Presence of Induced Weak Ferromagnetism in Fe-Substituted YFexCr1−xO3 Crystalline Compounds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD and Rietveld Analysis
3.2. SEM Analysis
3.3. VSM Analysis
3.4. Mössbauer Analysis
3.4.1. Measurements at 300 K
3.4.2. Measurements at 77 K
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neusser, S.; Grundler, D. Magnonics: Spin Waves on the Nanoscale. Adv. Mater. 2009, 21, 2927–2932. [Google Scholar] [CrossRef]
- Song, C.; You, Y.; Chen, X.; Zhou, X.; Wang, Y.; Pan, F. How to Manipulate Magnetic States of Antiferromagnets. Nanotechnology 2018, 29, 112001. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Shen, H.; Xu, J.; Wang, Z.; Jiang, L.; Luo, L.; Yuan, S.; Cao, S.; Zhang, H. Crystal Growth and Magnetic Property of YFeO3 crystal. Bull. Mater. Sci. 2012, 35, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Fang, C.; Yin, W.; Zeng, Y. One-Step Synthesis of Yttrium Orthoferrite Nanocrystals Via Sol-Gel Auto-Combustion and Their Structural and Magnetic Characteristics. Mater. Chem. Phys. 2013, 137, 877–883. [Google Scholar] [CrossRef]
- Popkov, V.I.; Almjasheva, O.V.; Semenova, A.S.; Kellerman, D.G.; Nevedomskiy, V.N.; Gusarov, V.V. Magnetic Properties of Yfeo3 Nanocrystals Obtained by Different Soft-Chemical Methods. J. Mater. Sci. Mater. Electron. 2017, 28, 7163–7170. [Google Scholar] [CrossRef]
- Treves, D. Magnetic Studies of Some Orthoferrites. Phys. Rev. 1962, 25, 1843–1853. [Google Scholar] [CrossRef]
- Mao, J.; Sui, Y.; Zhang, X.; Su, Y.; Wang, X.; Liu, Z.; Wang, Y.; Zhu, R.; Wang, Y.; Liu, W.; et al. Temperature- and Magnetic-Field-Induced Magnetization Reversal in Perovskite YFe0.5Cr0.5O3. Appl. Phys. Lett. 2011, 98, 192510. [Google Scholar] [CrossRef] [Green Version]
- Dasari, N.; Mandal, P.; Sundaresan, A.; Vidhyadhiraja, N.S. Weak Ferromagnetism and Magnetization Reversal in YFe1−xCrxO3. EPL 2012, 99, 17008. [Google Scholar] [CrossRef] [Green Version]
- Calder, S.; An, K.; Boehler, R.; Dela Cruz, C.R.; Frontzek, M.D.; Guthrie, M.; Haberl, B.; Huq, A.; Kimber, S.A.J.; Liu, J.; et al. A Suite-Level Review of the Neutron Powder Diffraction Instruments at Oak Ridge National Laboratory. Rev. Sci. Instrum. 2018, 89, 092701. [Google Scholar] [CrossRef] [PubMed]
- Canchanya-Huaman, Y.; Mayta-Armas, A.F.; Pomalaya-Velasco, J.; Bendezú-Roca, Y.; Guerra, J.A.; Ramos-Guivar, J.A. Strain and Grain Size Determination of CeO2 and TiO2 Nanoparticles: Comparing Integral Breadth Methods versus Rietveld, μ-Raman, and TEM. Nanomaterials 2021, 11, 2311. [Google Scholar] [CrossRef]
- Salazar-Rodriguez, R.; Aliaga-Guerra, D.B.; Taddei, K.M. X-Ray Diffraction, Mössbauer Spectroscopy, Neutron Diffraction, Optical Absorption and Ab-Initio Calculation of Magnetic Process in Orthorhombic YFexCr(1−x)O3 (0 ≤ x ≤ 1) Compounds. Hyperfine Interact. 2019, 240, 82. [Google Scholar] [CrossRef]
- Popa, N.C. The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement. J. Appl. Cryst. 1998, 31, 176–180. [Google Scholar] [CrossRef]
- Pecharsky, V.J.; Zavalij, P.Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed.; Springer Science Business Media, LLC: Berlin/Heidelberg, Germany, 2009; pp. 269–292. ISBN 978-0-387-09578-3. [Google Scholar]
- Shi, L.R.; Xia, Z.C.; Wei, M.; Jin, Z.; Shang, C.; Huang, J.W.; Chen, B.R.; Ouyang, Z.W.; Huang, S.; Xiao, G.L. Unusual Effects of Ho3+ Ion on Magnetic Properties of YFe0.5Cr0.5O3. Ceram. Int. 2015, 41, 13455–13460. [Google Scholar] [CrossRef]
- Tiwari, B.; Surendra, M.K.; Rao, M.S.R. HoCrO3 and YCrO3: A Comparative Study. J. Phys. Condens. Matter 2013, 25, 216004. [Google Scholar] [CrossRef]
- Shang, M.; Zhang, C.; Zhang, T.; Yuan, L.; Ge, L.; Yuan, H.; Feng, S. The Multiferroic Perovskite YFeO3. Appl. Phys. Lett. 2013, 102, 062903. [Google Scholar] [CrossRef]
- Mathur, S.; Veith, M.; Rapalaviciute, R.; Shen, H.; Goya, G.F.; Filho, W.L.M.; Berquo, T.S. Molecule Derived Synthesis of Nanocrystalline YFeO3 and Investigations on Its Weak Ferromagnetic Behavior. Chem. Mater. 2004, 16, 1906–1913. [Google Scholar] [CrossRef]
- Wu, L.; Yu, J.C.; Zhang, L.; Wang, X.; Li, S. Selective Self-Propagating Combustion Synthesis of Hexagonal and Orthorhombic Nanocrystalline Yttrium Iron Oxide. J. Solid State Chem. 2004, 177, 3666–3674. [Google Scholar] [CrossRef]
- Cristóbal, A.A.; Botta, P.M.; Bercoff, P.G.; Ramos, C.P. Hyperfine and Magnetic Properties of a YxLa1−xFeO3 series (0≤ x≤1). Mater. Res. Bull. 2015, 64, 347–354. [Google Scholar] [CrossRef]
- Shen, J.; Xu, J.; Wu, A.; Zhao, J.; Shi, M. Magnetic and thermal properties of perovskite YFeO3 single crystals. Mater. Sci. Eng. B 2009, 157, 77–80. [Google Scholar] [CrossRef]
- Jacobs, I.S.; Burne, H.F.; Levinson, L.M. Field-Induced Spin Reorientation in YFeO3 and YCrO3. J. Appl. Phys. 1971, 42, 1631. [Google Scholar] [CrossRef]
- Dahmani, A.; Taibi, M.; Nogues, M.; Aride, J.; Loudghiri, E.; Belayachi, A. Magnetic Properties of the Perovskite Compounds YFe1–xCrxO3 (0.5≤x≤1). Mater. Chem. Phys. 2003, 77, 912–917. [Google Scholar] [CrossRef]
- Nair, V.; Das, A.; Subramanian, V.; Santhosh, P.N. Magnetic Structure and Magnetodielectric Effect of YFe0.5Cr0.5O3. J. Appl. Phys. 2013, 113, 213907. [Google Scholar] [CrossRef]
- Zhou, J.S.; Alonso, J.A.; Pomjakushin, V.; Goodenough, J.B.; Ren, Y.; Yan, J.Q.; Cheng, J.G. Intrinsic Structural Distortion and Superexchange Interaction in the Orthorhombic Rare-Earth Perovskites RCrO3. Phys. Rev. B 2010, 81, 214115. [Google Scholar] [CrossRef]
Sample | Y (% wt) ± 2 | Cr (% wt) ± 2 | Fe (% wt) ± 1 | O (% wt) ± 1 |
---|---|---|---|---|
RS1 | 52 | 31 | - | 17 |
RS2 | 51 | 25 | 9 | 15 |
RS3 | 47 | 17 | 23 | 14 |
RS4 | 51 | 14 | 20 | 15 |
RS5 | 51 | 9 | 25 | 16 |
RS6 | 51 | 4 | 30 | 15 |
RS7 | 51 | - | 33 | 16 |
x | T (K) | Mr (emu/g) ± 0.05 | HC (kOe) ± 0.5 | σSat (emu/g) ± 0.05 | Susc. (emu/g × Oe) ± 0.01 |
---|---|---|---|---|---|
1.00 | 300 | 0.75 | 46.7 | 0.79 | 0.02 |
1.00 | 5 | 0.84 | 40.9 | 0.87 | 0.02 |
0.90 | 300 | 0.64 | 43.2 | 0.77 | 0.02 |
0.90 | 5 | 0.27 | 0.3 | 0.61 | 0.02 |
0.75 | 300 | 0.18 | 0.3 | 0.55 | 0.02 |
0.75 | 5 | 0.02 | 0.02 (5) | 0.41 | 0.02 |
0.60 | 300 | 0.05 | 0.1 | 0.20 | 0.02 |
0.60 | 5 | 0.05 | 0.1 | 0.23 | 0.02 |
0.50 | 300 | 0 | 0 | 0 | 0.02 |
0.50 | 5 | 0 | 0 | 0 | 0.02 |
0.25 | 300 | 0 | 0 | 0 | 0.02 |
0.25 | 5 | 0 | 0 | 0 | 0.03 |
0.00 | 300 | 0 | 0 | 0 | 0.02 |
0.00 | 5 | 0.80 | 18.9 | 0.89 | 0.03 |
x | T (K) | IS (mm/s) ± 0.01 | 2ε or Δ (mm/s) ± 0.01 | Bhf (T) ± 0.5 | Absorption Area Ratio % ± 2 |
---|---|---|---|---|---|
1 | 300 | 0.37 | 0.00 | 50.1 | 100 |
77 | 0.48 | 0.01 | 55.2 | 100 | |
0.75 | 300 | <0.38> | <0.04> | <40.7> | 100 |
77 | 0.47 | 0.03 | 53.8 | 49 | |
0.47 | 0.05 | 52.6 | 51 | ||
<0.47> | <0.04> | <53.2> | |||
0.50 | 300 | 0.39 | 0.28 | 62 | |
0.40 | −0.24 | 50.1 | 22 | ||
0.46 | −0.12 | 48.5 | 8 | ||
0.35 | 0.15 | 13.3 | 8 | ||
77 | 0.48 | 0.02 | 51.0 | 62 | |
0.48 | −0.10 | 52.7 | 38 | ||
<0.48> | <−0.02> | <51.7> | |||
0.25 | 300 | 0.36 | 0.28 | 100 | |
77 | 0.47 | 0.08 | 47.9 | 74 | |
0.47 | 0.08 | 45.0 | 23 | ||
0.47 | 0.79 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar-Rodriguez, R.; Aliaga Guerra, D.; Greneche, J.-M.; Taddei, K.M.; Checca-Huaman, N.-R.; Passamani, E.C.; Ramos-Guivar, J.A. Presence of Induced Weak Ferromagnetism in Fe-Substituted YFexCr1−xO3 Crystalline Compounds. Nanomaterials 2022, 12, 3516. https://doi.org/10.3390/nano12193516
Salazar-Rodriguez R, Aliaga Guerra D, Greneche J-M, Taddei KM, Checca-Huaman N-R, Passamani EC, Ramos-Guivar JA. Presence of Induced Weak Ferromagnetism in Fe-Substituted YFexCr1−xO3 Crystalline Compounds. Nanomaterials. 2022; 12(19):3516. https://doi.org/10.3390/nano12193516
Chicago/Turabian StyleSalazar-Rodriguez, Roberto, Domingo Aliaga Guerra, Jean-Marc Greneche, Keith M. Taddei, Noemi-Raquel Checca-Huaman, Edson C. Passamani, and Juan A. Ramos-Guivar. 2022. "Presence of Induced Weak Ferromagnetism in Fe-Substituted YFexCr1−xO3 Crystalline Compounds" Nanomaterials 12, no. 19: 3516. https://doi.org/10.3390/nano12193516
APA StyleSalazar-Rodriguez, R., Aliaga Guerra, D., Greneche, J. -M., Taddei, K. M., Checca-Huaman, N. -R., Passamani, E. C., & Ramos-Guivar, J. A. (2022). Presence of Induced Weak Ferromagnetism in Fe-Substituted YFexCr1−xO3 Crystalline Compounds. Nanomaterials, 12(19), 3516. https://doi.org/10.3390/nano12193516