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Abstract: This study was conducted to investigate the mechanisms of enhanced microfine flake
graphite (MFG) flotation by nanobubbles generated based on the principle of hydrodynamic cavita-
tion. The effects of nanobubbles on graphite surface properties were characterized in terms of the
flotation kinetics, collector adsorption behavior, Zeta potential, IR spectra, contact angle, etc. The
results show that the surface nanobubbles increased the hydrophobic attraction and reduced the
electrostatic repulsion between the graphite particles and collector molecules, significantly improving
the flotation selectivity and the kinetic flotation rate and promoting the agglomeration of MFG.
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1. Introduction

Natural graphite is a crystalline carbonaceous compound with a layered structure.
Although it is a non-metallic material, it has both metallic and non-metallic characteristics.
Its metallic characteristics include a high rate of thermal conductivity and electrical conduc-
tivity [1]. Graphite is characterized by a density of 2.25 g/cm3, a melting point of 3652 ◦C,
and a boiling point of 4827 ◦C. Graphite possesses very stable chemical properties with
high resistance to corrosion, acid, alkali, and other agents. Natural graphite can be divided
into three major types, namely flake graphite, lump graphite, and microcrystalline graphite,
and each has some unique characteristics [2]. Graphite is widely used in batteries [3,4],
electrodes [5], conductive coatings [6], lubrication [7], refractories [8], neutron modera-
tors [9], seal materials [10], etc. In particular, the discovery of graphene has promoted new
applications of graphite in areas such as sensors [11] and electrodes [12].

Compared with other types of graphite, flake graphite has better floatability, plasticity,
and lubricity, but its raw ore grade is usually low. Flake graphite can readily produce a
high-grade, high-value graphite concentrate of 95% or higher purity through repeated
grinding and multiple stages of separation in a variety of industrial applications, which
has been well-demonstrated in China [13]. Based on its grain size, the flake graphite can be
further divided into fine flake graphite (flake sizes smaller than 147 µm) and large flake
graphite (flake sizes greater than 147 µm) [14]. Fine and large flake graphite can co-exist in
the ore body, and in fact, the raw ore of fine flake graphite usually contains approximately
20% large flake graphite. Fine flake graphite will be the main form of graphite resource in
the future due to its large reserve. There exists a rich deposit of fine flake graphite in the
Luobei region of Heilongjiang Province, China, which contains up to 70% −74 µm graphite
in the raw ore [15] and is often called microfine flake graphite (MFG).

Due to the tiny grain size of fine flake graphite, it is difficult to collect all the fine
graphite particles in the flotation process, resulting in poor recovery. Therefore, many
researchers have attempted to improve the flotation process and chemical reagents to more
effectively recover these fine particles of graphite. Bu et al. (2018) showed that the use
of a static microbubble cyclone flotation column could increase the recovery of fine flake
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graphite by 9.59 percentage points at the same ash content of concentrate, compared with
a traditional mechanical flotation machine [16]. Bu et al. (2018) also showed that the ash
removal efficiency of the flotation column was 3.82-fold higher than that observed with
the mechanical flotation cell [17]. Kang and Li (2019) showed that ultrasonic treatment
can shorten the graphite cleaning flotation process [18] by efficiently removing silicate
impurities as well as other metal impurities. Shi et al. (2015) concluded that better emulsion
stability results in smaller diesel droplets in its emulsion, thus improving the recovery of
graphite [19].

Ma et al. (2021) reported that nanobubble flotation technology improved the flotation
recovery of fine flake graphite by up to 14.73 percentage points and significantly reduced
the required number of flotation stages to produce the specified concentrate grade [15].
Similar conclusions have been reached in a fairly large number of studies performed with
other coal and minerals, as has been documented in a recent review article by Tao [20].
The separation mechanisms of ultrafine minerals by nanobubbles are mainly related to the
exceedingly large contact angle of surface nanobubbles [21–23], the hydrophobic agglom-
eration of particles [24,25], the selective nucleation of nanobubbles on the hydrophobic
interface [26,27], the stability of nanobubbles [28–30], etc. However, there are few studies
focused on the effects of nanobubbles on the particles’ surface properties such as their
surface potential, collector adsorption capacity, and adsorption kinetics.

In our previous studies, it has been concluded that the use of nanobubbles can sig-
nificantly enhance the flotation of microfine flake graphite [15]. Since the mineralization
efficiency during flotation is dependent on the adsorption of the collector on the mineral
surface, it is of great significance to study the adsorption characteristics of the collector on
mineral surfaces in the presence of nanobubbles. However, the adsorption performance
of the collector on graphite surfaces has not been thoroughly studied by researchers. This
study was intended to reveal the enhancement mechanisms of nanobubbles on MFG from
the perspective of the collector adsorption behaviors on graphite and bubble surfaces and
their consequent effects on surface characteristics.

2. Experimental
2.1. Sample

The representative samples of microfine flake graphite ore (MFGO) were collected
from the pulp stream of a concentrator in Luobei County, Heilongjiang Province, China.
The sample was subsequently filtered, mixed, and thoroughly homogenized before it was
fractionated into small lots and stored in sealed bags for later usage. A pure microfine flake
graphite (PMFG) sample with a 99.5% fixed carbon content was purchased from Diyuan
Graphite Co., Ltd. (Hegang, China).

2.2. Sample Characterization

A sample of 2 g MFGO blended with paraffin solvent was employed for the quantita-
tive mineralogical analysis with the Automatic Mineral Identification and Characterization
System (AMICS ZEISS Sigma 500) purchased from Bruker, Germany. An X-ray diffraction
(XRD) diffractometer (Bruker D8 XRD) was used for the characterization of PMFG under
conditions of 40 kV, 44 mA, and 2◦/min scan rate. A laser particle size analyzer (BT-9300S)
manufactured by Bettersize Instrument Ltd., Dandong, China, was adopted for the particle
size distribution characterization of MFGO and PMFG. The particle size distribution curves
of MFGO were obtained under the shading rates of 12.31% and 14.56%, respectively.

Table 1 shows the AMICS mineralogical identification results of MFGO. It can be
seen that the sample had 84.06% graphite, and muscovite, quartz, and pyrite were the
main gangue minerals. In addition, the sample also contained a small amount of garnet,
calcite, and potassium feldspar. The XRD analysis results shown in Figure 1a indicate
that PMFG contained some trace amounts of quartz in addition to graphite. The particle
size distribution results shown in Figure 1b demonstrate that the −74 µm content values
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in MFGO and PMFG were 78.5% and 99.50%, respectively, and d50 values in MFGO and
PMFG were about 32 µm and 15 µm, respectively.

Table 1. Mineral compositions of MFGO.

Mineral Graphite Quartz Muscovite Pyrite Garnet Calcite K-Feldspar

Content (%) 84.06 3.47 4.78 2.69 1.12 1.07 0.98
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Figure 1. The XRD analysis results of PMFG (a) and particle size distribution results of MFGO and
PMFG (b).

2.3. Flotation System

The nanobubble flotation system used in this study is shown in Figure 2. It consisted
of a circulating pump, a nanobubble generator, and a mechanic flotation machine. The
circulating pump was produced by Zhejiang Common People Pump Co., Ltd. (Wenling,
China), and the flotation machine (XFD 1.0 L) was acquired from Jilin Exploration Machin-
ery Factory. The nanobubble generator with a throat of 3 mm in diameter was used to
generate the nanobubbles with the details described in a previous study [31]. When valve 1
was open, and valve 2 was closed, the circulating pump would transport the pulp through
the nanobubble generator to produce the nanobubble flotation pulp (NFP) and nanobubble
flotation concentrate (NFC). In contrast, when valve 1 was closed, and valve 2 was open,
the conventional flotation pulp (CFP) and conventional flotation concentrate (CFC) would
be generated with the circulating pulp passing through the steel tube. This flotation system
was also employed to generate the samples used to study the adsorption behavior of the
collector on graphite surfaces with and without nanobubbles. It is worth noting that the
surface nanobubbles and bulk nanobubbles can be generated simultaneously on the surface
of graphite particles and in aqueous solutions, respectively, when an aqueous solution with
added frother is circulated through the nanobubble generator; these processes have been
described by Ma et al. (2019) [32] and Ma et al. (2022) [33].

2.4. Bubble Size Measurement

The bubble size was measured with a laser particle size and Zeta potential analyzer
(Malvern Zetasizer Nano-ZS90) manufactured by Malvern Panalytical, England. An aque-
ous bulk nanobubble solution was obtained from the system shown in Figure 2 under the
following conditions: valve 1 open, valve 2 closed, pH 6, liquid circulation rate 18.34 L/min,
and circulation time 2 min. A 3 mL sample of the aqueous solution was collected from
the flotation cell with a disposable plastic syringe and subsequently transferred to the
Malvern Zetasizer Nano-ZS90 analyzer to obtain the size distribution characteristics of
nanobubbles. It should be noted that nanobubbles can survive for a long time, e.g., hours
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or days depending on solution conditions, and therefore, it is feasible to use the above
particle size analyzer to determine the size distribution of the bubbles in a testing period of
a few minutes [31].
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2.5. Kinetic Flotation Tests

The flotation reagents used in this study were acquired from Heilongjiang Luobei
Diyuan Graphite Company in China. All the flotation tests were carried out under the
following conditions: frother: fusel 300 g/t, collector: diesel 400 g/t, pH 10 (adjusted
with lime), quartz and silicate depressant: sodium hexametaphosphate 1000 g/t, pulp
solids concentration 10% by weight, pulp-stirring rate 1800 r/min, pulp circulation rate
17.38 L/min, and flotation time 3 min. The reagents were added into the pulp in the
sequence of lime, sodium hexametaphosphate, diesel, and fusel, with an interval of 2 min
each. It should be mentioned that the pulp had been well-circulated and mixed for 3 min
with valve 1 closed and valve 2 open before reagent conditioning was initiated. It also
needs to be mentioned that the lime was directly added to the pulp, and the pH of the pulp
was measured in real time using a pH meter until it reached pH 10 before the addition of
lime was stopped. Lime has two functions: one is to ensure that the flotation is carried out
at the optimum pH, and the other is to depress pyrite in the slurry system. The following
reactions can occur after quicklime is dissolved in the slurry [34]:

CaO + H2O→ Ca(OH)2; (1)

Ca(OH)2 ⇔ Ca(OH)+ + OH−; (2)

Ca(OH)+ ⇔ Ca2+ + OH−; (3)

There are two theories about the depression of pyrite by lime. One is that lime
depresses pyrite as a result of the formation of hydrophilic Fe(OH)2 and Fe(OH)3 films on
the mineral surface. The other theory postulates that the depression of pyrite by lime is
due to the formation of the hydrate films of CaSO4, CaCO3, and CaO on the pyrite surface.

2.6. Adsorption Kinetics of Diesel on Graphite Surface

The adsorption characteristics of diesel on the graphite surface in the presence and
absence of nanobubbles were investigated with the system shown in Figure 2 under the
following conditions: pulp-stirring rate 1500 r/min, pH10, fusel dosage 10 mg/L pulp,
pulp solid concentration 30 g/L, and pulp circulation rate 12 L/min. Distilled water was
used for pulp preparation. The PMFG pulp samples of 10 mL in volume with different
diesel concentrations with and without nanobubbles were collected and filtered. The filtrate
was diluted 10 times after 10 min ultrasonic treatment to ensure the diesel content was well-



Nanomaterials 2022, 12, 3361 5 of 17

dispersed. Finally, the residual content of organic carbon in the filtrate was determined with
a TOC analyzer (TOC-L TNM-L CSN, Japan). Since the main element in diesel is organic
carbon, the adsorbance of organic carbon in diesel was used to evaluate the adsorption
density of diesel on the graphite surface, as shown in Equation (4):

q =
[C1 − (C2 − C3)]V

m
(4)

where q is the diesel adsorption capacity by graphite (mg/g); C1 is the initial concentration
of organic carbon of diesel (mg/L); C2 is the concentration of organic carbon in the filtrate
(mg/L); C3 is the concentration of organic carbon in fusel (mg/L). V is the volume of
distilled water in the whole system (L); m is the mass of graphite in the pulp (g). Each
measurement was repeated 5 times, and the average value was used as the organic carbon
concentration for data analysis. The organic carbon concentrations in fusel and diesel were
measured prior to each adsorption test to minimize experimental errors.

2.7. Zeta Potential Measurement

In order to characterize the effect of electrostatic interactions on the nanobubble
flotation of MFG, the surface potentials of the untreated PMFG particles, bulk nanobubbles,
PMFG particles with surface nanobubbles, and with the diesel content were measured by
the use of a Zeta potential analyzer (Malvern Zetasizer Nano-ZS90) at pH 10. The surface
potential of the untreated PMFG particles was determined with a small sample ground to
below −45 µm and placed in distilled water at 3% solid concentration by weight. The bulk
nanobubbles were generated using the system shown in Figure 2 at a fusel concentration
of 30 mg/L in the solution with valve 1 open and valve 2 closed, and a 5 mL nanobubble
aqueous solution sample was collected using a disposable plastic syringe after the system
was operated for 2 min. The nanobubble- and diesel-treated PMFG samples were prepared
with the same flotation system under the same operating conditions after the addition of a
well-dispersed emulsion of 150 µL diesel in 150 mL 1 mmol/L NaCl solution [35] prepared
with an intense agitation and ultrasonic treatment for 30 min [36].

2.8. Contact Angle and FTIR Measurement

The PMFG contact angle and FTIR measurements were performed with the froth
products obtained using the flotation system shown in Figure 2 in the presence and ab-
sence of nanobubbles at pH10 with 1000 g/t sodium hexametaphosphate, 10 mg/L diesel,
20 mg/L fusel, 5% solid concentration by weight, and 3 min flotation time. The froth
products were washed, dried at 40 ◦C for 10 h, and pressed into thin plates for contact
angle and FTIR measurements with a contact angle analyzer (JC2000C1) produced by
Shanghai Zhongchen Digital Technology Instrument Co., Ltd. (Shanghai, China), and a
Fourier infrared spectrometer (VERTEX 80 V Bruker) operating at a vacuum pressure of
400 Pa, respectively.

3. Results and Discussion
3.1. Nanobubble Size Distribution

Figure 3 shows the size distribution of the bulk nanobubbles in the aqueous solutions
at different frother concentrations ranging from 10 to 50 mg/L. It can be seen that the
average size of nanobubbles decreased from 230 nm to 140 nm with the increases in the
frother concentration from 10 mg/L to 50 mg/L, which is consistent with the results
reported by Oliveira et al. (2018) and Ma et al. (2019) [31,37]. Finch et al. (2008) showed that
increasing the frother concentration reduced the surface tension, which was responsible
for reduced bubble size [38]. Zhang et al. (2021) believed that the frother molecules at the
air–liquid interface form hydrogen bonds with water to stabilize the liquid film on the
surface of the bubbles, thereby preventing the bubbles from coalescing and reducing their
size [32].
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3.2. Effect of Nanobubbles on MFGO Flotation Kinetics

Figure 4 shows the results of the kinetic flotation tests performed with and without
nanobubbles. It can be seen that the graphite concentrate recovery was significantly higher
in the presence of nanobubbles than in their absence at a given flotation time. Moreover,
the flotation rate was considerably faster with nanobubbles present in the flotation system,
particularly for the first 20 s. The values of the nanobubble and conventional flotation
rate constant k calculated based on the flotation data for the first 20 s were 0.025 s−1 (i.e.,
1.50 min−1) and 0.018 s−1 (i.e., 1.08 min−1), respectively, which indicates that the flotation
rate significantly increased with the presence of nanobubbles. The nanobubble flotation
process also resulted in a graphite recovery rate that was 7 percentage points higher at the
end of the 80 s flotation process than that of the conventional flotation concentrate. Figure 4a
shows that the nanobubble flotation process was essentially completed in 40 s, while the
conventional flotation process lasted 60 s, indicating that the use of nanobubbles reduced
the flotation time by one-third. It is also worth noting from Figure 4a that the nanobubble
flotation system consistently produced a higher concentrate grade in addition to a higher
rate of recovery than the conventional flotation, suggesting that the nanobubble flotation
system was more selective and more effective. The technical advantage of the nanobubble
flotation system is better demonstrated by the flotation efficiency curve shown in Figure 4b,
which shows that the nanobubble flotation technique always generated a higher rate of
flotation recovery than the conventional flotation technique at a given concentrate grade.
Previous studies have shown that there are a number of mechanisms by which nanobubbles
enhance the flotation separation efficiency with fine particles, as summarized recently by
Tao [20]. For example, nanobubbles can promote the agglomeration of fine particles to
form agglomerates with a larger apparent size, thus improving the flotation probability
of fine particles [39]. In addition, nanobubbles can form preferentially on the surface of
the hydrophobic particles, which can increase the difference in surface hydrophobicity
between the hydrophobic and hydrophilic particles. The flotation separation process is
fundamentally based on [27]. This study reveals a new mechanism by which nanobubbles
enhance flotation efficiency, as will be described later.
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Figure 4. The results of kinetic flotation test with MFPO: (a) concentrate recovery and grade as a
function of flotation time in the presence and absence of nanobubbles; (b) concentrate recovery as a
function of concentrate grade in presence and absence of nanobubbles.

3.3. Effects of Nanobubbles on Diesel Adsorption Kinetics on Graphite

Figure 5 shows the kinetic adsorption results on the graphite surface of the diesel
collector at a concentration of 20 and 30 mg/L at pH 10 with and without nanobubbles in
the solution, where time 0 represents the moment at which reagent conditioning stopped.
The adsorption capacity was not zero at time 0 because adsorption occurred during the
reagent conditioning stage. Figure 5 does not show the adsorption capacity change with
time during the reagent conditioning stage, which was identical for the nanobubble and
conventional flotation techniques. The adsorption capacity of diesel on the graphite surface
at a concentration of 20 mg/L was significantly higher at a given adsorption time in the
presence of nanobubbles than in their absence. It reached a maximum of 2.08 mg/g in
approximately 5 min in the presence of nanobubbles. In contrast, the adsorption capacity
reached the maximum of 1.98 mg/g in more than 7 min in the absence of nanobubbles.
In other words, the presence of nanobubbles not only improved the diesel adsorption
kinetics but also increased its adsorption capacity, which is conducive to improving the
mineralization efficiency of graphite particles during flotation.
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To better illustrate the effect of nanobubbles on diesel adsorption, Figure 5 also shows
the kinetic adsorption behavior of diesel at a concentration of 30 g/L in the absence of
nanobubbles. The comparison of the adsorption curve for 20 mg/L diesel in the presence of
nanobubbles with the curve for 30 mg/L diesel in the absence of nanobubbles reveals that,
although the initial adsorption capacity of diesel was higher at 30 mg/L in the absence of
nanobubbles as a result of reagent conditioning, the adsorption capacity of diesel increased
more sharply with time in the presence of nanobubbles and became greater after 2 min
adsorption time. It reached the maximum adsorption capacity of 2.12 mg/g after 3 min,
which was essentially identical to the maximum adsorption capacity achieved after 4 min
with 30 mg/L diesel in the absence of nanobubbles. This result is very consistent with
the previous studies that have shown that the application of nanobubbles to flotation
can considerably reduce the required flotation time and collector dosage by one-third to
one-half [10–43].

The kinetic adsorption behavior of 20 mg/L diesel on the graphite surface in the
presence of nanobubbles can be better understood by determining the adsorption isotherm
from the data shown in Figure 5 with the quasi-first-order, quasi-second-order, and intra-
particle diffusion adsorption models shown, respectively, in Equations (5)–(7) [43–45], and
the best-fitting results of these models are shown in Figure 6.

ln(qe − qt) = lnqe − k1t, (5)

t
qt

=
1

k2qe2 +
t
qe

, (6)

qt = kt0.5 + C, (7)

where t is the reaction time (min), qe is the equilibrium adsorption capacity (mg/g), qt is
the adsorption capacity at time t moment (mg/g), k1 is the quasi-first-order adsorption rate
constant (min−1), k2 is the quasi-second-order adsorption rate constant (g·mg−1·min−1),
k is the intra-particle diffusion constant (mg·g−1·min−0.5), and C is the boundary layer
thickness (mg/g).
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The calculated values of the different adsorption model parameters obtained from
Figure 6 are summarized in Table 2. In particular, the values of R2, a measure of goodness of
fit, were 0.9768, 0.9962, and 0.9151 for the quasi-first-order, the quasi-second-order, and the
intra-particle diffusion models, respectively, revealing that the quasi-second-order kinetic
model was the best for describing the diesel adsorption process on the graphite surface in
the presence of nanobubbles. Stockelhuber et al. (2004) reported that nanobubbles promote
hydration film rupture on a hydrophobic surface [46]. The enhanced adsorption of diesel
on the graphite surface in the presence of nanobubbles can be attributed to the increased
rupture and diffusion of the hydration liquid film caused by the surface nanobubbles
on graphite.

Table 2. Calculation results of adsorption kinetic equation parameters.

Model Linear Fitting Equation Parameter Parameter Values

Quasi-first-order dynamics y = −0.6996x + 1.3511

qe 2.1636
qe1 3.8617
k1 0.6996
R2 0.9768

Quasi-second-order dynamics y = 0.4004x + 0.5452

qe 2.1636
qe1 2.4975
k2 0.2941
R2 0.9962

Intra-particle diffusion y = 0.4141x + 0.9808
k 0.4141
C 0.9808
R2 0.9151

Note: qe and qe1 are the experimental and calculated equilibrium adsorption capacities, respectively.

3.4. Measurement of Surface Potential of Graphite, Diesel Droplets, and Nanobubbles

The surface potentials of graphite, nanobubbles, graphite with nanobubbles, diesel,
and diesel with nanobubbles were experimentally measured in this study, and the results
are shown in Figure 7. The value of the negative surface potential of all the samples
significantly increased with increasing pH. The surface of graphite does not absorb any
ions or dissolve inevitable ions since graphite is a non-polar mineral. The isoelectric point
of graphite should be around pH 7 if the crystal of graphite is intact. It is believed that
lattice defects on a graphite surface formed during graphite’s mineralization and grinding
process are primarily responsible for the deviation of the isoelectric point of the graphite
surface [47]. Moreover, lattice defects can result in oxygen-containing groups attached to
the graphite surface in aqueous solutions, which hydrolyze to create the graphite surface
charge. Oxygen-containing groups such as C-O and C=O are naturally hydrophilic and
reduce surface hydrophobicity, resulting in adverse effects on flotation. Conversely, a
graphite surface with a complete lattice is dominated by the C-C functional groups, which
belong to hydrophobic functional groups [48].

The nanobubble surface-charging mechanisms are known to be related to the molecular
structure of the frother or surfactant added to the solution [49]. When a non-ionic surfactant
such as fusel is present in the solution, the surface charge of nanobubbles is pH-dependent.
Figure 7 shows that the nanobubbles possessed a relatively low negative potential under
alkaline conditions, whereas the graphite particles showed a substantially greater surface
potential in the absence of nanobubbles. A pronounced reduction in the surface potential
of the graphite particles and diesel occurred in the presence of nanobubbles, as shown
in Figure 7. This reduced the electrostatic repulsion between the graphite particles and
promoted their agglomeration, improving the flotation efficiency. The difference in the
electrostatic repulsion between the graphite particles with (Figure 8a) and without the
surface nanobubbles (Figure 8b) is illustrated in Figure 8. The substantial decrease in
the graphite surface potential in the solution with nanobubbles is because the surface
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nanobubbles that are formed during hydrodynamic cavitation mask the oxygen-containing
groups on the graphite surface.
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In the system containing fusel, diesel is more likely to be emulsified to form tiny oil
droplets via hydraulic cavitation. He et al. obtained 150–400 nm oil droplets via hydraulic
cavitation in a mixed system of alcohol and diesel [50]. Figure 7 shows that the emulsified
diesel droplets possessed very high negative surface potential in the absence of nanobubbles
that increased with the solution’s pH, but the surface potential of diesel significantly
decreased with the presence of nanobubbles. Similar to graphite particles, diesel droplets
are non-polar and hydrophobic, and nanobubbles can easily form on the surface of diesel
droplets to significantly reduce their surface potential. Thus, the electrostatic repulsion
between the diesel surface and the graphite surface can be substantially reduced in the
presence of nanobubbles, as illustrated in Figure 9a, increasing the adsorption of diesel
on the graphite surface and improving the hydrophobicity of the graphite surface. In
contrast, graphite and diesel surfaces are characterized by a very high negative potential in
the absence of nanobubbles, resulting in a strong electrostatic repulsion, as illustrated in
Figure 9b, which is not conducive to the adsorption of diesel on the graphite surface.
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(a) and without (b) nanobubbles.

3.5. FTIR Characterization of Diesel Adsorption on Graphite Surface

Figure 10 shows the FTIR spectra of diesel. It can be seen that the stretching vibration
characteristic peak of -OH appeared at 3455.94 cm−1; the antisymmetric stretching vibration
characteristic peak of -CH2- appeared at 2923.43 cm−1; the symmetric stretching vibration
characteristic peak of -CH2- appeared at 2857.88 cm−1; the stretching vibration characteristic
peak of -C=C- appeared at 1631.28 cm−1. The peaks at 1458.55 cm−1 and 1375.34 cm−1 may
be characteristics of the asymmetric bending vibration of -CH2- and the symmetric bending
vibration of -CH3, respectively, whereas the peak at 1061.39 cm−1 may be a characteristic of
the stretching vibration of C-O or C-O-C from the trace impurities in diesel.
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It has been suggested that the hydrophobic degree of a mineral surface can be evalu-
ated through the intensity of the -OH peak on infrared spectra, with a weaker -OH peak
representing a more hydrophobic surface [51]. Figure 11 shows the infrared spectra of
CFC and NFC. It can be seen that the -OH peak near 3500 cm−1 for the NFC surface was
significantly weaker than that for CFC, while the above-discussed characteristic diesel
peaks, especially those near 1418 cm−1, 1630 cm−1, and 1050 cm−1, were stronger with NFC
than with CFC, indicating that the introduction of nanobubbles enhanced the adsorption of
diesel on the graphite surface and achieved a higher degree of hydrophobicity, which is
consistent with the kinetic adsorption data shown in Section 3.3.
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The enhanced hydrophobicity of graphite surfaces by nanobubbles is related to
the enhanced hydrophobic interaction between the diesel droplets and mineral surfaces.
Stockelhuber et al. (2004) reported that the nanobubbles preferentially formed on mineral
surfaces could promote hydration film rupture on the mineral interface [43]. Calgaroto et al.
(2015) demonstrated that the surface nanobubbles significantly increased the mineral sur-
face hydrophobicity [52]. It should also be mentioned that hydrodynamic cavitation can
promote the existence of diesel in the slurry as tiny droplets [50], which can be considered
oily bubbles since the surface properties of oil droplets and oily bubbles are essentially
identical [36]. The extended DLVO theory reveals that hydrophobic attraction is the major
driving force behind the mineralization of oily bubbles through the adhesion of hydropho-
bic mineral surfaces [36], and a more hydrophobic mineral surface results in a stronger
hydrophobic attraction between the oil droplets and the mineral surface. Figure 12 illus-
trates how nanobubbles promote hydration film rupture and enhance the hydrophobic
attraction between the diesel droplets and the graphite surface. Nanobubbles rupture and
displace the liquid films on the graphite surface and, consequently, enhance the hydropho-
bic attraction between diesel and graphite (Figure 12a). This hydrophobic attraction is far
greater than the electrostatic repulsion between diesel and graphite (Figure 12b), leading to
the strong adsorption of diesel on the graphite surface. Less liquid film and more diesel
adsorbed on the graphite surface are responsible for the weaker -OH peak intensity on NPC
than on CFC. In contrast, in the absence of nanobubbles, there is a weaker hydrophobic
attraction between diesel droplets and graphite surfaces, resulting in the poor adsorption
of diesel on graphite surfaces and, consequently, the lower hydrophobicity of the mineral.
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It should be noted that the enhancement in the hydrophobic attraction between
diesel and graphite due to the presence of nanobubbles can significantly improve the
hydrophobicity of the graphite surface, which facilitates hydrophobic agglomeration and
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improves the stability of the hydrophobic aggregates of fine graphite particles. The stable
graphite aggregates existing in the pulp with larger apparent sizes significantly improve the
recovery of fine graphite particles as a result of the improved probability of collection during
flotation [31]. It should also be mentioned that there is a capillary bridge relay between
the two surface nanobubbles, and this capillary mechanism can promote the formation
of a “bridge” between the nanobubbles on the diesel surface and the nanobubbles on the
graphite surface, thus promoting the adsorption of diesel oil on the surface of graphite.
However, the nature of this capillary force is currently unknown. Based on the results
of this study, the hydrophobic force and electrostatic force may be important factors in
promoting this capillary mechanism.

3.6. Contact Angle Measurements

The contact angle measurements of CFC and NFC were carried out to quantify the
effect of nanobubbles on the hydrophobicity of the graphite surface, and the results are
shown in Figure 13. It can be seen that the average value of the NFC surface contact angle
(Figure 13a) was approximately 8◦ larger than that of the CFC surface (Figure 13b), i.e.,
68◦ vs. 60◦. The application of nanobubbles in flotation increased the hydrophobicity
of the graphite surface, which is consistent with the above characterization results and
fundamental analyses. It should be noted that the contact angle was measured ex situ
after the concentrate particles from flotation were washed and filtered. In other words, the
nanobubbles were not present on the NFC particles used for contact angle measurements
even though the NFC particles were nanobubble flotation products, suggesting that the
observed increase in the contact angle is solely a result of the increased adsorption of diesel
on the particles.
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In summary, the differences between the nanobubble flotation (Figure 14a) and con-
ventional flotation process (Figure 14b) can be described in Figure 14. During the reagent
conditioning stage, before the nanobubbles were generated, diesel adsorption occurred on
the graphite surface, providing hydrophobic sites for the initial formation and subsequent
growth of the nanobubbles when the hydrodynamic cavitation process was initiated. The
formation of the surface nanobubbles further increased the adsorption of diesel on the
graphite surface as a result of the reduced electrostatic repulsion and increased hydrophobic
attraction. An increased amount of diesel was still present on the NFC particles collected
after flotation followed by washing and drying.
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4. Conclusions

Based on the above description and discussion of our experimental results on the com-
parative flotation kinetics, adsorption capacity, Zeta potential, FTIR, and contact angle with
graphite particles under various conditions with and without nanobubbles, the following
conclusions can be drawn from this study:

(1) The graphite flotation results showed that the flotation kinetics and the rate of re-
covery and the grade of the concentrate were significantly enhanced by the presence
of nanobubbles;

(2) The presence of the surface nanobubbles increased the adsorption rate and capacity
of diesel on the graphite surface, significantly improving its hydrophobicity. The
mineralization efficiency of the flotation process was also significantly improved
by the surface nanobubbles, which is partly responsible for the increased graphite
flotation kinetics and selectivity;

(3) The nanobubbles formed on the surface of the graphite compound effectively reduced
the electrostatic repulsion between the graphite particles, promoting the agglomera-
tion of fine graphite particles and increasing the stability of the graphite agglomerates.
The surface nanobubbles also reduced the electrostatic repulsion between the diesel
droplets and graphite particles and increased the adsorption capacity of diesel on
the graphite surface, which improved the degree of hydrophobicity of the graphite
surface and the selectivity of flotation;

(4) The FTIR results and contact angle measurements confirmed that the surface nanobub-
bles improved the hydrophobicity of the graphite surface, increased the hydrophobic
attraction between the graphite particles and diesel droplets and the adsorption
capacity of diesel on the graphite surface, further improving the degree of the hy-
drophobicity of the graphite surface;

(5) Future studies are needed to investigate how nanobubbles function to mask the hy-
drophilic sites on graphite surfaces. The interactions of nanobubbles with oil droplets
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and the consequent effects on oil adsorption on graphite should also be studied to
achieve a better understanding of the fundamentals of nanobubble-enhanced flotation.
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