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Abstract: Tailorable synthesis of axially heterostructured epitaxial nanowires (NWs) with a proper
choice of materials allows for the fabrication of novel photonic devices, such as a nanoemitter in the
resonant cavity. An example of the structure is a GaP nanowire with ternary GaPAs insertions in the
form of nano-sized discs studied in this work. With the use of the micro-photoluminescence technique
and numerical calculations, we experimentally and theoretically study photoluminescence emission
in individual heterostructured NWs. Due to the high refractive index and near-zero absorption
through the emission band, the photoluminescence signal tends to couple into the nanowire cavity
acting as a Fabry–Perot resonator, while weak radiation propagating perpendicular to the nanowire
axis is registered in the vicinity of each nano-sized disc. Thus, within the heterostructured nanowire,
both amplitude and spectrally anisotropic photoluminescent signals can be achieved. Numerical
modeling of the nanowire with insertions emitting in infrared demonstrates a decay in the emission
directivity and simultaneous rise of the emitters coupling with an increase in the wavelength. The
emergence of modulated and non-modulated radiation is discussed, and possible nanophotonic
applications are considered.

Keywords: nanowire; nanodisc; GaP; GaPAs; infrared; photonics; emitter; cavity; waveguide

1. Introduction

Nowadays, nanophotonic structures play an important role in the development of fu-
ture information technologies as key elements of integrated optical circuitry [1]. Advanced
photonic solutions have a remarkable impact on the semiconductor industry, allowing for
the generation, processing and transmission of optical signals at the nanoscale [2]. This
field is known to be the most promising in terms of energetic efficiency and an increase in
operating frequencies.

Low-dimensional nanostructures, such as quantum dots (QDs), have proven them-
selves as very efficient light emitters due to both photonic and electronic spatial restric-
tions [3]. The developed epitaxial growth techniques allow for the synthesis of vertically
stacked QD arrays in wide-gap thin-film matrices [4]. Despite the lack of lateral arrange-
ment, these nanoheterostructures have been successfully employed in efficient lasers and
other optoelectronic devices [5,6].
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Another important example of nanostructures used in the fabrication of nanophotonic
elements is semiconductor nanowires (NWs). These nanostructures can be fabricated with
the use of conventional epitaxial techniques, e.g., molecular beam epitaxy [7] and chemical
vapor deposition [8], and rather technologically feasible techniques, such as hydrothermal
synthesis [9]. The advances of NWs for emerging semiconductor technologies compared
to their thin-film counterparts include the possibility of growth on lattice-mismatched
substrates [10], high crystallinity [11] and peculiar geometry, promising both in terms of
optical [12] and electronic properties [13–15]. The latter makes NWs especially impor-
tant for the fabrication of nano-sized conductive elements [16]; sensoric components [17];
and passive and active photonic structures, including waveguides [12], cavities [18] and
emitters [19,20].

An important property of NWs is the ability to vary their crystallinity and chemical
composition both in vertical (axial heterostructures) and lateral (core–shell heterostruc-
tures) directions, thus providing growth possibilities that are unavailable with other struc-
ture geometries [21,22]. Within this approach, different elements and devices, such as
nanoscale LEDs [23], lasers [24] and solar cells [6], and even more advanced devices, such
as single [25–27] and entangled photon emitters [28,29] based on semiconductor NWs, were
developed. One of the most intriguing possibilities for nanophotonics and optoelectronics
relates to the synthesis of vertically stacked nano-sized insertions in NWs and their further
passivation with the deposition of the wide-gap shell layer [30]. This provides control over
the coupling of the emission and the increase in the quantum efficiency due to the resonant
properties of the NW acting as an optical cavity.

Gallium phosphide (GaP) is a mature semiconductor material. In terms of its optical
properties, GaP is low loss over almost the entire visible and IR ranges, and it is optically
dense, making it priceless for the fabrication of waveguides and cavities [31,32]. Despite
being an indirect bandgap material, GaP can be alloyed with other isovalent elements, such
as, N, Al, In etc., making it a direct bandgap. This chemical variation provides opportunities
for the fabrication of active photonic elements based on GaP NWs.

Several groups previously addressed the optical properties of heterostructured NWs.
Many efforts have been put into the optimization of the structural, chemical and geomet-
rical parameters of the nano-sized insertions for precise control over the emission [33,34].
Other groups demonstrated the crucial influence of the structure geometry on light cou-
pling and waveguiding [35,36], provoking the excitation of specific photonic modes and
corresponding near-field distributions and unveiling new pathways for device applications.
Strongly anisotropic scattering phenomena in semiconductor nanowires were also previ-
ously reported [37,38]. Few works reported control over the emission pattern of the NW
arrays [39,40], single QD/NW emitters [41,42] and hybrid metal NW structures [43], motivat-
ing the development of two-dimensional metasurface lenses and other photonic solutions.

To date, investigations of the optical response in heterostructured NWs mostly con-
sidered emission from the nanostructure arrays, its efficiency and far-field patterns gov-
erned by the interest in the development of large-scale light-emitting devices. However,
considering heterostructured NW as a nanophotonic element, both spectral and spatial
characteristics of the generated emission should be analyzed. Here, we report on the study
of the micro-photoluminescence (micro-PL) response generated in multiple nano-sized
GaPAs insertions in a GaP NW and discuss its anisotropic nature and spectral peculiarities
occurring due to the structure geometry. The study is further generalized with the model-
ing of the insertion emission in IR, which can be obtained with the tailoring of the alloy
chemical composition.

2. Materials and Methods
2.1. Nanowire Synthesis

Axial GaP/GaPAs NW heterostructures were grown via the self-catalyzed vapor–
liquid–solid (VLS) mechanism on Si (111) substrates using solid-source molecular beam
epitaxy (MBE) Veeco GEN-III system. Si substrates were treated with the Shiraki clean-
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ing procedure [44] and finished with wet chemical oxidation in a base piranha solution
(ammonia-peroxide water mixture with a ratio of 1:1:3) [45]. Prior to the NW formation, ox-
idized Si (111) substrates were thermally annealed in MBE chamber at 760 ◦C for 30 min in
order to promote the formation of pinholes in the surface oxide layer, which serve as Ga cat-
alytic droplet nucleation centers. The detailed procedure and study on the self-catalytic GaP
NW formation on Si (111) are presented in [46]. The group-III and -V element fluxes were
controlled with Bayard–Alpert vacuum gauge, measuring their beam equivalent pressures.
P2 and As4 beam species were produced by valved cracker cells. As the Bayard–Alpert
gauge sensitivity factors differ for P2 and As4 molecular species, we determined the P/As
ratio in terms of stoichiometric group-V flux values found via observation of the transition
between group-V and group-III limited growth regimes for GaAs and GaP (001) epilayers.

Substrate temperature and Ga cell beam equivalent pressure (BEP) were kept constant
during the NW growth and were set at 610 ◦C and 8 × 10−8 Torr (GaP planar growth rate of
3.17 nm/min = 190 nm/h), respectively. Axial NW heterostructure formation was initiated
by simultaneous opening of Ga and P2 shutters at a P2/Ga flux ratio twice the stoichiometric
value (V/III BEP ratio set to 12), followed by GaP stem growth with an approximate height
of 2 µm for 3000 s with a mean axial growth rate of 0.67 nm/s. Relatively low V/III ratio
and growth temperature were chosen to increase the NW diameter to support resonant
optical modes in visible spectral range [46]. In situ analysis of the NW crystal structure
by the reflection high-energy electron diffraction (RHEED) demonstrated that NWs grow
vertically along the Si [111] direction, preserving GaP bulk zinc-blende (ZB) structure. The
obtained axial NW heterostructure consisted of 7 identically grown GaPAs nanodiscs (NDs)
with an expected thickness of 50 (t = 50 s, mean axial growth rate of 1 nm/s) divided by
6 GaP segments with an expected length of 600 nm (t = 750 s, mean axial growth rate of
0.8 nm/s). NW heterostructure formation was ended by the growth of a GaP segment with
a length of 2 µm (for the NW schematics, see Figure 1a).
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by white arrows (c). 

Figure 1. (a) Synthesized NW heterostructure schematics (not to scale) with estimated mean
dimensions A (stem) = 2 µm, B (top GaP segment) = 2 µm, I (GaPAs insertion) = 50 nm,
S (GaP segment) = 600 nm, H (NW length) = 7.8 µm. SEM images of the heterostructured GaPAs/GaP
NW array morphology: cross-section view on a cleaved edge (b) and close-up NW view with GaPAs
NDs marked by white arrows (c).

The composition of GaPAs NDs was targeted to obtain PL emission in the visible-
light spectral range according to the procedure described in [47]. The direct bandgap
GaP0.5As0.5 alloy NDs were obtained by tuning the As4-to-P2 flux ratio (in terms of their
stoichiometric values for GaAs and GaP growth) to 2, given the cumulative group-V-to-Ga
flux ratio of 3. Here, As/Ga, P/Ga and (As+P)/Ga BEP ratios were set to 24, 6 and 30,
respectively. Group-V fluxes were interrupted prior to each ND formation by closing both
shutters for 10 s to avoid growth during the adjustment of the As and P needle valves and
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flux stabilization. During the growth of GaP segment, the arsenic cracking source needle
valve and shutter were kept closed. NW formation was interrupted by simultaneously
closing both Ga and P2 shutters and shutting off the sample heater power, preventing the
Ga catalyst droplets from consumption.

2.2. Microscopy and Spectroscopy

The as-grown vertical NWs were imaged by means of scanning electron microscopy
(SEM, Zeiss Supra 25, Carl Zeiss AG, Oberkochen, Germany). Individual NWs planarized
on an auxiliary wafer were characterized with the use of micro-PL technique. The mea-
surements were carried out on LabRAM HR 800 confocal microscope (Horiba Jobin Yvon
GmbH, Bensheim, Germany) equipped with a 100× magnification objective (N.A. = 0.9),
camera and a stage with piezoelectric controllers for precise positioning of the laser beam
and mapping of the optical response. The excitation source was a diode-pumped solid-state
532 nm CW laser (Torus Technology, Telford, England). The optical system focuses the
excitation into the Gaussian beam with a diameter of about 1 µm and FWHM of about
300 nm, enabling local excitation of an NW with a high spatial resolution [48]. The optical
signal is collected with the same objective.

2.3. Modeling

Numerical simulation of the NW optical properties was performed using finite element
method (FEM) on commercially available COMSOL Multiphysics software. The simulation
was memory intensive due to a large domain size, so the simulation was carried out on a
256 Gb RAM, 10 core server. The adaptive tetrahedral 1 nm (inside the NDs) and 10–100 nm
(surrounding of the model) meshes were used to obtain better resolution near the emitters
and in the surrounding media. The adaptive meshing reduces the mesh size by one order
in comparison to a homogeneous fine mesh, thus speeding up the simulation. Due to the
limited capacity of the server, the model considers 4 µm long and 140 nm thick GaP NW
with six 50 nm alloyed ND insertions separated by 600 nm GaP segments. The model
considers the ITO thin film on the substrate.

3. Results
3.1. NW Morphology Study and Preparation for PL Characterization

Representative SEM images of the heterostructured GaPAs/GaP NW array morphol-
ogy are shown in Figure 1b. The resulting epitaxial array demonstrates a mean NW height
of 7.8 ± 0.8 µm and an NW diameter of 150 ± 20 nm and 160 ± 55 nm at their top and
bottom parts, respectively. It should be noted that on the close-up SEM image presented
in Figure 1c, a contrast between the GaP segments and GaPAs NDs can be distinguished,
which indicates the formation of axial heterojunctions in the grown NW.

For the micro-PL characterization, the NWs were separated from the growth substrate
to an auxiliary wafer. To do this, a piece of the as-grown sample was subjected to 1 min
sonication in isopropanol (IPA). Then, the NW suspension was dropped on a quartz
glass wafer (160 µm thick), providing sufficient optical contrast and allowing for a better
coupling and enhancement of the NW cavity Q factor. For the consequent evaluation of the
NW longitudinal and lateral dimensions, the glass wafer was prepared for SEM imaging.
The preparation process included (1) the covering of the glass substrate with ITO for the
facilitated charge drain and (2) the deposition of numbered golden marks (25 nm thick)
over a thin Cr adhesion layer with the use of laser lithography and thermal evaporation
(Figure 2a).

The fabricated marked substrate allowed for the measurement of the NW dimensions
with SEM and the consequent optical characterization of the specific NW with the help
of the coordinate grid providing the exact NW location. An SEM image of a single NW
is presented in Figure 2b. According to the analysis of the SEM image in Figure 2b, the
NW length (8.4 ± 0.05 µm) and diameter (160 ± 10 nm) were evaluated. The gallium
droplet (marked in yellow) diameter can be observed to be 190 ± 10 nm. All of the seven
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GaPxAs1−x direct gap inserts (marked in red) are contrasted on the SEM images and are
found to be 50 nm thick and separated from each other with 600 nm long GaP segments.
The first (from the NW bottom) and the last NDs are located 1.9 microns far from the edge
and 2.55 microns far from the Ga droplet, respectively. It is important to note that despite
the self-catalyzed growth mechanism, where droplets could either inflate or deflate due to
a mismatch between the incoming and crystallization Ga species fluxes [46], the studied
NW is not tapered; its diameter is stable along the entire length, making the interpretation
of the results more straightforward.
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3.2. Micro-PL Study

To study the emission features of the heterostructured NW upon optical pumping
in detail, we mapped at room temperature (RT) the PL signal of the NW on the glass
substrate imaged in Figure 2b. To provide high resolution of the mapping, the scan step
was set at 40 nm in both directions. The obtained gray scale map (Figure 3a) of the PL
signal integrated over a 500–800 nm range is in agreement with the NW structure shown
in the SEM images. On the map, nine hot spots can be clearly distinguished: two at the
edges and the other seven perfectly coinciding with the position of the direct-gap GaPAs
inserts. The corresponding spectra at the hot spots were then analyzed. The PL responses
corresponding to the NDs are shown in Figure 3b.

The emergence of the PL emission at the ND site means that despite the small NW
cross-section and the propagation of the excitation perpendicular to the NW axis, the
focused light can excite an individual ND. All of the observed spectra are centered between
640 and 650 nm with an emission band from 600 to 700 nm. The emission centerline
corresponds to the arsenic content of about x = 0.6 according to Vegard’s law [49], which is
close to the expected P:As ratio of 1. The PL intensity varies from one ND to another, with
the most intense signal observed at the disc nearest to the NW edge (first ND).

Figure 3c demonstrates the PL spectra collected in the vicinity of the NW top (yellow
curve) and bottom (violet curve) edge facets. Both spectra are found to be strongly modu-
lated, unlike the emission collected in the vicinity of the NDs. The modulation occurs when
the Fabry–Perot (F-P) resonance condition is met [50,51]. The NW edges, first, correspond
to the field maxima for the standing waves, fulfilling the F-P condition, and, second, act as
efficient scattering cites, which is why we observe a high-intensity modulated signal here.
However, NDs are weak scatterers due to a low GaP/GaPAs optical contrast and small ND
thickness, leading to the absence of the ND response modulation. A sufficient part of the
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ND radiation is directed into the cavity volume and is modulated, while a smaller part
emerges from the side surface unmodulated, according to the obtained spectra in Figure 3b.

Despite having the same spectral structure, the response collected near the Ga droplet
is found to be one order less intense compared to the signal at the opposite NW edge (see
Figure 3c). This effect is further discussed.
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3.3. Modeling Results

For a deeper understanding of the observed emission features, we performed numeri-
cal modeling. In the experiment, we excited the NDs with a 532 nm laser, followed by the
emission centered near 650 nm. To understand this coupled phenomenon, we performed
the simulation and untangled excitation and the ND emission.

Thus, two different models were studied. The first one is the model of the excitation
part of the experiment. The idea of this modeling is to show how the field manifests itself
in the NW with ND insertions. Therefore, we excited the NW with a 532 nm plane wave
directed toward the substrate plane with polarization parallel to the NW main axis. The
obtained field pattern is shown in Figure 4a. Two important features are found in the
pattern. The image shows that the field is not homogeneous but modulated along the wire
due to the occurrence of Fabry–Perot resonances in the NW, which are more prominent
near the edges. The second feature is the field localization on the droplet edge due to the
reflection, as well as plasmon generation. Since the polarization of the field is parallel to the
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wire axis, i.e., perpendicular to the metal–dielectric interface, we observe the generation of
a localized surface plasmon. This feature in the droplet–NW system is discussed in our
previous work [43].
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Figure 4. (a) Distribution of the electric field in a 4 µm NW with 6 GaPAs insertions (highlighted
with a dashed line) excited by 532 nm plane wave travelling along the Z axis and polarized along
the X axis. The map shows the field distribution along the center plane of the NW parallel to the
substrate surface (XY). The plot is normalized (E/E0), where E is the field at a given point and E0 is
the applied field. Due to the small size of the insertions and low GaP-GaPAs optical contrast, the
field distribution is weakly distorted, and NDs are not distinguishable on the map; (b–e) 4 µm long
NW with 6 GaPAs NDs separated by 600 nm GaP segments; each ND is simulated with 50 nm dipole,
polarized along the X axis emitting at 650 (b), 860 (c), 1060 (d) and 1300 nm (e). The plot is log scale
of the normalized field (E/E0) to demonstrate faint coupling of the emitters.

The second simulation is the emission model. In this model, we studied the emission
from six insertions of 50 nm thick NDs. This was carried out by exciting the line dipole
(50 nm) inside the insertion and observing the field pattern for a 650 nm wavelength
corresponding to the GaPAs ND emission band centerline observed experimentally. The
calculated field pattern is presented in Figure 4b. The dipoles are orientated along the X
axis, and the emission pattern is expected in the Y direction. However, due to the high
refractive index in comparison to the surroundings, the NW directs this emission toward
the NW edges.

As was discussed in the Introduction, the VLS growth mechanism provides extensive
opportunities for bandgap engineering. As such, the use of In allowed us to increase
the emission wavelength up to the IR region via the introduction of InGaP and InGaAs
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solutions. Moreover, additional control of the near-field emission can be obtained with the
use of Ga(Al)As alloys. To provide insight into the perspectives of the heterostructured
NWs for IR on-chip circuits, we numerically simulated the near-field distribution with
insertions emitting at 860, 1060 and 1300 nm. The corresponding maps are presented
in Figure 4c–e. The model geometry and dipole orientation are similar to those of the
model above.

4. Discussion

The obtained experimental results together with the numerical modeling demonstrate
that an axially heterostructured NW under an optical excitation behaves as a light source
with peculiar spectral and spatial characteristics. Here, we discuss the observed features.

According to the experimental results depicted in Figure 3a,b, the PL intensity is non-
uniform throughout the NDs despite their similar geometry. This effect can be explained
by two factors. The first factor is the size of the laser spot (~1 µm), which can lead to partial
coupling of excitation at the edge facet when the laser spot is centered at the ND placed in
the vicinity of the edge, followed by subsequent more efficient ND excitation. However,
the results of the excitation modeling presented in Figure 4a demonstrate the non-uniform
field pattern inside the NW governed by its resonant property. Thus, the location of the ND
affects the coupling of the excitation, which can undergo either constructive or destructive
interference, specific to the ND location and the size and shape of the NW. The difference
in the NDs’ emission spectra is unlikely related to their chemical composition variation.
The NW is not tapered, meaning preservation of the catalyst particle size during growth,
which leads to uniformity of the efficient growth fluxes, so the disc’s chemical composition
is expected to be similar. Due to the axial polarization of the dipoles (corresponding to the
polarization of the excitation), the dipole–dipole coupling of emitters can be enhanced by
the choice of the distance between them.

According to Figure 3c, the PL response collected at the edge without the Ga droplet
turned out to be sufficiently higher than the emission at the droplet site. The demonstrated
phenomenon can be the subject of the absorption of the PL signal by the plasmonic droplet.
This effect, however, should lead to the decay of the resonant properties providing a weak
F-P modulation of the PL signal. Moreover, as was demonstrated previously [43], the Ga
droplet acts more as an antenna guiding the wave into the NW rather than an absorber. The
simulation results presented in Figure 4 demonstrate that the Ga nanoparticle enhances the
reflective behavior of the facet with the corresponding increase in the field collected at the
opposite edge. Moreover, it seems that the Ga droplet is an inefficient scatterer, while the
intensity of the outcoupled emission is demonstrated to be higher at the edge without the
droplet according to Figure 4b. The modeling also demonstrates the effect of the edge on
the emission coupling—the closer the ND to the edge, the more efficient the coupling in
comparison to that in the center.

A comparison of the PL spectra in Figure 3 demonstrates a spectral shift of about 20
nm between the PL peak positions of the emission collected at the NW edge and NDs, with
the first one displaying a red shift. To explain this phenomenon, it is necessary to consider
that the PL intensity is proportional to the concentration of the charge carriers. The optically
pumped semiconductor is in a strong nonequilibrium; therefore, the concept of quasi-Fermi
levels can be applied. Let us consider the concentration of electrons. By definition, this
concentration (ne) in the conduction band can be calculated with the following expression:

ne =

+∞∫
EC

DOS(E − EC)fe(E)dE (1)

where EC—conduction band bottom level, and fe(E)—Fermi–Dirac function depending on
the quasi-Fermi level. Therefore, the electron concentration is, in fact, the area under the
curve, which is the product of the density of states (DOS) and the Fermi–Dirac distribution
function containing the quasi-Fermi level for electrons. In our experiment, the excitation
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and collection are with the same objective, and when the laser beam is directed toward an
ND, the excitation in the ND is much higher compared to the case where it is located at
the NW edge. Consequently, in the first case, the nonequilibrium is stronger and the quasi-
Fermi level of electrons is higher than that in the second case. As such, the Fermi–Dirac
distribution function shifts toward the higher energies, and the peak of its overlap with the
DOS also shifts toward the higher energies (see Figure 5). The position of this peak and the
entire curve of the overlap function govern the PL spectrum of the interband transitions.
As a result, a weaker excitation occurs when the beam is focused at the NW edge, leading
to its red shift.
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Figure 4c–e show the near-field pattern for the insertions emitting in near IR. GaP is a
low-loss material with the near-zero imaginary part of the refractive index. However, for
the provided wavelengths, the real part of the refractive index decreases from 3.4 (650 nm)
to 3.1 (1300 nm) [52]. This affects the directivity of the NW: as the wavelength increases,
the light coupling in the NW reduces with the corresponding fall of the emission directed
toward the edges. Thus, both the outcoupling by the left edge and the reflection by the
other decrease. This effect is clearly seen with the diffused light in the surrounding medium,
where intensity rises with the increasing wavelengths.

However, the coupling efficiency of the NDs increases with the wavelength, followed
by the densification of the field intensity between the NDs inside the NW. This feature
can enhance the synergy of the collective resonant emission at even longer wavelengths.
Even though the directivity decays with the wavelength, the observed effect corresponds
to the loss of the waveguiding property. Thus, adjustment of the NW diameter can be
used to tailor the emission pattern, paving the way to applications such as broad-band
waveguide resonators.

The results of the study demonstrate that the heterostructured GaP/GaPAs NW acts
as a cavity with emitters in the form of ND, representing a system with spectrally and
spatially non-uniform emission upon optical pumping and characterized by the following:

- The emission of an individual ND is anisotropic and is coupled inside the NW, while
part of it is emitted outside the NW;

- The emission outside the NW in the vicinity of an ND is due to the PL of the ND and
not due to the scattering of the light propagating in the cavity, so this emission should
be governed by the bandgap of the ND and can be controlled via the variation of its
chemical composition;
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- The non-uniform distribution of the excitation light along the NW governed by the
wavelength and NW geometry affects the PL intensity of each emitter;

- Outcoupling is the most efficient at the NW edge without the catalyst droplet;
- The emission outcoupled at the NW edge is modulated due to the NW geometry

promoting its resonant optical properties.

An artistic impression of the discussed phenomena is presented in Figure 6.
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The obtained results shed light on new pathways for advanced photonic applications.
For example, the spectrum of the PL emission outcoupled at the edge of an NW, schemati-
cally shown in Figure 6, can be controlled via the variation of the excitation wavelength. To
obtain the spectrally variable emitter based on this approach, NDs with different bandgaps
should be precisely positioned inside an NW so that the shift in the excitation wavelength
leads to a spatial shift of the NW mode maxima, followed by the switch of an excited
emitter. That is, by changing the input signal, photoluminescence can be initiated in a
specific ND. Modulation of the PL response due to the geometry of an NW is considered
to be another key within the approach to controlling the emission spectrum. We should
also note that the near field in the vicinity of each ND is affected by the change in the
excitation wavelength. The discussed effects can be used, for example, in the development
of optically controlled variable emitters and data processing systems. Utilization of the
plasmonic effects provided by a Ga catalyst particle can also widen the possibilities for
the implementation of heterostructured NWs in photonic devices [53,54]. A proper optical
scheme will allow for the use of the discussed nanostructure as an element of a logic circuit
or an analog-to-digital photonic converter.

5. Conclusions

To conclude, in this work, we experimentally and theoretically study the spectral and
spatial features of the PL excited in the GaPAs insertions in a GaP nanowire. The results
demonstrate several interesting phenomena governed by the geometry of the studied
system. The NDs demonstrate anisotropic emission, which can be outcoupled both in
the vicinity of the ND and the NW edge. Due to the resonant properties of the NW, the
emission outcoupled at the NW edge exhibits strong modulation, while the emission at
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the ND site is found to be unmodulated and less intense. Another interesting feature of
the system is the role of the Ga droplet, which directs the emission inside the NW toward
the opposite edge. Additional modeling of the NW with IR emitters demonstrates the
effects of the field pattern change leading to the weaker directivity of the emission along
the NW axis and a more efficient coupling of the emitters, providing several opportunities
for the resonant emission with multiple insertions or quantum dots in an NW cavity. The
investigated results are discussed in terms of possible applications in nanophotonics.
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