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Abstract: Herein, cobalt-reduced graphene oxide (rGO) catalyst was synthesized with a practical
impregnation–calcination approach for the selective hydrodeoxygenation (HDO) of guaiacol to cyclo-
hexanol. The synthesized Co/rGO was characterized by transmission electron microscopy (TEM),
high-angle annular dark-field scanning TEM (HAADF-STEM), X-ray photoelectron spectroscopy
(XPS), Raman spectroscopy, X-ray diffraction (XRD), and H2 temperature-programmed reduction
(H2-TPR) analysis. According to the comprehensive characterization results, the catalyst contains
single Co atoms in the graphene matrix and Co oxide nanoparticles (CoOx) on the graphene sur-
face. The isolated Co atoms embedded in the rGO matrix form stable metal carbides (CoCx), which
constitute catalytically active sites for hydrogenation. The rGO material with proper amounts of
N heteroatoms and lattice defects becomes a suitable graphene material for fabricating the catalyst.
The Co/rGO catalyst without prereduction treatment leads to the complete conversion of guaiacol
with 93.2% selectivity to cyclohexanol under mild conditions. The remarkable HDO capability of the
Co/rGO catalyst is attributed to the unique metal–acid synergy between the CoCx sites and the acid
sites of the CoOx nanoparticles. The CoCx sites provide H while the acid sites of CoOx nanoparticles
bind the C-O group of reactants to the surface, allowing easier C-O scission. The reaction pathways
were characterized based on the observed reaction–product distributions. The effects of the process
parameters on catalyst preparation and the HDO reaction, as well as the reusability of the catalyst,
were systematically investigated.

Keywords: cobalt–graphene catalyst; Co single atoms; Co oxide nanoparticles; hydrodeoxygenation;
guaiacol; cyclohexanol

1. Introduction

The excessive consumption of fossil resources results in diminishing petroleum supply
and severe environmental pollution. As a renewable energy resource, abundant and
carbon-neutral biomass has been extensively explored for the production of highly valuable
chemicals and biofuels [1]. However, the production of biomass-derived compounds
with good selectivity remains challenging because of the complex structures and diverse
oxygenic groups in biomass-derived feedstock [2]. Currently, catalytic hydrodeoxygenation
(HDO) is considered the most efficient approach for upgrading biomass derivatives, and
the development of cost-effective catalysts is key to this process [3]. As a main component
of biomass, lignin is a planted polymer composed of phenylpropanoid building units that
potentially provide renewable six-ring compounds [4]. Given the complex structure of
lignin, guaiacol (GUA; 2-methoxyphenol), which contains two common oxygenate groups
in lignin: methoxy (Caryl–OCH3) and phenolic (Caryl–OH) groups, is extensively used as a
lignin model compound in catalytic studies of lignin derivatives [5].

HDO of GUA involves combinations of different reactions such as hydrogenation,
hydrogenolysis, and dehydration. Different elementary reactions usually occur at different
catalytic sites. Typically, the heterogeneous catalysts designed for HDO contain two func-
tions: one is for hydrogen dissociation, while the other is for the C-O activation [6]. To date,
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a wide range of metal catalysts has been studied for the HDO of GUA. Selective removal of
the methoxy group and hydrogenation saturation of the aromatic ring of GUA can produce
cyclohexanol (CYHAOL), an important feedstock in the chemical industry [7]. However,
the production of CYHAOL from GUA is challenging because versatile hydrogenation
processes generate various products. For instance, excessive HDO of GUA forms cyclohex-
ane (CYHA) over numerous catalysts [2,8–12]. Table S1 lists the catalysts identified for the
selective HDO of GUA to CYHAOL reported in recent years. Various noble metal catalysts,
such as Ru [13] and bimetallic catalysts composed of Ru–Re [14], Ru–Mo [15], Ru–Co [16],
and Au–Rh [17], have been widely investigated for the HDO of GUA to CYHAOL. On the
other hand, some studies have focused on the development of low-cost transition metal
catalysts. Some Ni-based catalysts [18–25] and Co-based catalysts [26–28] catalyzed HDO
of GUA with CYHAOL as the main product. In particular, the production of CYHAOL in
more than 90% yield was achieved over several Co-containing catalysts, including Ru–Co
supported on active carbon [16], Ni–Co supported carbon nanotubes [25], and Co sup-
ported on TiO2 [27]. In this study, we worked to develop a new Co-based catalyst for HDO
of GUA with high selectivity to CYHAOL.

Table S2 lists Co-based catalysts used in HDO of GUA. In addition to forming CY-
HAOL [26–28], some Co-based catalysts lead to CYHA [8,9], phenol (Ph) [29,30] and
benzene [31,32] products. As shown in Table S2, the Co-based catalysts were reduced
with H2 [8,9,26,27,29,30,32], NH3 [28], or in situ co-pyrolysis with cellulose [31] before use,
indicating the reduction treatment of the catalysts was necessary for catalytic activity. For
instance, the Co/TiO2 catalyst without reduction by H2 generated no propylcyclohexanol
production in selective HDO of eugenol [27]. When reduced in H2 flow at 600 ◦C for
2 h, it showed excellent HDO activity, achieving >99.9% propylcyclohexanol yield under
1 MPa H2, 200 ◦C for 2 h [27]. Magnetic CoNx@NC catalysts synthesized by co-pyrolysis of
cellulose and Co(NO3)2 under an ammonia atmosphere at 650 ◦C also exhibited good HDO
activity for eugenol conversion to propylcyclohexanol [28]. It was noted that the excellent
catalytic activity of CoNx@NC-650 for propylcyclohexanol formation was mainly ascribed
to the CoNx species rather than metallic Co (Co0). In addition to transition metals and metal
nitrides, carbides are alternative catalytic hydrogenation materials [33]. Metal carbides,
such as Co carbide [34], exhibit specific catalytic hydrogenation features in Fischer−Tropsch
to olefins reaction. Conventional carbides are a class of interstitial compounds with carbon
atoms filled in the crystal structure of the metals. When the metals lose the crystal structures
due to excessive dispersion of the metals to nanoparticles, clusters, and even single atoms,
the formation of stable metal carbides occurs on carbon composites in crystal structures.
In this case, graphene offers many benefits as a carbon support [35]. Graphene is a good
support for embedding single metal atoms in the graphene matrix [36]. In addition, the
high surface area of graphene promotes the dispersion of active phases, and graphene
with good electrical conductivity may be used to modulate the electronic properties of the
metal-active sites, thus governing their HDO performance [37].

In this study, the selective HDO of GUA to CYHAOL was investigated over graphene-
supported Co catalysts synthesized using a concise and scalable approach. Initial catalyst
screening studies demonstrated that Co/reduced graphene oxide (rGO) catalysts are highly
suitable for the HDO of GUA to CYHAOL. The structure and composition of the Co/rGO
catalyst were characterized through transmission electron microscopy (TEM), high-angle
annular dark-field scanning TEM (HAADF-STEM), X-ray photoelectron spectroscopy (XPS),
Raman spectroscopy, X-ray diffraction (XRD), and H2 temperature-programmed reduction
(H2-TPR) analysis. The characterization and catalytic experiments revealed the unique
catalytic functions of single Co atoms embedded in the graphene matrix and Co oxide
nanoparticles on the graphene surface. The effects of heteroatoms in graphene and the
conditions of catalyst preparation and reaction, as well as the reusability of the catalyst,
were also investigated in detail.
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2. Materials and Methods
2.1. Synthesis of Co-Based Catalysts

rGO was prepared according to a previously reported method [38]. The reduction of
graphene oxide (GO) with hydrazine hydrate generated rGO, and GO was prepared with a
modified Hummers’ method [38,39]. N-free reduced graphene oxide (rGO*) was prepared
by reducing GO with sodium borohydride at 80 ◦C [40]. Commercial graphene (Gr) was
supplied by Aladdin Chemical Reagent Co., Ltd. (China). Cobalt nitrade, ferric nitrade,
and nickel nitrade were used to provide the transition metal components of Co, Ni, and Fe,
respectively. Comparison experiments were conducted using γ-Al2O3 (Shandong Filiale of
China Aluminum Co., Ltd., Zibo, China; calcined at 500 ◦C in air before use) and HY zeolite
(SAR = 2.6; Wenzhou Huahua Co., Ltd., Wenzhou, China) as supports. The catalysts were
prepared with the impregnation–calcination method. The metal loadings were quantitatively
confirmed by incipient-wetness impregnation. The typical operations were as follows: First, a
cobalt nitrate solution was prepared with an ethanol–water mixture (volume ratio, 1:4); second,
Co was dispersed on the support surface with the incipient–wetness impregnation method;
the impregnation mixture was vacuum-dried at 50 ◦C for 12 h; finally, the dried sample was
calcined at 500 ◦C under N2 flow in a tube furnace for 2 h (heating rate, 10 ◦C/min). The
prepared catalysts were designated as Cox/support, where x represents the amount of Co
metal loaded per gram of support (mmol/g). The catalysts were used in the reactions without
prereduction treatment. CoOx powder was synthesized for mechanism study through a
precipitation method: a cobalt nitrate solution was precipitated with a 0.2 M NaOH solution,
and the precipitate was calcined in air at 400 ◦C.

2.2. Characterization

Characterization methods included TEM, HAADF-STEM, XPS, XRD, Raman spec-
troscopy, low-temperature N2 adsorption–desorption, CHNSO elemental analysis, ther-
mogravimetric analysis (TGA), H2-TPR, and NH3 temperature-programmed desorption
(NH3-TPD) analysis. Detailed information regarding these methods is provided in the
Supplementary Materials.

2.3. Catalytic HDO Tests

The HDO of the GUA reactions was conducted in an autocontrol reactor (50 mL;
Beijing Century Senlang Experimental Apparatus Co. Ltd., Beijing, China). In a typical run,
the reactor was loaded with guaiacol (300 mg), the catalyst (30 mg; without prereduction
treatment) and n-dodecane (10 mL), and then pressurized with H2 to 1 MPa at room
temperature. The reactor was heated to the target temperature and allowed to operate for a
specific time. The liquid products were mixed and diluted by ethanol, and then analyzed
using an Agilent GC7820 gas chromatograph equipped with a flame ionization detector and
SE-30 capillary column (Dalian Zhonghuida Scientific Instrument Co., Ltd., Dalian, China).
n-Tetradecane was used as the internal standard. Recycle test of the catalyst was carried
out as follows: after the reaction, the catalyst was recovered from the reaction mixture by
centrifugal separation, washed with ethanol, and vacuum-dried without calcination for the
subsequent run. The results were quantified as GUA conversion, product selectivity, and
yield in molar percentage, based on the number of C6 rings in the substrate and products.
The overall carbon balance of the products was in the range of experimental error (±3%).
The guaiacol conversion (XGUA), the Product i selectivity (Si), and Product i yield (Yi) were
calculated as following Equations (1)–(3):

XGUA(mol%) =
(Moles of GUA)in − (Moles of GUA)out

(Moles of GUA)in
× 100% (1)

Si(mol%) =
Moles of Producti

(Moles of GUA)in − (Moles of GUA)out
× 100% (2)
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Yi(mol%) =
Moles of Producti

(Moles of GUA)in
× 100% (3)

3. Results and Discussion
3.1. Characterization
3.1.1. Electron Microscope Images

The morphology of the Co2.5/rGO catalyst was characterized by TEM, HRTEM, and
HAADF-STEM (Figure 1). The catalyst shows a homogenous dispersion of nanoparticles
(Figure 1a) with an average size of 6.7 nm in the TEM image (Figure 1c). The HRTEM
image (Figure 1b) exhibits the typical crystalline morphology of the nanoparticles. The
lattice fringes close to 0.213 and 0.244 nm are ascribed to the CoO (200; JCPDS card: 65-
2902) and Co3O4 (311) (JCPDS card: 43-1003) planes, respectively. The lattice fringes of
metallic Co were not observed in the HRTEM images. The results indicate the co-existence
of various Co oxides in the nanoparticles, which are termed as CoOx. Single Co atoms
embedded in the graphene sheet were confirmed by HAADF-STEM images (Figure 1d,e).
The area marked with a circle is an example of a single Co atom. Figure 1e shows the
homogeneous distribution and high density of isolated Co atoms in the graphene nanosheet.
The prepared catalyst was calcined at 500 ◦C in N2, and thus, the reserved Co single metal
atoms were not physically adsorbed on the graphene sheet; by contrast, they built strong
chemical bonding configurations with the rGO sheet. rGO is derived from GO through
reduction treatments. After the removal of the oxygenic groups, the sp3-hybridized C atoms
were terminated with H bonds, forming lattice defects on the graphene plane. Chemical
bonding of the isolated metal atoms with pristine intact graphene is not easy due to the high
chemical stability of the graphene’s honeycomb structure [41]. As confirmed theoretically
and experimentally [41,42], the introduction of defective sites in the graphene matrix offers
multifarious bonding configurations to guarantee the structural stability of metal atoms.
The high density and homogeneous distribution of single Co metal atoms in the rGO sheet
(Figure 1e) correspond to the high density and homogeneous distribution of lattice defects
in the rGO structure. We named the Co single metal atoms in the graphene matrix as CoCx
sites, which are similar to metal carbides.
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3.1.2. XPS

The XPS results in Figure 2 provide information on the surface elemental constituents
and valence state of the Co2.5/rGO catalyst. Full-scan XPS survey spectrum (Figure S1
in the Supplementary Materials) shows the predominant presence of C, O, N, and Co
elements. The Co2+ is characterized by the Co 2p3/2 peak at 782.1 eV, Co 2p1/2 peak at
798.0 eV, and corresponding shake-up resonances at approximately 787.9 and 803.6 eV [43].
The prominent peaks around 780.3 and 795.3 eV are assigned to the Co 2p3/2 and Co 2p1/2
peaks of the Co3+ configuration with an energy difference of 15 eV [43]. The Co 2p peaks
of the bulk cobalt carbide (Co2C) appear at 778.4 and 793.4 eV, which are at the binding
energy in metallic Co [44]. In the Co2.5/rGO catalyst, the Co single-atoms doped in the
graphene matrix of rGO formed a cobalt–carbide analog, but no peaks related to the bulk
cobalt carbide were observed (Figure 2). A similar phenomenon was reported in a previous
study, which showed that the Co XPS of the graphene-supported single Co atoms have two
main Co 2p peaks at 780.9 and 796.2 eV with the peak spacing of 15.4 eV and shake-up
satellite peaks, indicating that the single Co atoms coordinate with oxidation states [45].
The isolated Co atoms doped in the graphene matrix mainly form multifarious bonding
configurations with the surrounding C, and the N and O heteroatoms mediate the Co
atoms in oxidation states. Thus, the binding energy of the single Co atoms is larger than
that of bulk cobalt carbide. Therefore, the Co2+ and Co3+ peaks of Co2.5/rGO in Figure 2a
correspond to isolated Co atoms (CoCx) and CoOx nanoparticles.
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spectrum of C1s.

The C 1s spectrum of the Co2.5/rGO catalyst (Figure 2b) splits into several components.
The main peak at 284.5 eV corresponds to the sp2 C in graphene [46], indicating that most of
the C atoms form conjugated honeycomb lattices of graphene. The peak at approximately
285.3 eV is assigned to sp3 C, which originates from the lattice defects and edges of the
graphene sheets [46]. The peaks from 286 eV to 288 eV correspond to the C−N and C−O
bonds [41,46]. The small peak approximately around 283.3 eV is attributed to the carbidic
C 1s signal [44], which in turn is attributed to the C atoms bonded with isolated Co atoms
of the Co2.5/rGO catalyst.

3.1.3. Raman

Figure 3 compares the Raman spectra of graphite, rGO, and Co2.5/rGO. Highly ordered
graphite has a G-band peak at approximately 1580 cm−1, corresponding to the in-phase
vibration of the sp2 carbon lattice, and a weak D-band peak at approximately 1350 cm−1,
corresponding to the sp3 carbons caused by the defects on the graphite edges [47]. The rGO
material contains a significant fraction of the sp3 amorphous carbons mainly generated by
edges and lattice defects, and thus the rGO sample shows a noticeable D band. The ratio
of the peak intensity of the D band to that of the G band (ID/IG) is inversely proportional
to the perfection of the graphene’s honeycomb lattice [47,48]. As shown in Figure 3, the
ID/IG value of the Co2.5/rGO catalyst is close to that of the rGO support, confirming that
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the isolated Co atoms do not attack the pristine sp2 carbon lattice of graphene but are
embedded in the defective positions as substitutional or interstitial dopants through the
construction of “metal vacancy” heterostructures. Hence, rGO with appropriate lattice
defects is an ideal substrate for anchoring isolated Co atoms.
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3.1.4. XRD

The crystal structures of graphite, rGO, and Co2.5/rGO were investigated through
XRD analysis (Figure 4). Graphite has a sharp peak at a 2 theta of 26.4◦, corresponding to
the (002) plane of graphite (JCPDS PDF card: 41-1487). The XRD pattern of rGO shows trace
amounts of graphite (002) diffraction signals with a widened peak and a low-degree-shift
2 theta, showing that rGO has a multilayer structure with increased lattice dimensions.
The XRD peaks of the Co2.5/rGO sample show a slightly enhanced and high-degree-shift
2 theta of the (002) plane compared with that of rGO, which is caused by the stacking
thickness of the graphene layers during the preparation of the catalyst. In addition to
the graphitic diffraction, the XRD pattern of the Co2.5/rGO catalyst shows no diffraction
signals corresponding to Co-related diffraction, indicating the small crystalline sizes and
weak crystallinity of the Co species. This finding is in accordance with the TEM images
(Figure 1a).
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3.1.5. H2-TPR

The TPR patterns of the Co2.5/rGO catalyst are shown in Figure 5. rGO has certain
oxygenic groups on its surface and periphery [49]. The hydrogenolysis of the –OH, –O–,
and –COOH groups involves H2 consumption starting at 400 ◦C. In the Co2.5/rGO catalyst,
rGO and Co oxides consume H2. Moreover, according to the GC analysis, CH4 exists in
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the TPR exhaust gas (Figure 5b). Thus, the H2 consumption of the Co2.5/rGO sample
includes the decomposition of oxygenic groups from rGO, reduction of Co oxides, and
formation of CH4. The multipeak reduction of Co oxides corresponds to the step–step
reduction of Co2O3/Co3O4 to CoO and CoO to metallic Co [50]. A mixture of metallic Co
powder (pre-reduced from CoOx powder) and rGO cannot generate CH4 at a temperature
of approximately 530 ◦C; therefore, the formation of CH4 is a representative feature of
the Co2.5/rGO sample during the H2-TPR test. We speculate that the single Co atoms
embedded in the graphene plane catalyze the bonded C atoms of rGO to form CH4.
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3.1.6. Elemental Analyses

The three graphene materials, rGO, rGO*, and Gr, have similar specific surface areas
but different elemental compositions (Table 1). The O atoms mainly come from the oxygenic
groups, such as –OH and –COOH. The H atoms originate from the dangling H atoms for the
termination of the dangling bonds of the graphene sheet edges, defects, and some groups.
The rGO and rGO* materials have similar C, H, and O contents, but rGO contains 3.7 mol%
N atoms. N was incorporated into the rGO network through the hydrothermal reduction
of GO using hydrazine hydrate and ammonia as reducing reagents [51]. The comparison of
rGO with Gr shows that rGO contains more H than Gr dose. More H indicates more lattice
defects because the C dangling bonds are terminated by the H atoms.

Table 1. Property of graphene materials.

Entry Support
SBET

(m2·g−1)
Element Composition (mol%) Molar Ratio

C H O N C:H:O:N

1 rGO 506 70.3 16.0 10.0 3.7 100:23:14:5

2 rGO* 516 70.1 17.6 12.2 0 100:25:17:0

3 Gr 583 84.7 7.2 7.1 1.0 100:9:8:1

3.2. Catalyst Investigation
3.2.1. Possible Reaction Pathway

GUA contains Caryl–OH, Caryl–OCH3, and Caryl O–CH3 bonds and an aromatic ring
in its structure. The catalytic conversion of GUA may generate a wide range of products
over metal catalysts, including those formed without oxygen removal, partial oxygen
removal, and complete oxygen removal. These products are generated by different reaction
pathways, such as hydrogenation (HYD), demethoxylation (DMO), and dehydration (DHY).
The possible reaction pathways for the HDO of GUA were explored based on the product
distributions. As shown in Scheme 1, the main pathway involves the cleavage of Caryl–
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OCH3 bond to phenol (Ph) through HYD and DMO followed by the saturation of the
aromatic ring to CYHAOL through HYD; the other involves the saturation of the aromatic
ring to 2-methoxycyclohexanol (MOCYHOL) through HYD and then the cleavage of Calkyl–
OCH3 bond to CYHAOL. The DHY of CYHAOL generates a CYHA by-product.
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3.2.2. Catalyst Screening Study

The catalysts’ performance for HDO of GUA depends on two types of active sites: one
is the metal-like site that readily activates hydrogen, while the other type of site nearby, such
as an acid site, is responsible for the C-O bond activation [6,52]. For screening the functional
catalyst, Fe, Co and Ni supported on rGO, and Co supported on different supports were
tested in HDO of GUA. The catalytic performance of the prepared catalysts is presented in
Table 2. Fe, Co, and Ni are eight-group elements with outer electronic structures of 3d64s2,
3d74s2, and 3d84s2, respectively, and the three corresponding catalysts have similar specific
surface areas but different catalytic activities (Table 1, entries 1–3). When the reaction
occurs over the Co2.5/rGO catalyst at 200 °C and 1.0 MPa H2 pressure for 2 h, GUA is
completely converted, and the yield of CYHAOL reaches 93.2 mol%. The Ni2.5/rGO catalyst
achieves 90.1 mol% conversion with 62.4 mol% and 35.1 mol% selectivity to CYHAOL
and MOCYHOL, respectively. Ni catalysts usually catalyze total HYD to MOCYHOL as a
major side reaction, especially at lower reaction temperatures [26]. The Fe2.5/GO catalyst
only converts 1.8 mol% of GUA. CYHA as a by-product is rarely detected in the reaction
catalyzed by Co2.5/rGO; therefore, Co is the most suitable transition metal to be supported
on rGO for HDO reaction.

Table 2. HDO of GUA over the prepared catalysts a.

Entry Catalyst
SBET

(m2·g−1)
Conversion

(mol%) GUA
Yield (mol%)

CYHAOL
Selectivity (mol%)

Ph CYHAOL MOCYHOL CYHA Others b

1 Co2.5/rGO 337 100 93.2 - 93.2 4.0 - 2.8
2 Ni2.5/rGO 338 90.1 56.7 - 62.4 35.1 0.6 1.9
3 Fe2.5/rGO 328 1.8 0.6 38.8 51.5 - - 9.7
4 Co2.5/Al2O3 413 - - - - - - -
5 Co2.5/HY 572 2.2 1.4 32.2 63.2 - - 4.6
6 CoOx+rGO c 2.7 - - - - - -
7 Co2.5/rGO* 349 85.0 59.5 15.4 70.0 4.2 - 10.4
8 Co2.5/Gr 341 20.5 7.8 46.7 38.0 7.7 - 7.6

a Reaction conditions: 300 mg of GUA in 10 mL of n-dodecane; catalyst loading = 30 mg (10 wt.% with
respect to GUA); 200 ◦C; 1 MPa H2; 2 h; GUA–guaiacol, CYHAOL–cyclohexanol, Ph–phenol, MOCYHOL–
2-methoxycyclohexanol, CYHA–cyclohexane; b unidentified and unlisted product mixtures were labeled as
“Others”; c 30 mg of CoOx and 30 mg of rGO.
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The support material is another decisive factor for determining catalyst activity. Com-
pared with the Co2.5/rGO catalyst, the Co2.5/Al2O3 and Co2.5/HY samples (Table 2, entries
4 and 5) show much lower activities. In general, a pristine metal species is an active
component in the hydrogenation reaction; thus, the catalysts are prereduced or originally
contain metals before they are used in GUA hydrogenation [13–26]. In this study, all the
catalysts were used without prereduction treatments. Co in the Co2.5/Al2O3 and Co2.5/HY
catalysts is in an oxide state, and thus, the catalysts exhibit extremely low activities because
of insufficient metallic Co. However, the Co species in Co2.5/rGO contains no metallic Co
according to the HRTEM, XPS, and XRD characterization results, and the catalyst was used
without prereduction treatment. Co2.5/rGO was directly exposed to air during collection
and weighing. Therefore, the active sites of Co2.5/rGO are different from the frequently
used type of catalysts requiring reduction treatment. Transition metal carbides, which
are prepared by incorporating carbon atoms into the lattices of transition metals, have
been demonstrated as promising catalysts for biomass conversions, especially in the C-C,
C-O-C, and C-O-H bonds cleavage reactions [53]. We speculate that the catalytic component
of Co2.5/rGO for hydrogenation originates from a Co–carbide analog (CoCx) formed by
embedding Co single atoms in the graphene matrix. The poor reaction result over the
physical CoOx + rGO mixture (Table 2, entry 6) confirms the critical role of the CoCx sites
in hydrogenation catalysis. Thus, rGO as a support is involved in the construction of the
CoCx sites, whereas Al2O3 and HY support lack such functions.

The above results indicate that using rGO as a support is one of the decisive factors
in determining the performance of the Co2.5/rGO catalyst. According to the elemental
analysis results (Table 1), rGO* is an N-free material, and rGO contains 3.7 mol% N.
Co2.5/rGO* (Table 2, entry 7) achieves 85.0 mol% conversion and 59.5 mol% CYHAOL
yield, manifesting that the doped N atoms are not an indispensable factor in catalytic
function. However, the improved activity of the Co2.5/rGO catalyst as compared with that
of Co2.5/rGO* confirms a positive role of N doping in graphene. Transition metal nitrides
have been explored in HDO conversions [28]. Moreover, the N atoms merged within the
graphene matrix disrupt the electronic neutrality of adjacent carbon atoms [54,55], which
manipulate the electronic status of CoCx and CoOx in higher electronic density. This effect
improves the activity of the Co2.5/rGO catalyst. The O functional groups of rGO may
improve the dispersion and stability of the supported CoOx nanoparticles through an
anchoring effect during impregnation and calcination. In brief, rGO with appropriate
amounts of N and O heteroatoms is a suitable graphene material as a support.

In order to confirm the hypothesis that the hydrogenation function of Co2.5/rGO is
provided by CoCx, the Co2.5/Gr catalyst prepared with a commercial graphene (Gr) was
investigated for clarity. The conversion and CYHAOL yield over Co2.5/Gr (Table 1, entry
8) is much less than that over Co2.5/rGO. The catalyst-specific surface area of Co2.5/Gr is
341 m2·g-1, and the average particle size of CoOx nanoparticles on Gr surface (Figure S2a) is
6.5 nm, which indicates that the low activity of Co2.5/Gr is not caused by the small specific
surface area and the low dispersion of CoOx components. Supposing the hydrogenation
function of Co2.5/rGO derives from the in situ reduction of CoOx nanoparticles to metallic
Co during reaction, then Co2.5/Gr should be as good—or as bad—as Co2.5/rGO; therefore,
some critical factors determine the catalysts’ performance. The biggest difference between
rGO and Gr is that rGO can anchor more single-metal atoms than Gr does. The evidence
is shown in the HAADF-STEM image of Co2.5/rGO. (Figure 1e) shows the high-density
distribution of the isolated Co atoms in the graphene matrix, while the number of the
isolated Co atoms decreases considerably in the image of Co2.5/Gr (Figure S2b). The
more Co single atoms in the graphene matrix, the more Co–carbide analog (CoCx) the
catalyst contains. Transition metal carbides have been compared to platinum group metals,
showing similar catalytic properties, which means that they could be promising catalysts
for HDO reactions [52]; therefore, Co2.5/Gr exhibits weak catalytic activity due to the low
population of the CoCx sites.
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The data in entry 6 of Table 2 show that CoOx fails to conduct the HDO of GUA without
the participation of CoCx; however, the CoOx nanoparticles on rGO surface may improve
the ability of the Co2.5/rGO catalyst to break Caryal–OCH3 bond. HDO was proposed to
need a bifunctional catalyst where acid sites are required for C–O bond activation, allowing
easier C–O scission [6]. CoOx contains acidity according to the NH3-TPD result (Figure S3a)
and can adsorb the oxygenic groups in a GUA molecule through acid–base-pairing in-
teractions, facilitating the cleavage of the C–O bond. Therefore, CoOx, in combination
with CoCx, plays a role in establishing the metal−acid bifunction of the catalyst. A similar
bifunctional catalyst was established for HDO reaction based on molybdenum carbide and
oxide [56]. When Ph and CYHAOL are used as feedstock and the reaction is run at 200 ◦C
and 1 MPa H2 for 2 h, Ph is completely converted to CYHAOL over the Co2.5/rGO catalyst,
whereas CYHAOL is almost not converted. Cleavage of the Caryl–OH bond needs strong
acidic components such as HZSM-5 zeolite [2,28], while the mild acid of CoOx appropri-
ately avoids cleaving the Caryl–OH bond. In this reaction, especially carried out in milder
conditions, the basicity of support can affect the selectivity of bond breaking [6,57,58]. The
presence of base promotes the demethoxylation step and suppresses the unselective C-O
dissociation [57]. The basicity of CoOx is not obvious according to the CO2-TPD result
(Figure S3b), but N doping incorporates basic sites in the graphene texture [26], which
potentially favors the Caryl–OCH3 bond cleavage, making the Co2.5/rGO catalyst has good
selectivity to CYHAOL. Scheme 2 shows the main catalysis in the selective HDO of GUA
to CYHAOL over the Co2.5/rGO catalyst, in which Ph is used as the intermediate. H2
dissociates to active H species on the CoCx sites; the Caryl–OCH3 bond of GUA is activated
by the oxophilic acid sites of CoOx and dissociated by active H. The metal–acid bifunction
of the Co2.5/rGO catalyst in the HDO of GUA to CYHAOL is attributed to the unique syn-
ergy between the CoCx sites and the acid sites of the CoOx nanoparticles. The Co2.5/rGO
catalyst selectively saturates the aromatic ring and dominantly cleaves Caryl–OCH3 bond
in the GUA. These processes result in a good performance in CYHAOL production.
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3.2.3. Optimization of Catalyst Preparation Conditions

The effects of the Co loading and calcination temperature on the Co/rGO catalysts
were studied. The results are shown in Figure 6. Co/rGO catalysts with different Co
loadings were prepared for the HDO of GUA (Figure 6a). When the Co loading increases
from 1.0 mmol/g to 2.5 mmol/g, the yield of CYHAOL constantly increases and reaches
93.2 mol% at 2.5 mmol/g; further increase in Co loading has little contribution to the
CYHAOL yield. Figure 6b shows the results obtained for the Co2.5/rGO catalysts at
different calcination temperatures in N2. The conversion of GUA and the yield of CYHAOL
shows volcano-like shapes when the calcination temperature is increased from 400 ◦C to
700 ◦C, achieving maximum values at 500 ◦C. The Co2.5/rGO catalyst calcinated at 400 ◦C
in N2 only leads to 4.6 mol% conversion of GUA. When the calcination temperature is
above 500 ◦C, the aggregation of nanoparticles becomes obvious, as evidenced by the low
specific surface areas of the samples calcined at 600 ◦C and 700 ◦C. The highest efficiency
for the HDO of GUA was obtained using a catalyst with a loading of 2.5 mmol Co per gram
of rGO at a calcination temperature of 500 ◦C.
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Blanco et al. [26] prepared the Co/GOr and Co/GOr-N catalysts by wet impregnation
of Co over reduced graphene oxide undoped and doped with N, calcination in N2 at 350 ◦C
and reduction under H2 at 300 ◦C. As evidenced by the XRD pattern and CO chemisorption
of the catalysts, the hydrogenation sites of Co/rGOr and Co/rGOr-N are metallic Co (Co0)
components. In our study, the Co2.5/rGO catalyst calcinated at 500 ◦C in N2 and used
without H2-reduction pretreatment exhibits good activity. Metallic oxides or nitrates on
carbonaceous supports may form metals by carbothermal reduction during calcination
in inert gases. For example, NiFe alloy nanoparticles were prepared by calcination of a
cellulose filter paper impregnated with Fe and Ni nitrates at 800 ◦C for 2 h under N2 [59].
The Co2.5/rGO catalyst calcinated at 500 ◦C in N2 does not contain metallic Co according
to the XRD pattern and the lattice fringes in the HRTEM image of the catalyst. Therefore,
the CoCx sites of Co2.5/rGO serve as the activity sites. The low activity of the Co2.5/rGO
catalyst calcined at 400 ◦C in N2 manifests that the calcination temperature at 400 ◦C or
below cannot provide sufficient energy for the formation of the CoCx sites, so the Co/GOr
and Co/GOr-N catalysts calcinated at only 350 ◦C [26] can hardly contain the CoCx sites.

3.2.4. Effects of Reaction Conditions

Figure 7 shows the variations in GUA conversion and product distribution among
different reaction conditions. As reaction time proceeds, GUA conversion rate increases
rapidly and reaches 100 mol% at 2 h. Selectivity to the Ph intermediate product gradually
decreases over time after the initial accumulation, accompanied by an increase in selectivity
to CYHAOL. This result shows that Ph is an intermediate progressing toward CYHAOL.
An increase in reaction temperature from 160 ◦C to 200 ◦C increases the conversion rate
of GUA and yield of CYHAOL. When the reaction approaches the 100 mol% conversion,
the improved reaction temperature slightly decreases the CYHAOL yield, indicating that
CYHAOL is relatively stable over the temperature range from 200 ◦C to 240 ◦C. With
increasing H2 pressure from 0.25 MPa to 4.0 MPa, the CYHAOL yield reaches 93.2 mol%
at 1.0 MPa and then decreases gradually with pressure, and selectivity to MOCYHOL
increases. These effects indicate that high H2 pressure intensifies the HYD saturation of
the aromatic ring to form MOCYHOL. Theoretically, MOCYHOL should proceed toward
CYHAOL through the cleavage of Calkyl-OCH3 bond. However, the fully hydrogenated
MOCYHOL is more stable than Ph, and the higher steric hindrance of MOCYHOL restrains
the cleavage of Calkyl-OCH3 bond. Therefore, the GUA–Ph–CYHAOL pathway is much
more conducive to producing MOCYHOL than the GUA–MOCYHOL–CYHAOL pathway,
and a lower H2 pressure facilitates CYHAOL formation.
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3.2.5. Catalyst Recycle Study

Catalyst stability is a critical factor in developing conversion processes industrially.
Sintering and leaching of metal components are major problems for liquid-phase HDO
reactions [60]. Further, coking on the catalyst and structural degradation leads to the
deactivation of the catalysts [60]. Figure 8 summarizes the characterization results of
the spent Co2.5/rGO catalyst. The TEM image of the spent Co2.5/rGO catalyst shows
the homogenous dispersion of nanoparticles (Figure 8a) with a slightly larger average
size of 7.6 nm (Figure 8b) as compared to that of a fresh one (6.7 nm). Fresh Co2.5/rGO
catalyst contains no metallic Co (Figure 2a) and is used without prereduction treatment. A
hypothesis states that Co2.5/rGO catalysts undergo in situ reduction to form metallic Co.
However, the XPS spectra of the spent catalyst (Figure 8c) show no metallic Co, thereby
confirming that the active sites for activating H2 is CoCx rather than metallic Co. Figure 8d
shows the TG curves of the fresh and spent Co2.5/rGO catalysts. The weight loss rates
mainly relate to the burning of rGO at approximately 310 ◦C, and the coke, if present,
cannot be identified because it burnt with rGO together. However, a careful comparison of
the two curves found that the weight loss of the spent catalyst is about 3% higher than that
of the fresh one, which is caused by coke deposition on the spent catalyst. Figure 8e,f show
the high density of isolated Co atoms in the graphene nanosheet of the spent catalyst.

The reusability of the Co2.5/rGO catalyst was investigated during the HDO of the
GUA (Figure 9). The catalyst recycling experiment was performed without regeneration.
The conversion rate of GUA drops to 70.4 mol% in the repeated test (cycle 2), indicating the
deactivation of the Co2.5/rGO catalyst. One concern regarding the causes of deactivation
is that single Co atoms in the graphene matrix may move and aggregate during the
thermodynamic process of a reaction, which leads to the loss of CoCx sites. A model
reaction was performed to exclude this possibility. The fresh Co2.5/rGO catalyst was first
processed under the following conditions: 10 mL of n-dodecane, 30 mg of the catalyst,
200 ◦C, and 1 MPa H2 for 2 h. Then, 300 mg of GUA was added to the reactor, and the
reaction proceeded under the same conditions. The result of “Pretreated” in Figure 9 shows
that the catalyst maintains its activity, indicating that the single Co atoms embedded in
the rGO lattice are stable under the reaction conditions, in accordance with the image
of HAADF-STEM (Figure 8f). Thereby, coking is the main reason for the deactivation
of the catalyst. Coking was also presented in previous studies on the catalytic HDO of
GUA [21,60–63].
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states that Co2.5/rGO catalysts undergo in situ reduction to form metallic Co. However, 
the XPS spectra of the spent catalyst (Figure 8c) show no metallic Co, thereby confirming 
that the active sites for activating H2 is CoCx rather than metallic Co. Figure 8d shows the
TG curves of the fresh and spent Co2.5/rGO catalysts. The weight loss rates mainly relate 
to the burning of rGO at approximately 310 °C, and the coke, if present, cannot be identi-
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4. Conclusions

The catalytic HDO of GUA, a phenolic model compound of biomass lignin pyrol-
ysis products, was investigated over Co/rGO catalysts synthesized through a practical
impregnation–calcination approach. A series of characterization results revealed that the
prepared Co/rGO catalyst contains single Co atoms embedded in the graphene matrix and
CoOx nanoparticles on the graphene surface. The isolated Co atoms formed stable metal
carbide analogs (CoCx) with rGO when the catalyst was calcined at 500 ◦C in N2. The
graphene texture is a decisive factor in determining the catalyst performance. rGO with
proper N heteroatoms and lattice defects is a suitable material for catalyst fabrication. The
optimized Co/rGO catalyst without prereduction treatment led to the complete conversion
of GUA with 93.2% yield to CYHAOL under mild reaction conditions (200 ◦C and 1.0 MPa
H2 pressure for 2 h). The catalytic HDO of GUA to GYHAOL mainly occurred through
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the pathway using phenol as the intermediate. The Co/rGO catalyst possesses metal–acid
bifunctional characteristics, by which the CoCx sites readily activate H2 and provide active
H, and the CoOx nanoparticles provide acid sites that are required to activate the C–O bond,
allowing easier C–O scission by active H. The isolated Co atoms of the Co/rGO catalyst
were stable under the reaction conditions of 200 ◦C and 1.0 MPa H2, which emphasized the
feasibility of constructing the highly dispersed metal–carbide species through embedding
single metal atoms in the graphene matrix.
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//www.mdpi.com/article/10.3390/nano12193388/s1, including the characterization description;
Figure S1: The full-scan XPS survey spectrum of the Co2.5/rGO catalyst; Figure S2: Characterization
results of the Co2.5/Gr catalyst: (a) TEM image and particle size distribution, (b) HAADF-STEM im-
age; Figure S3: The NH3-TPD result of the CoOx powder; Table S1: Catalysts for hydrodeoxygenation
of guaiacol to cyclohexanol; Table S2: Co-based catalysts used in hydrodeoxygenation of guaiacol.
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