Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kato, K.; Dang, F.; Mimura, K.; Kinemuchi, Y.; Imai, H.; Wada, S.; Osada, M.; Haneda, H.; Kuwabara, M. Nano-sized cube-shaped single crystalline oxides and their potentials; composition, assembly and functions. Adv. Powder Technol. 2014, 25, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Mimura, K. Processing of dielectric nanocube 3D-assemblies and their high electrical properties for next-generation devices. J. Ceram. Soc. Jpn. 2016, 124, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Zablotsky, D.; Rusevich, L.L.; Zvejnieks, G.; Kuzovkov, V.; Kotomin, E. Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes. Nanoscale 2019, 11, 7293–7303. [Google Scholar] [CrossRef] [PubMed]
- Kishi, H.; Mizuno, Y.; Chazono, H. Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 2003, 42, 1–15. [Google Scholar] [CrossRef]
- Mimura, K.; Kato, K. Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal-insulator-metal capacitor structure. Appl. Phys. Express 2014, 7, 061501. [Google Scholar] [CrossRef]
- Mimura, K.; Kato, K. Dielectric properties of barium titanate nanocube ordered assembly sintered at various temperatures. Jpn. J. Appl. Phys. 2014, 53, 09PA03. [Google Scholar] [CrossRef]
- Mimura, K.; Kato, K. Dielectric properties of micropatterns consisting of barium titanate single-crystalline nanocubes. Jpn. J. Appl. Phys. 2015, 54, 10NA11. [Google Scholar] [CrossRef]
- Itasaka, H.; Mimura, K.; Yasui, K.; Hamamoto, K.; Kato, K. Effect of heat treatment on internal stress in barium titanate nanocube assemblies and their dielectric property. AIP Adv. 2021, 11, 025235. [Google Scholar] [CrossRef]
- Yasui, K.; Mimura, K.; Izu, N.; Kato, K. High dielectric constant associated with the strain-induced phase transition of an ordered assembly of BaTiO3 nanocubes under three-dimensional clamping. Jpn. J. Appl. Phys. 2017, 56, 021501. [Google Scholar] [CrossRef]
- Yasui, K.; Mimura, K.; Izu, N.; Kato, K. Numerical calculations of temperature dependence of dielectric constant for an ordered assembly of BaTiO3 nanocubes with small tilt angles. Jpn. J. Appl. Phys. 2018, 57, 031501. [Google Scholar] [CrossRef]
- Dang, F.; Mimura, K.; Kato, K.; Imai, H.; Wada, S.; Haneda, H.; Kuwabara, M. In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 2012, 4, 1344–1349. [Google Scholar] [CrossRef]
- Ma, Q.; Mimura, K.; Kato, K. Diversity in size of barium titanate nanocubes synthesized by a hydrothermal method using an aqueous Ti compound. Cryst. Eng. Comm. 2014, 16, 8398–8405. [Google Scholar] [CrossRef]
- Ma, Q.; Mimura, K.; Kato, K. Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process. J. Alloys Comp. 2016, 655, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Yasui, K.; Kato, K. Oriented attachment of cubic or spherical BaTiO3 nanocrystals by van der Waals torque. J. Phys. Chem. C 2015, 119, 24597–24605. [Google Scholar] [CrossRef]
- Itasaka, H.; Mimura, K.; Nishi, M.; Kato, K. Characterization of BaTiO3 nanocubes assembled into highly ordered monolayers using micro-and nano-Raman spectroscopy. Appl. Phys. Lett. 2018, 112, 212901. [Google Scholar] [CrossRef]
- Itasaka, H.; Mimura, K.; Kato, K. Extra surfactant-assisted self-assembly of highly ordered monolayers of BaTiO3 nanocubes at the air-water interface. Nanomaterials 2018, 8, 739. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Kato, K. Crystallographic fusion behavior and interface evolution of mon-layer BaTiO3 nanocube arrangement. Cryst. Eng. Comm. 2016, 18, 1543–1549. [Google Scholar] [CrossRef]
- Tsurumi, T.; Li, J.; Hoshina, T.; Kakemoto, H.; Nakada, M.; Akedo, J. Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics. Appl. Phys. Lett. 2007, 91, 182905. [Google Scholar] [CrossRef]
- Teranishi, T.; Hoshina, T.; Tsurumi, T. Wide range dielectric spectroscopy on perovskite dielectrics. Mater. Sci. Engnrng. B 2009, 161, 55–60. [Google Scholar] [CrossRef]
- Kamalasanan, M.N.; Kumar, N.D.; Chandra, S. Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol-gel process. J. Appl. Phys. 1993, 74, 5679–5686. [Google Scholar] [CrossRef]
- Cho, C.R.; Kwun, S.I.; Noh, T.W.; Jang, M.S. Electrical properties of sol-gel deposited BaTiO3 thin films on Si (100) substrate. Jpn. J. Appl. Phys. 1997, 36, 2196–2199. [Google Scholar] [CrossRef]
- Kato, K.; Tanaka, K.; Suzuki, K.; Kayukawa, S. Phase transition in bottom-up BaTiO3 films on Si. Appl. Phys. Lett. 2007, 91, 172907. [Google Scholar] [CrossRef]
- Tanaka, K.; Suzuki, K.; Kato, K. Fabrication of BaTiO3 thin films using modified chemical solutions and sintering method. Jpn. J. Appl. Phys. 2008, 47, 7480–7485. [Google Scholar] [CrossRef]
- Nakasone, F.; Kobayashi, K.; Suzuki, T.; Mizuno, Y.; Chazono, H.; Imai, H. Nanoparticle-sintered BaTiO3 thin films and its orientation control by solid phase epitaxy. Jpn. J. Appl. Phys. 2008, 47, 8518–8524. [Google Scholar] [CrossRef]
- Yasui, K.; Itasaka, H.; Mimura, K.; Kato, K. Dynamic dielectric-response model of flexoelectric polarization from kHz to MHz range in an ordered assembly of BaTiO3 nanocubes. J. Phys. Condens. Matter 2020, 32, 495301. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, W.; Zhang, S. Flexoelectric nano-generator: Materials, structures and devices. Nano Energy 2013, 2, 1079–1092. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Mao, S.; Yeh, Y.; Purohit, P.K.; McAlpine, M.C. Nanoscale flexoelectricity. Adv. Mater. 2013, 25, 946–974. [Google Scholar] [CrossRef]
- Ma, L.L.; Chen, W.J.; Zheng, Y. Flexoelectric effect at the nanoscale. In Handbook of Mechanics of Materials; Hsueh, C.-H., Schmauder, S., Chen, C., Chawla, K.K., Chawla, N., Chen, W., Kagawa, Y., Eds.; Springer: Berlin/Heiildeberg, Germany, 2019; Chapter 17; pp. 549–589. [Google Scholar] [CrossRef]
- Wang, B.; Gu, Y.; Zhang, S.; Chen, L. Flexoelectricity in solids: Progress, challenges, and perspectives. Prog. Mater. Sci. 2019, 106, 100570. [Google Scholar] [CrossRef]
- Yudin, P.V.; Tagantsev, A.K. Fundamentals of flexoelectricity in solids. Nanotechnology 2013, 24, 432001. [Google Scholar] [CrossRef]
- Zubko, P.; Catalan, G.; Tagantsev, A.K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 2013, 43, 387–421. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Liang, R.; Rao, Z.; Fei, L.; Ke, S.; Wang, Y. Flexoelectric materials and their related applications: A focused review. J. Adv. Ceram. 2019, 8, 153–173. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Cross, L.E. Flexoelectricity of barium titanate. Appl. Phys. Lett. 2006, 88, 232902. [Google Scholar] [CrossRef]
- Catalan, G.; Sinnamon, L.J.; Gregg, J.M. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter 2004, 16, 2253–2264. [Google Scholar] [CrossRef]
- Catalan, G.; Noheda, B.; McAneney, J.; Sinnamon, L.J.; Gregg, J.M. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 2005, 72, 020102. [Google Scholar] [CrossRef] [Green Version]
- Ma, W. Flexoelectric effect in ferroelectrics. Func. Mater. Lett. 2008, 1, 235–238. [Google Scholar] [CrossRef]
- Ponomareva, I.; Tagantsev, A.K.; Bellaiche, L. Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B 2012, 85, 104101. [Google Scholar] [CrossRef]
- Ahluwalia, R.; Tagantsev, A.K.; Yudin, P.; Setter, N.; Ng, N.; Srolovitz, D.J. Influence of flexoelectric coupling on domain patterns in ferroelectrics. Phys. Rev. B 2014, 89, 174105. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Li, M.; Morozovska, A.N.; Wang, Y.; Eliseev, E.A.; Gopalan, V.; Chen, L. Flexoelectricity and ferroelectric domain wall structures: Phase-field modeling and DFT calculations. Phys. Rev. B 2014, 89, 174111. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Hong, Z.; Britson, J.; Chen, L. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity. Appl. Phys. Lett. 2015, 106, 022904. [Google Scholar] [CrossRef] [Green Version]
- Morozovska, A.N.; Glinchuk, M.D.; Eliseev, E.A.; Vysochanskii, Y.M. Flexocoupling-induced soft acoustic modes and the spatially modulated phases in ferroelectrics. Phys. Rev. B 2017, 96, 094111. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.; Tian, H.; Huang, F.; Meng, X.; Wang, Y.; Hu, C.; Cao, X.; Li, L.; Zhou, Z. Strain-gradient-controlled disorder dynamics in chemically substituted ferroelectrics. Phys. Rev. Appl. 2019, 11, 024037. [Google Scholar] [CrossRef]
- Tian, D.; Hou, Y.; Zhou, W.; Chu, B. Flexoelectric response of ferroelectric ceramics with reduced surface layer effect. J. Appl. Phys. 2021, 129, 194103. [Google Scholar] [CrossRef]
- Ke, X.; Deng, Q.; Yang, S. Origin of large intrinsic flexoelectric coefficients near curie temperature of BaTiO3. Ceram. Intern. 2021, 47, 4310–4314. [Google Scholar] [CrossRef]
- Hong, J.; Vanderbilt, D. First-principles theory and calculation of flexoelectricity. Phys. Rev. B 2013, 88, 174107. [Google Scholar] [CrossRef] [Green Version]
- Plymill, A.; Xu, H. Flexoelectricity in ATiO3 (A = Sr, Ba, Pb) perovskite oxide superlattices from density functional theory. J. Appl. Phys. 2018, 123, 144101. [Google Scholar] [CrossRef] [Green Version]
- Yasui, K. Acoustic Cavitation and Bubble Dynamics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Yasui, K.; Hamamoto, K. Importance of dislocations in ultrasound-assisted sintering of silver nanoparticles. J. Appl. Phys. 2021, 130, 194901. [Google Scholar] [CrossRef]
- Resta, R.; Vanderbilt, D. Theory of polarization: A modern approach. In Physics of Ferroelectrics; Rabe, K., Ahn, C.H., Triscone, J.-M., Eds.; Springer: Berlin/Heildeberg, Germany, 2007; pp. 31–68. [Google Scholar]
- Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 155–158. [Google Scholar] [CrossRef]
- Saegusa, K.; Rhine, W.E.; Bowen, H.K. Effect of composition and size of crystallite on crystal phase in lead barium titanate. J. Am. Ceram. Soc. 1993, 76, 1505–1512. [Google Scholar] [CrossRef]
- Begg, B.D.; Vance, E.R.; Nowotny, J. Effect of particle size on the room-temperature crystal structure of barium titanate. J. Am. Ceram. Soc. 1994, 77, 3186–3192. [Google Scholar] [CrossRef]
- Hsiang, H.; Yen, F. Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J. Am. Cearm. Soc. 1996, 79, 1053–1060. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Ito, S.; Mori, T.; Ishikawa, K.; Li, Z. -Q.; Kawazoe, Y. Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles. Phys. Rev. B 2000, 62, 3065–3070. [Google Scholar] [CrossRef]
- Yamamoto, T.; Niori, H.; Moriwake, H. Particle-size dependence of crystal structure of BaTiO3 powder. Jpn J. Appl. Phys. 2000, 39, 5683–5686. [Google Scholar] [CrossRef]
- Wada, S.; Yasuno, H.; Hoshina, T.; Nam, S.; Kakemoto, H.; Tsurumi, T. Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn. J. Appl. Phys. 2003, 42, 6188–6195. [Google Scholar] [CrossRef]
- Hoshina, T.; Kakemoto, H.; Tsurumi, T.; Wada, S.; Yashima, M. Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J. Appl. Phys. 2006, 99, 054311. [Google Scholar] [CrossRef]
- Yasui, K.; Kato, K. Influence of adsorbate-induced charge screening, depolarization factor, mobile carrier concentration, and defect-induced microstrain on the size effect of a BaTiO3 naoparticle. J. Phys. Chem. C 2013, 117, 19632–19644. [Google Scholar] [CrossRef]
- Kao, K.C. Dielectric Phenomena in Solids; Elsevier Academic Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasui, K.; Itasaka, H.; Mimura, K.-i.; Kato, K. Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials 2022, 12, 188. https://doi.org/10.3390/nano12020188
Yasui K, Itasaka H, Mimura K-i, Kato K. Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials. 2022; 12(2):188. https://doi.org/10.3390/nano12020188
Chicago/Turabian StyleYasui, Kyuichi, Hiroki Itasaka, Ken-ichi Mimura, and Kazumi Kato. 2022. "Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes" Nanomaterials 12, no. 2: 188. https://doi.org/10.3390/nano12020188
APA StyleYasui, K., Itasaka, H., Mimura, K. -i., & Kato, K. (2022). Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials, 12(2), 188. https://doi.org/10.3390/nano12020188