Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers
Abstract
:1. Introduction
2. Device Modeling and Simulation Methods
2.1. Simulation Methodology
- (i)
- Poisson Equation:
- (ii)
- Continuity Equations:
- (iii)
- Charge Transport Equations:
- (iv) Absorption Coefficient Equation:
2.2. Simulation Parameters
2.3. Simulation Flowchart
3. Results and Discussion
3.1. Optimization of Thickness of PEDOT:PSS Hole-Transport Layer
3.2. Optimization of Doping Density of PEDOT:PSS Hole Transport Layer
3.3. Optimization of Thickness of the Nb2O5 Electron-Transport Layer
3.4. Optimization of Doping Density of the Nb2O5 Electron-Transport Layer
3.5. Optimization of Thickness of the Active Perovskite Layer
3.6. Overall Photovoltaic Response of the Proposed Devices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vivek, C.; Ramkumar, P.; Srividhya, P.; Sivasubramanian, M. Recent strategies, and trends in implanting of renewable energy sources for sustainability—A review. Mater. Today Proc. 2021, 46, 8204–8208. [Google Scholar] [CrossRef]
- Omer, A. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Goldemberg, J.; Johansson, T.B.; Reddy, A.K.; Williams, R.H. Energy for a Sustainable World, 1st ed.; World Resources Institute: New York, NY, USA, 1988. [Google Scholar]
- Tutak, M.; Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment, and conventional energy sources. A 20-year perspective. J. Clean. Prod. 2022, 345, 131076. [Google Scholar] [CrossRef]
- Husin, H.; Zaki, M. A critical review of the integration of renewable energy sources with various technologies. Prot. Control Mod. Power Syst. 2021, 6, 1–18. [Google Scholar]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Teridi, M.A.M.; Sepeai, S.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar energy for future world:—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Wenham, S.R.; Green, M.A. Silicon solar cells. Prog. Photovolt. Res. Appl. 1996, 4, 3–33. [Google Scholar] [CrossRef]
- Pizzini, S. Towards solar grade silicon: Challenges and benefits for low cost photovoltaics. Sol. Energy Mater. Sol. Cells 2010, 94, 1528–1533. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, B.; Li, Y.; Deng, W.; He, R. Extra long electron–hole diffusion lengths in CH3NH3PbI3-x Cl x perovskite single crystals. J. Mater. Chem. C 2017, 5, 8431–8435. [Google Scholar] [CrossRef]
- Liu, J.; Aydin, E.; Yin, J.; De Bastiani, M.; Isikgor, F.H.; Rehman, A.U.; De Wolf, S. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 2021, 5, 3169–3186. [Google Scholar] [CrossRef]
- Bibi, A.; Lee, I.; Nah, Y.; Allam, O.; Kim, H.; Quan, L.; Tang, J.; Walsh, A.; Jang, S.; Sargent, E.; et al. Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Mater. Today 2021, 49, 123–144. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Q.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z.; Ting, H.; Sun, W.; Zhong, X.; Wei, S.; et al. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs 2 AgBiBr 6 Film. Adv. Sci. 2017, 5, 1700759. [Google Scholar] [CrossRef]
- Yang, Y.; You, J. Make perovskite solar cells stable. Nature 2017, 544, 155–156. [Google Scholar] [CrossRef]
- Wang, J.; Dong, J.; Lu, F.; Sun, C.; Zhang, Q.; Wang, N. Two-dimensional lead-free halide perovskite materials and devices. J. Mater. Chem. A 2019, 7, 23563–23576. [Google Scholar] [CrossRef]
- Kamat, P.; Bisquert, J.; Buriak, J. Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 904–905. [Google Scholar] [CrossRef]
- Giustino, F.; Snaith, H. Toward Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1233–1240. [Google Scholar] [CrossRef]
- Ju, M.; Chen, M.; Zhou, Y.; Garces, H.; Dai, J.; Ma, L.; Padture, N.; Zeng, X. Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Lett. 2018, 3, 297–304. [Google Scholar] [CrossRef]
- Kong, D.; Cheng, D.; Wang, X.; Zhang, K.; Wang, H.; Liu, K.; Li, H.; Sheng, X.; Yin, L. Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics. J. Mater. Chem. C 2020, 8, 1591–1597. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.; Carl, A.; Zong, Y.; Grimm, R.; Gu, J.; Zeng, X.; Zhou, Y.; Padture, N. Cesium Titanium (IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells. Joule 2018, 2, 558–570. [Google Scholar] [CrossRef]
- Gummel, H. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 1964, 11, 455–465. [Google Scholar] [CrossRef]
- Gwyn, C.; Scharfetter, D.; Wirth, J. The Analysis of Radiation Effects in Semiconductor Junction Devices. IEEE Trans. Nucl. Sci. 1967, 14, 153–169. [Google Scholar] [CrossRef]
- Scharfetter, D.; Gummel, H. Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Devices 1969, 16, 64–77. [Google Scholar] [CrossRef]
- Fossum, J. Computer-aided numerical analysis of silicon solar cells. Solid-State Electron. 1976, 19, 269–277. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Khelifi, S.; Abass, A. Advanced electrical simulation of thin film solar cells. Thin Solid Film. 2013, 535, 296–301. [Google Scholar] [CrossRef]
- Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 2004, 12, 143–153. [Google Scholar] [CrossRef]
- Verschraegen, J.; Burgelman, M. Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Film. 2007, 515, 6276–6279. [Google Scholar] [CrossRef]
- Mostefaoui, M.; Mazari, H.; Khelifi, S.; Bouraiou, A.; Dabou, R. Simulation of High Efficiency CIGS Solar Cells with SCAPS-1D Software. Energy Procedia 2015, 74, 736–744. [Google Scholar] [CrossRef]
- Moiz, S. Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell. Photonics 2021, 9, 23. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Wang, X.; Tao, J.; Jiang, J.; Hu, Z.; Chu, J. Enhanced performance of carbon-based planar CsPbBr3 perovskite solar cells with room-temperature sputtered Nb2O5 electron transport layer. Sol. Energy 2019, 191, 263–271. [Google Scholar] [CrossRef]
- Fernandes, S.; Garcia, L.; Júnior, R.; Affonço, L.; Bagnis, D.; Vilaça, R.; Pontes, F.; da Silva, J.; Graeff, C. The role of Nb2O5 deposition process on perovskite solar cells. J. Renew. Sustain. Energy 2022, 14, 043703. [Google Scholar] [CrossRef]
- Agnihotri, P.; Sahu, S.; Tiwari, S. Recent advances & perspectives in electron transport layer of organic solar cells for efficient solar energy harvesting. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 1568–1573. [Google Scholar] [CrossRef]
- Lim, F.; Ananthanarayanan, K.; Luther, J.; Ho, G. Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells. J. Mater. Chem. 2012, 22, 25057. [Google Scholar] [CrossRef]
- Moiz, S.; Nahhas, A.; Um, H.; Jee, S.; Cho, H.; Kim, S.; Lee, J. A stamped PEDOT:PSS—Silicon nanowire hybrid solar cell. Nanotechnology 2012, 23, 145401. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Koushik, D.; Verhees, W.; Zhang, D.; Kuang, Y.; Veenstra, S.; Creatore, M.; Schropp, R. Atomic Layer Deposition Enabled Perovskite/PEDOT Solar Cells in a Regular n-i-p Architectural Design. Adv. Mater. Interfaces 2017, 4, 1700043. [Google Scholar] [CrossRef]
- Liu, J.; Pathak, S.; Stergiopoulos, T.; Leijtens, T.; Wojciechowski, K.; Schumann, S.; Kausch-Busies, N.; Snaith, H. Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic–Inorganic Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 1666–1673. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, H.; Chen, W.; Chen, S.; Quiroz, C.; Azimi, H.; Osvet, A.; Matt, G.; Zeira, E.; Seuring, J.; et al. Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Low-Cost and Water-Free PEDOT Hole-Extraction Layer. Adv. Energy Mater. 2015, 5, 1500543. [Google Scholar] [CrossRef]
- Baumann, A.; Väth, S.; Rieder, P.; Heiber, M.; Tvingstedt, K.; Dyakonov, V. Identification of Trap States in Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 2350–2354. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Schmid, P.; Széles, S.; Lévy, F.; Demarne, V.; Grisel, A. Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors. Sens. Actuators B Chem. 1996, 37, 83–89. [Google Scholar] [CrossRef]
- Reza, K.; Mabrouk, S.; Qiao, Q. A Review on Tailoring PEDOT:PSS Layer for Improved Performance of Perovskite Solar Cells. Proc. Nat. Res. Soc. 2018, 2, 02004. [Google Scholar] [CrossRef]
- Moiz, S.; Alahmadi, A.; Karimov, K. Improved organic solar cell by incorporating silver nanoparticles embedded polyaniline as buffer layer. Solid-State Electron. 2020, 163, 107658. [Google Scholar] [CrossRef]
- Minemoto, T.; Kawano, Y.; Nishimura, T.; Shen, Q.; Yoshino, K.; Iikubo, S.; Hayase, S.; Chantana, J. Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Sol. Energy Mater. Sol. Cells 2020, 206, 110268. [Google Scholar] [CrossRef]
- Afzali, M.; Shahhoseini, A.; Keshvari, H. Investigating the Role of Niobium Pentoxide as Transparent Conductive Oxide layer on the Efficiency of Thin Film Amorphous Silicon Solar Cell. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; pp. 54–59. [Google Scholar] [CrossRef]
- Chakraborty, K.; Choudhury, M.; Paul, S. Study of Physical, Optical, and Electrical Properties of Cesium Titanium (IV)-Based Single Halide Perovskite Solar Cell. IEEE J. Photovolt. 2021, 11, 386–390. [Google Scholar] [CrossRef]
- Chakraborty, K.; Choudhury, M.; Paul, S. Life Cycle Assessment of a Lead-Free Cesium Titanium (IV) Single and Mixed Halide Perovskite Solar Cell Based 1 m² PV Module. IEEE Trans. Device Mater. Reliab. 2021, 21, 465–471. [Google Scholar] [CrossRef]
- Khan, M.; Urmi, S.; Ferdous, T.; Azam, S.; Alim, M. Highly efficient Cesium Titanium (IV) Bromide perovskite solar cell and its point defect investigation: A computational study. Superlattices Microstruct. 2021, 156, 106946. [Google Scholar] [CrossRef]
- Ahmad, O.; Rashid, A.; Ahmed, M.; Nasir, M.; Qasim, I. Performance evaluation of Au/p-CdTe/Cs2TiI6/n-TiO2/ITO solar cell using SCAPS-1D. Opt. Mater. 2021, 117, 111105. [Google Scholar] [CrossRef]
- Chakraborty, K.; Paul, S. Comparison of spectral responses of Cs2TiI6- XBrX based Perovskite device with CdS and TiO2 Electron transport layer. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kolaghat, India, 5–7 January 2021; IOP Publishing Ltd.: Kolaghat, India, 2021; p. 012007. [Google Scholar]
- Zhao, P.; Su, J.; Guo, Y.; Wang, L.; Lin, Z.; Hao, Y.; Ouyang, X.; Chang, J. Cs2TiI6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Res. 2021, 15, 2697–2705. [Google Scholar] [CrossRef]
- Bhat, M.; Rather, R.; Shalla, A. PEDOT and PEDOT:PSS conducting polymeric hydrogels: A report on their emerging applications. Synth. Met. 2021, 273, 116709. [Google Scholar] [CrossRef]
- Moiz, S.; Alahmadi, A.; Aljohani, A. Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell. Energies 2020, 13, 3797. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.; Ouyang, J. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [Google Scholar] [CrossRef]
- Nardes, A.; Kemerink, M.; Janssen, R.; Bastiaansen, J.; Kiggen, N.; Langeveld, B.; van Breemen, A.; de Kok, M. Microscopic Understanding of the Anisotropic Conductivity of PEDOT:PSS Thin Films. Adv. Mater. 2007, 19, 1196–1200. [Google Scholar] [CrossRef]
- Levermore, P.; Chen, L.; Wang, X.; Das, R.; Bradley, D. Fabrication of Highly Conductive Poly(3,4-ethylenedioxythiophene) Films by Vapor Phase Polymerization and Their Application in Efficient Organic Light-Emitting Diodes. Adv. Mater. 2007, 19, 2379–2385. [Google Scholar] [CrossRef]
- Zhang, F.; Johansson, M.; Andersson, M.; Hummelen, J.; Inganäs, O. Polymer Photovoltaic Cells with Conducting Polymer Anodes. Adv. Mater. 2002, 14, 662–665. [Google Scholar] [CrossRef]
- Lee, M.; Lee, M.; Choi, J.; Park, J.; Song, C. Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs. Org. Electron. 2010, 11, 854–859. [Google Scholar] [CrossRef]
- Huang, J.; Miller, P.; de Mello, J.; de Mello, A.; Bradley, D. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth. Met. 2003, 139, 569–572. [Google Scholar] [CrossRef]
- Hosseini, E.; Ozhukil Kollath, V.; Karan, K. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C 2020, 8, 3982–3990. [Google Scholar] [CrossRef]
- Wei, Q.; Mukaida, M.; Naitoh, Y.; Ishida, T. Morphological Change and Mobility Enhancement in PEDOT:PSS by Adding Co-solvents. Adv. Mater. 2013, 25, 2831–2836. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, B.; He, Z.; Zhao, X.; Wang, H.; Yang, S.; Wu, H.; Cao, Y. High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes. Energy Environ. Sci. 2013, 6, 1956–1964. [Google Scholar] [CrossRef]
- Wu, F.; Li, P.; Sun, K.; Zhou, Y.; Chen, W.; Fu, J.; Li, M.; Lu, S.; Wei, D.; Tang, X.; et al. Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism. Adv. Electron. Mater. 2017, 3, 1700047. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. Significant Conductivity Enhancement of Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Films through a Treatment with Organic Carboxylic Acids and Inorganic Acids. ACS Appl. Mater. Interfaces 2010, 2, 474–483. [Google Scholar] [CrossRef]
- Rudd, S.; Evans, D. Recent advances in the aqueous applications of PEDOT. Nanoscale Adv. 2022, 4, 733–741. [Google Scholar] [CrossRef]
- Chan, C.; Zhao, W.; Kahn, A.; Hill, I. Influence of chemical doping on the performance of organic photovoltaic cells. Appl. Phys. Lett. 2009, 94, 203306. [Google Scholar] [CrossRef]
- Karimov, K.S.; Ahmed, M.M.; Moiz, S.A.; Babadzhanov, P.; Marupov, R.; Turaeva, M.A. Electrical properties of organic semiconductor orange nitrogen dye thin films deposited from solution at high gravity. Eurasian Chem. Technol. J. 2003, 5, 109–113. [Google Scholar] [CrossRef]
- Moiz, S.; Karimov, K.; Gohar, N. Orange Dye Thin Film Resistive Hygrometers. Eurasian Chem. Technol. J. 2017, 6, 179–183. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, B.; Wang, F.; Liu, H.; Hayat, T.; Alsaedi, A.; Tan, Z. Bright prospect of using alcohol-soluble Nb2O5 as anode buffer layer for efficient polymer solar cells based on fullerene and non-fullerene acceptors. Org. Electron. 2018, 52, 323–328. [Google Scholar] [CrossRef]
- Feng, J.; Yang, Z.; Yang, D.; Ren, X.; Zhu, X.; Jin, Z.; Zi, W.; Wei, Q.; Liu, S. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Anwar, F.; Mahbub, R.; Satter, S.; Ullah, S. Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. Int. J. Photoenergy 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, M.; Pang, S.; Huang, C.; Zhou, Z.; Wang, D.; Wang, N.; Cui, G. Carrier Transport in CH3NH3PbI3Films with Different Thickness for Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3, 1600327. [Google Scholar] [CrossRef]
- Baruch, P.; De Vos, A.; Landsberg, P.; Parrott, J. On some thermodynamic aspects of photovoltaic solar energy conversion. Sol. Energy Mater. Sol. Cells 1995, 36, 201–222. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
Photovoltaic Parameters | Symbol | Unit | PEDOT:PSS | Nb2O5 | Cs2TiCl6 | Cs2TiBr6 | Cs2TiI6 |
---|---|---|---|---|---|---|---|
Thickness | Th | nm | 50 | 50 | 50 | 50 | 50 |
Energy Band Gap | eV | 1.8 | 3.5 | 2.23 | 1.8 | 1.8 | |
Electron Affinity | Χ | eV | 3.4 | 4 | 4 | 4 | 3.98 |
Dielectric Permittivity | 18 | 9 | 19 | 10 | 7.3 | ||
Effective Density of States at Conduction Band | cm−3 | 2.2 × 1019 | 2.2 × 1018 | 1 × 1019 | 6 × 1019 | 1 × 1019 | |
Effective Density of States at Valence Band | cm−3 | 1.8 × 1019 | 1.8 × 1019 | 1 1019 | 2.14 × 1019 | 1 × 1018 | |
Hole Thermal Velocity | cm/s | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | |
Electron Thermal Velocity | cm/s | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | |
Electron Mobility | cm−2/V·s | 4.5 × 10-02 | 25 | 4.4 | 2.36 × 10-01 | 4.4 | |
Hole Mobility | cm−2/V·s | 4.5 × 10-02 | 5 | 2.5 | 1.7 × 10-01 | 2.5 | |
Uniform Shallow Donor Doping | cm−3 | - | 1 × 1016 | 1 × 1019 | 1 × 1019 | 1 × 1019 | |
Uniform Shallow Acceptor Doping | cm−3 | 1 × 1016 | - | 1 × 1019 | 1 × 1019 | 1 × 1019 | |
Defect Density | cm−3 | 1 × 1015 | 1 × 1014 | 1 × 1014 | 1 × 1014 | 1 × 1014 | |
Reference | [43] | [44] | [45,46] | [47] | [48,49,50] |
Parameters | Unit | PEDOT:PSS | Nb2O5 | Cs2TiCl6 | Cs2TiBr6 | Cs2TiI6 |
---|---|---|---|---|---|---|
Defect Types | Neutral | Neutral | Neutral | Neutral | Neutral | |
Capture Cross-section electrons | cm2 | 1 × 10−15 | 1 × 10−15 | 1 × 10−15 | 1 × 10−15 | 1 × 10−15 |
Capture Cross-section holes | cm2 | 1 × 10−15 | 1 × 10−15 | 1 × 10−15 | 1 × 10−15 | 1 × 10−15 |
Energetic Distribution | Uniform | Single | Single | Single | Single | |
Energy Level with respect to reference | eV | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Characteristic Energy | eV | 0.1 | - | - | - | - |
Traps Distribution N(t) | Exponential | Uniform | Uniform | Uniform | Uniform | |
N(t) Left x=0 | cm−3 | 1 × 1013 | 1 × 1014 | 1 × 1014 | 1 × 1014 | 1 × 1014 |
N(t) Right x = 1 | cm−3 | 1 × 1015 | - | - | - | - |
N(t) Peak x = 0 | 1/eV/cm3 | 1 × 1014 | - | - | - | - |
N(t) Peak x = 1 | 1/eV/cm3 | 1 × 1016 | - | - | - | - |
Photovoltaic Devices | PEDOT:PSS (HTL) | Nb2O5 (ETL) | Active Perovskite Layer | ||
---|---|---|---|---|---|
Thickness | Doping Density | Thickness | Doping Density | Thickness | |
(nm) | (/cm3) | (nm) | (/cm3) | (nm) | |
Device 1 (CS2TiI6) | 75 | 1020 | 20 | 1020 | 700 |
Device 2 (CS2TiBr6) | 60 | 1020 | 20 | 1020 | 500 |
Device 3 (CS2TiCl6) | 50 | 1020 | 20 | 1020 | 800 |
Devices | Open-Circuit Voltage | Short-Circuit Current | Fill-Factor | Power-Conversion Efficiency |
---|---|---|---|---|
(volts) | (mA.cm−2) | (%) | (%) | |
(a) Cs2TiI6 | 1.388 | 17.796 | 75 | 18.53 |
(b) Cs2TiBr6 | 1.341 | 16.739 | 65 | 14.59 |
(c) Cs2TiCl6 | 1.477 | 9.98 | 68 | 10.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiz, S.A.; Albadwani, S.A.; Alshaikh, M.S. Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers. Nanomaterials 2022, 12, 3435. https://doi.org/10.3390/nano12193435
Moiz SA, Albadwani SA, Alshaikh MS. Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers. Nanomaterials. 2022; 12(19):3435. https://doi.org/10.3390/nano12193435
Chicago/Turabian StyleMoiz, Syed Abdul, Saud Abdulaziz Albadwani, and Mohammed Saleh Alshaikh. 2022. "Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers" Nanomaterials 12, no. 19: 3435. https://doi.org/10.3390/nano12193435
APA StyleMoiz, S. A., Albadwani, S. A., & Alshaikh, M. S. (2022). Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers. Nanomaterials, 12(19), 3435. https://doi.org/10.3390/nano12193435