Tg of
PVP on the surface of CeO2 particles in the aqueous dispersion creating the sample, the
CeO2 particles can be more densely assembled. For the CeO2@PDA@PHEA(24) particles, a
large amount of the PHEA hairy layer can result in an expansion of the distance between
the particles. Experimental values for λmax were compared with calculated values for
the component filling the gaps in the particle array: air (RI = 1.00) and PHEA (RI = 1.50)
(Table 1). When the CeO2, CeO2@PDA, and CeO2@PDA@PHEA(5) particles are used as
components, the experimental values for λmax were relatively consistent with the calcu-
lated values with air as the gap component. On the other hand, the experimental values of
λmax for the CeO2@PDA@PHEA(11), CeO2@PDA@PHEA(16), and CeO2@PDA@PHEA(24)
particles agree relatively well with the calculated values when PHEA is the gap component,
suggesting that the gap component is almost completely filled by the PHEA hairy layer.
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The insets show photographs of the obtained pellets. (g) Reflection spectra for the pellet samples.

Table 1. Characterization of pellet samples obtained from the prepared particles.

CeO2 CeO2@PDA
CeO2@PDA@PHEA(X)

X = 5 X = 11 X = 16 X = 24

nparticle 1.93 * 1.92 1.87 1.81 1.77 1.72

Center-to-center distance (d) (nm) 190 ± 6 204 ± 4 208 ± 4 219 ± 5 236 ± 8 258 ± 17

Diameter of the particles (nm) 198 ± 5 202 ± 7 211 ± 8 223 ± 9 233 ± 7 249 ± 9

λmax [nm]

Experimental values 529 544 565 628 709 714

Calculated values_gap: air 538 575 572 586 619 660

Calculated values_gap: PHEA - - 604 620 657 702

* The RI of the CeO2 particles coated with PVP was calculated to be 1.93 according to Equation (4) above since the
thickness of the PVP coating is approximately 10 nm, and the RIs for PVP and CeO2 are 1.48 [48] and 2.10 [49],
respectively.

3.3. Preparation and Characterization of Structural Color Films

Structural color films were prepared by hot pressing the freeze-dried CeO2@PDA@PHEA(16)
particles. Before hot pressing, the freeze-dried sample shows a brown color due to the
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light absorption by melanin particles. In contrast, the film obtained after hot pressing at
50 ◦C shows a bright red color (Figure 5a inset). While no clear reflection spectrum is
observed for the sample before hot pressing, the reflection spectrum for the film obtained
after hot pressing shows a peak at approximately 750 nm due to the red structural color
(Figure S5). This is because the periodicity of the particle array is dramatically improved
after hot pressing, as observed from the SEM image shown in Figure 5a. Three films were
prepared using CeO2@PDA@PHEA(16) particles, and reflection spectra were measured for
each film. As shown in Figure S6, the spectral shape and reflectance are almost constant,
indicating the reproducibility of the sample preparation using the present method. To
investigate the effect of the thickness of the PHEA hairy layer on the formation of the films,
structural color films were prepared using CeO2@PDA@PHEA(X) particles (Figure 5b).
When particles with thin PHEA hairy layer thicknesses (X = 5) are used, no film is found
to be formed. On the other hand, particles with thicker PHEA hairy layers (X = 11, 16,
and 24) produce structural color films. While the CeO2@PDA@PHEA(11) film cracked
when force was applied, the CeO2@PDA@PHEA(16) and CeO2@PDA@PHEA(24) films
retained their structure even when bent and showed some flexibility (Figure S7). This
indicated that it is desirable to fill the gaps between particles with PHEA hairy layers to
form flexible films (vide supra). The angle dependence for the structural color of the film
composed of CeO2@PDA@PHEA(24) particles was investigated (Figure 5c). While the
resulting film viewed from directly above appears brown, which is derived from melanin
absorption, the red structural color can be gradually observed as the viewing angle is
changed. The reflection spectra for the CeO2@PDA@PHEA(24) film measured at different
angles shows a decrease in the wavelength of the reflection peak from the infrared region
to the visible region (Figure 5d). The film with CeO2@PDA@PHEA(24) particles shows an
angle-dependent structural color, indicating the formation of a periodic structure for the
particles by hot pressing. In the aforementioned structural color pellet fabrication, which is
obtained by drop-casting melanin particles dispersed in a solvent, it takes time to obtain
pellets because the particles self-assemble as the solvent evaporates. On the other hand,
this method demonstrated the simplicity of material preparation, as structural color films
were easily obtained in a short time by hot pressing the sample after removing the solvent
by freeze-drying.
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Compression tests were performed to evaluate the mechanical properties of films
consisting of CeO2@PDA@PHEA(X) particles. Unfortunately, measurements could not be
performed for the CeO2@PDA@PHEA(5) and CeO2@PDA@PHEA(11) films because the
PHEA layer thickness was too thin to maintain the film shape. On the other hand, the
CeO2@PDA@PHEA(16) and CeO2@PDA@PHEA(24) films showed similar stress–strain
behavior under the present experimental conditions and did not fracture, regardless of the
PHEA hairy layer thickness, suggesting the robustness of the films (Figure 6a). Increasing
the PHEA hairy layer decreases Young’s modulus calculated in the 5–15% compressive
strain region (Figure 6b), indicating that the film becomes more flexible with increas-
ing the PHEA hairy layer thickness. The appearance of the CeO2@PDA@PHEA(16) and
CeO2@PDA@PHEA(24) films changed little before and after the compression test (Figure
S8 insets). Furthermore, their reflection spectra also showed similar shapes, indicating
that the structural color of the films was maintained before and after the compression test
and the arrangement structure of the particles was preserved (Figure S8). As shown in
Figure 6c, the flexible and robust CeO2@PDA@PHEA(24) film can be bent and cut.
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4. Conclusions

We succeeded in the easy preparation of films that show a bright structural color
with the surface-modified melanin particles as the single component. Melanin particles
with hydrophilic, low Tg PHEA brushes coated onto a surface can be simply hot-pressed
to form structural color films. Hot-pressing freeze-dried CeO2@PDA@PHEA particles
results in films that exhibit an angle-dependent structural color due to the highly periodic
microstructure, with the regularity of the arrangement enhanced by the fluidity of the
particles. The resulting structural color film is flexible, self-supporting, and easy to process
by cutting. The results from compression tests also confirm the film’s flexibility and
robustness. Typical mechanisms for periodic microstructure-based structural color include
interference, diffraction gratings, scattering, and photonic crystals [50]. The structural color
obtained by the assembly of colloidal particles used in this system can be varied by changing
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the particle size, refractive index, blackness, and assembly method to achieve various
colors [29]. Structural color films have been used in a wide range of applications such as
smart displays [51] and strain sensors [52,53] due to their unique coloring properties. The
present method can impart an arbitrary polymer layer on the surface of melanin particles,
and the resulting particles would be applicable to the fabrication of structural color films
with functions such as temperature response [54], mechanochromic [55], and fluorescent
properties [56]. Most of these reported materials are prepared by multi-component systems
in which light-absorbing materials such as carbon black are added to improve the visibility
of the structural color. The method proposed here to obtain highly visible structural color
films with melanin particles as a single component will enable simpler material fabrication
and expand the possibilities of structural color materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12193338/s1, Figure S1: TEM images of CeO2@PDA@PHEA(24)
particles measured at low magnification; Figure S2: Hydrodynamic diameter (Dh) of CeO2@PDA@PHEA(X)
particles dispersed in water as measured by DLS; Figure S3: DSC curve of CeO2@PDA@PHEA(24)
particles in N2 at a 10 ◦C min−1 heating rate. The red arrow indicates the Tg of the sample; Figure S4:
Photographs of aqueous dispersions of CeO2, CeO2@PDA, and CeO2@PHEA(X); Figure S5: Re-
flection spectra of CeO2@PDA@PHEA(16) films before and after hot pressing; Figure S6: Reflec-
tion spectra of three separately prepared CeO2@PDA@PHEA(16) films; Figure S7: Photographs of
CeO2@PDA@PHEA(X) films during the bending; Figure S8: Reflectance spectra of CeO2@PDA@PHEA(16)
and CeO2@PDA@PHEA(24) films before and after compression test. The inset shows photographs of
the samples before and after the compression test. The center of the films was compressed and the
reflectance spectra were measured at the compressed point particles (particle concentration: 1 wt %).
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