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Abstract: Study of the strongly correlated states in van der Waals heterostructures is one of the central
topics in modern condensed matter physics. Among these, the rhombohedral trilayer graphene
(RTG) occupies a prominent place since it hosts a variety of interaction-driven phases, with the
metallic ones yielding exotic superconducting orders upon doping. Motivated by these experimental
findings, we show within the framework of the low-energy Dirac theory that the optical conductivity
can distinguish different candidates for a paramagnetic metallic ground state in this system. In
particular, this observable shows a single peak in the fully gapped valence-bond state. On the
other hand, the bond-current state features two pronounced peaks in the optical conductivity as the
probing frequency increases. Finally, the rotational symmetry breaking charge-density wave exhibits
a minimal conductivity with the value independent of the amplitude of the order parameter, which
corresponds precisely to the splitting of the two cubic nodal points at the two valleys into two triplets
of the band touching points featuring linearly dispersing quasiparticles. These features represent
the smoking gun signatures of different candidate order parameters for the paramagnetic metallic
ground state, which should motivate further experimental studies of the RTG.

Keywords: trilayer graphene; optical conductivity; electron-electron interactions

1. Introduction

Quasi-two-dimensional graphene-based van der Waals (vdW) heterostructures, such
as bilayer and trilayer graphene, have recently emerged as a groundbreaking territory
for the discovery of new electronic states of quantum matter driven by the electron inter-
actions [1–12]. It is rather remarkable that by externally tuning the twist angle, doping,
and/or the magnetic field, a new landscape of exotic insulating, metallic and superconduct-
ing states has been unearthed in these systems. Particularly prominent in this respect is the
interplay between the metallic and the superconducting phases that gives rise to very rich
phase diagrams (for a recent review, see Ref. [13]). However, their theoretical understand-
ing is often hampered by the difficulty in distinguishing possible candidate ground states
in these systems, as, for instance, when considering the emergence of superconductivity
from a parent metallic state.

Rhombohedral trilayer graphene (RTG) has recently emerged as a rather prominent
example in this respect, where superconducting instabilities are in proximity to metallic
ground states in different doping regimes [11,12], with a few theoretical scenarios proposed
to explain the rich phenomenology [14–21]. Most interestingly, very little is known about
an exotic metal in the proximity of the experimentally identified SC1 order [12], except
that it exhibits paramagnetic nature (see Extended Figure 7 in Ref. [12] and the discussion
therein). In fact, a few candidates for such a state that may be driven by electron interactions
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have been identified, each of them breaking different microscopic symmetries: the valence-
bond order (VBO), bond-current order (BCO), and smectic charge-density wave (sCDW)
orders [16], respectively.

The optical conductivity is a well established tool in studying correlated electron materials,
which is directly related to the excitation spectrum [22]. In particular, it has been studied in
various vdW materials both theoretically [23–28] and experimentally [29,30]. In this work, we
focus on the collisionless or high-frequency regime of the optical conductivity, pertaining to
the frequencies h̄ω � kBT, since in this regime, this observable shows a universal scaling
that depends only on the form of the dispersion of the low-energy quasiparticles, the dimen-
sionality of the system, and the scaling dimension of the electron–electron interactions [31].
Importantly, the scaling dimension of the optical conductivity in a d-dimensional system is
equal to d− 2 in units of momentum. Therefore, exactly in d = 2, at finite frequency and
temperature, with other energy scales set to zero, σ(ω, T) = (e2/h) f (h̄ω/kBT), with f (x)
as a universal dimensionless scaling function. In the limit x → ∞, this function tends to a
constant, yielding a universal amplitude for the collisionless optical conductivity.

Motivated by these developments, we show that the collisionless optical conductivity
can distinguish different candidate paramagnetic metallic ground states in RTG. In particu-
lar, this observable shows a single peak in the fully gapped valence-bond state, as displayed
in Figure 1a. On the other hand, the bond-current state features two pronounced peaks in
the optical conductivity as the probing frequency increases, see Figure 1b. This behavior
can be directly related to the Dirac nature of the valence-bond and the bond-current order
parameters obeying, respectively, anticommutation and commutation relations with the
single-particle noninteracting Hamiltonian given by Equation (1), and with the behavior of
the density of states (DOS); see Figure 2a,b. Finally, the sCDW state is characterized by a
minimal conductivity, which is independent of the amplitude of the sCDW order parameter
[Figure 1c], and it corresponds precisely to the splitting of the two cubic nodal points at the
two valleys into two triplets of linearly dispersing band touching points (Figure 3). This
behavior is also consistent with the form of the DOS, particularly at low energies, display-
ing the linear scaling with the energy [Figure 2c]. As such, these characteristic features
in the optical conductivity represent the smoking gun signatures of different candidate
order parameters for the paramagnetic metallic ground state of the RTG. These, in turn, can
serve as a starting point for the study of the superconductivity in this system and should
motivate further its experimental study.
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Figure 1. Real part of the optical conductivity (in units of e2/h̄) in the collisionless regime for:
(a) the valence-bond order (VBO); (b) the bond-current order (BCO); (c) smectic charge-density wave
(sCDW), respectively, given by Equations (6), (8), and (13), at the neutrality point µ = 0 and at
T = 0. u and ∆ are given in units of the bandwidth scale t, see also the discussion after Equation (1).
In panels (a,b), the green dashed line corresponds to the universal optical conductivity for the
non-interacting spinless RTG in the collisionless regime, σ0 = 3/8.
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Figure 2. The density of states (DOS) in the candidate paramagnetic states. (a) valence-bond order
(VBO); (b) bond-current order (BCO); (c) smectic charge-density wave (sCDW). The DOS in the
three phases is given in Equations (7), (11), and (S69) in the SI. The energy (E) is in units of the
bandwidth (t), see also Figure 1. u and ∆ are given in units of t. The inset in (c) corresponds to the
DOS for the noninteracting case, where the low-energy DOS scales as |E|−1/3.

Figure 3. The band structure for the noninteracting Hamiltonian given by Equation (1) (left panel),
where the pairs of degenerate bands corresponding to the same valley are superimposed. In the
smectic charge-density wave with the order parameter Γρ0, ρ = 1, 2, the two cubic band touching
points split into six points, with the triplets featuring opposite vorticities ±π (right panel). Notice
that the smectic charge-density wave order parameter mixes the two valleys and, therefore, also
breaks the original lattice translation symmetry, besides the rotational one. The rotational symmetry
is, however, restored close to each of the new band touching points.

2. Model

We consider the effective low-energy model for the rhombohedral (ABC stacked)
trilayer graphene obtained after integrating out high-energy degrees of freedom corre-
sponding to the four gapped bands consisting of the states at the dimerized sites (one in the
bottom (A), two in the middle (B), and one in the top (C) layer) [32–34]. Taking into account
the layer (or equivalently sublattice) and valley degrees of freedom, the single-particle
Hamiltonian for noninteracting electrons reads

H0 = α[ f1(k)Γ31 + f2(k)Γ02] + uΓ03 − µΓ00 (1)

where α = t3
0a3/t⊥, a ' 0.25 nm is the lattice spacing within the single graphene layer,

while t0 ' 2.5 eV and t⊥ ' 0.5 eV are the intralayer and the interlayer nearest-neighbor
hoppings, respectively [33]. The corresponding bandwidth is given by the cutoff scale for
the low-energy model in Equation (1), t∼t⊥∼0.5 eV. The form factors f1(k) = kx(k2

x − 3k2
y),

f2(k) = −ky(k2
y − 3k2

x), respectively, transform under A1u and A2u representations of
the D3d point group of the RTG. Momentum k is measured from the respective band-
touching points (valleys). Electron (hole) doping corresponds to µ > 0 (µ < 0), and we
set h̄ = kB = e = 1 hereafter. The four-dimensional matrices are Γµν = τµσν, where {τµ}
and {σν} are the sets of Pauli matrices that act on the valley and sublattice (layer) indices,
respectively. Since we here consider only paramagnetic metallic states, we suppress the
spin indices, see also Section S1 of the Supplemental Information (SI). Taking the possible
patterns of symmetry breaking and the low-energy degrees of freedom, three candidates
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emerge in this respect [16]. First of all, the VBO, which fully gaps the system out and
breaks the sublattice symmetry. Second, the BCO breaks, besides the sublattice symmetry,
as well as the time-reversal. Finally, the sCDW breaks both the U(1) rotational symmetry
about the z−axis, generated by the matrix Γ33, down to the discrete C3 subgroup, and
the lattice-translational symmetry, generated by the matrix Γ30. These three orders are
represented by the following matrices (ρ = 1, 2):

Γρ1 (VBO), Γρ2 (BCO), (Γρ0, Γρ3) (sCDW). (2)

The corresponding irreducible representations of the D3 group are A1 and A2, for the
VBO and BCO, respectively, while the sCDW transforms under the two-dimensional E
representation. Notice that we now reduce the symmetry down to D3 subgroup of the full
D3d point group of the noninteracting low-energy Hamiltonian in Equation (1) because
we allow for the backscattering processes that mix the valleys, and in turn may yield the
translational-symmetry breaking orders, such as the sCDW.

3. Optical Conductivity

To distinguish different candidate paramagnetic metallic ground states in RTG, we
now compute the optical conductivity. To this end, we use the Kubo formula for the linear
optical conductivity [35]

σij(Ω) = lim
iΩn→Ω+i0+

iΠij(iΩn)

Ω
, (3)

where the polarization tensor reads

Πij(iΩn) =− T ∑
n

∫ d2k
(2π)2 Tr[v̂iG(iωn + iΩn, k)

×v̂jG(iωn, k)
]
. (4)

Here, the velocity operator v̂i = ∂H/∂ki, G(iωn, k) = [iωn − H]−1 is the Matsubara
Green’s function, ωn = (2n + 1)πT are the fermionic Matsubara frequencies, and the ana-
lytical continuation onto real frequencies is performed, iΩn → Ω + i0+, see also Section S2
of the SI for details.

4. Valence-Bond Order

We start by computing the optical conductivity for the simplest case, the VBO. The
Hamiltonian is given by H = H0 +∆1Γ11 +∆2Γ21. Notice that since time-reversal symmetry
(TRS) is preserved, the xy component of the polarization tensor vanishes. In addition, since
rotational symmetry is conserved, Πxx = Πyy, so we need to compute only one of the
polarization tensor components. We then find, with the details shown in the SI, Section S3.A,

Πxx(Ω) = 72α2
∫ d2k

(2π)2
k4(u2 + ∆2 + α2k4k2

x
)

E(k)[4E2(k) + Ω2
n]

×Θ(Ω− 2
√

u2 + ∆2)δnF(E), (5)

where E(k) =
√

α2k6 + u2 + ∆2 is the quasiparticle dispersion, nF(z) =
(

ez/T + 1
)−1

is
the Fermi–Dirac distribution, and we defined δnF(E) = nF(−E− µ)− nF(E− µ). After
performing the analytic continuation to real frequency, iΩn → Ω + i0+, we obtain the real
part for the optical conductivity,

Reσxx(Ω) =− Im Πxx(Ω)

Ω

= σ0

(
Ω2 + 4(u2 + ∆2)

)
Ω2 δnF(|Ω|/2)
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×Θ(Ω− 2
√

u2 + ∆2), (6)

where σ0 = 3/8 is the universal optical conductivity for the noninteracting spinless RTG in
the collisionless regime (in units e2/h̄), and we defined δnF(E) = nF(−E− µ)− nF(E− µ).
The technical details are presented in Section S3.A of the SI.

In Figure 1a, we can see a plot for the optical conductivity at zero temperature and at
the neutrality point µ = 0. Notice that the optical conductivity is zero until Ω ≥ 2

√
u2 + ∆2,

where there is a maximum. This is expected, since 2
√

u2 + ∆2 is the gap between the
conducting and valence bands. The asymptotic value is given by Reeσxx(Ω)→ σ0 when
Ω�

√
u2 + ∆2.

To further elucidate the origin of the peaks in the optical conductivity in the VBO, we
analyze the corresponding DOS

NVBO(E) =
|E|(E2 − u2 − ∆2)−

2
3

6πα2/3 Θ(|E| −
√

u2 + ∆2). (7)

A remarkable feature of this expression is that the DOS develops a pole at the minimum
of the conduction band E =

√
u2 + ∆2, and hence it grows as compared to the gapless case

u = ∆ = 0. This effect manifests in an enhancement of the optical conductivity with the
gap as compared to the universal value σ0 for the gapless case, as directly follows from
Equation (6).

5. Bond-Current Order

We now follow the same procedure for the BCO case, where the Hamiltonian is given
by H = H0 + ∆1Γ12 + ∆2Γ22. As for the VBO case, the rotation symmetry is preserved in
the BCO, so Πxx = Πyy. The real part of the optical conductivity then reads

Reeσxx(Ω) =
3

2Ω2

[
Θ(|Ω| − 2u)Θ

(
2
√

u2 + ∆2 − |Ω|
)

∑
j=1,2
F−[εj]δnF(E−(εj)) + Θ

(
|Ω| − 2

√
u2 + ∆2

)
×
{

∑
s=±
Gs[ε3]δnF(Es(ε3)) +F+[ε2]δnF(E+(ε2))

}]
. (8)

Here, the functions F±(ε) and G±(ε) are defined by Equation (S45) in the SI, together
with the dispersions

E±(ε) =
∣∣∣√ε2 − u2 ± ∆

∣∣∣, (9)

and the frequency-dependent coefficients

ε1,2 =

√√√√u2 +

(
∆±

√
Ω2

4
− u2

)2

,

ε3 =

√
Ω2

4
+

u2∆2

∆2 −Ω2/4
. (10)

The optical conductivity is presented in Figure 1b, and it features two peaks, which
represent hallmarks of this state. It is worth noticing that the weight of the conductivity
peak at the lower frequency scales inversely with the amplitude of the order parameter ∆.
For the technical details, consult Section S3.B of the SI.

To further shed light on the presence of the two peaks in the optical conductivity, we
analyze the corresponding DOS, with the form given in (Section S3.B of the SI)

NBC(E) =
|E|

6πα2/3
1√

E2 − u2

[(√
E2 − u2 − ∆

)− 1
3
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× Θ(E2 − u2 − ∆2) +
(√

E2 − u2 + ∆
)− 1

3 Θ(E2 − u2)

]
(11)

where we used that in this case, the dispersion in each of the four bands is given by
E(k) = ±

√
u2 + (αk3 ± ∆)2. This form of the band structure with two valence and two

conduction bands, yielding the peaks in the DOS [Equation (11)], is therefore consistent
with the form of optical conductivity in this phase, as shown in Figure 1b. We now analyze
this observable in the remaining candidate phase for the paramagnetic metal, namely, the
sCDW phase.

6. Charge Density Wave

The smectic charge-density wave yields a peculiar structure of the dispersion as it
transforms under the two-dimensional E representation of the D3 point group, with the
vector realized in the valley space. As such, the sCDW mixes the valleys, with the bands
given by

E(k) = ±
√

u2 + α2k6 + ∆2 ± 2∆
√

u2 + α2k6 sin2 3φ, (12)

and the corresponding band structure shown in Figure 3. In fact, the sCDW splits two cubic
band touching points, with the vorticity ±3π, living in the two valleys, into two triplets of
the points with the vorticity ±π, as explicitly shown in the SI, Section S3.C1. Furthermore,
the form of the low-energy DOS, featuring the linear-E behavior, shown in Figure 2c, is
consistent with the splitting of the nodal points in the sCDW phase. See also Section S3.C2
of the SI for the technical details.

We now compute the optical conductivity in the case when one of the components of
this order parameter is nonzero, e.g., Γρ0, and for the sake of the clarity, since the term ∼u
acts as a gap, we also set u = 0. Furthermore, we take µ = 0 and T = 0, in the collisionless
limit Ω� ∆, with ∆ as the order-parameter amplitude, to obtain σij = σδij, with

Reσ(Ω) = σ0 =
3
8

, (13)

with the technical details shown in Section S3.C3 of the SI. The identical results are obtained
if instead we take Γρ3 to represent the sCDW order parameter, as expected from the
corresponding commutation relations with the noninteracting Hamiltonian in Equation (1).
In fact, the sCDW state can be thought of as a two-dimensional analogue of a correlation-
driven nematic phase in a three-dimensional multi-Weyl semimetal [36].

This behavior of the optical conductivity is consistent with the splitting of the non-
interacting band touching points with the vorticity of ±3π, into two triplets of the non-
degenerate ones with the vorticity ±π. We emphasize that the obtained form of the optical
conductivity singles out the sCDW phase as compared with the previously discussed
valence-bond and bond-current states. Finally, the obtained mean-field value of the conduc-
tivity is expected to decrease when fluctuations are taken into account due to the scattering
between quantum-critical fermionic and bosonic excitations [37,38].

7. Conclusions and Outlook

In this paper, we showed that the optical conductivity can distinguish possible para-
magnetic metallic ground states yielding a superconducting order in RTG, as shown
in Figure 1. In particular, the valence-bond and bond-current states are distinguish-
able by the number of peaks in the optical conductivity, while this observable in the
sCDW order features a minimum with a value matching the noniniteracting one at the
mean-field level, due to the splitting of the cubically dispersing nodal points at each
valley. We emphasize that we here analyze only the real part of the high-frequency op-
tical conductivity due to its universal features. On the other hand, its imaginary part
can be trivially obtained by integration over frequency via the Kramers–Kronig relation
Im σij(Ω) = −2Ωπ−1P

∫ t/h̄
0 dω Reσij(ω)/(ω2 −Ω2). However, its specific features are
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sensitive to (nonuniversal) microscopic details, such as the bandwidth, and hence, it does
not provide a direct probe of the possible interaction-driven ground states in RTG.

The approach employed for the identification of the possible interaction-driven metal-
lic ground states is quite general and can be applied to other vdW systems to distin-
guish possible correlated insulating and metallic states, as in the case of twisted bilayer
graphene [27]. The same applies to the case of Bernal bilayer graphene (without twist) and
other vdW materials, such as MoS2 and WSe2 , where an analogous analysis can also be
used to distinguish possible interaction-driven metallic ground states.

We here emphasize that our conclusions are based on the mean-field picture where the
role of the fluctuations on the conductivity has been neglected. To account for the further
corrections in the quantum-critical regime, we need to address the full quantum-critical
theory describing the quantum-critical transition, as, for instance, in case of monolayer
graphene [37], and we plan to investigate this problem in the future. Another open
avenue emerging from this work concerns the features of the interaction-driven phases
in vdW materials in the nonlinear transport [38]. Finally, our findings should stimulate
future theoretical and experimental work on the out-of-plane optical response of the vdW
materials [39], and particularly, the role of the electron–electron interactions in this respect.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12213727/s1, In the Supplementary Information we provide
additional technical details to support the results and conclusions presented in the main text of
the article. Supplementary Information contains the following sections: S1. Low-energy model for
trilayer graphene; S2. Optical conductivity in the Kubo linear-response formalism; S3. Paramagnetic
metal; S3.A. Valence bond order; S3.B. Bond current; S3.C. Smectic charge-density wave; S3.C1.
Splitting of the band touching points; S3.C2. Density of states; S3.C3. Optical conductivity.
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