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Abstract: GaN-based blue micro-light-emitting diodes (µ-LEDs) with different structures were
designed, of which the effect of quantum well (QW) structure on modulation bandwidth was
numerically explored. By using trapezoidal QWs, the quantum-confined Stark effect (QCSE) can
be reduced, leading to an enhanced electron-hole wave function overlap, thereby increasing the
recombination rate and reducing the differential carrier lifetime. In addition, the improved hole
transport also creates favorable conditions for shortening the differential carrier lifetime. Furthermore,
by comparing with traditional µ-LEDs with different thicknesses of QW, the modulation bandwidth
of µ-LEDs with trapezoidal QWs exhibits a large advantage at lower current densities of below
2 kA/cm2.

Keywords: micro-light-emitting diodes; modulation bandwidth; quantum-confined Stark effect

1. Introduction

Light-emitting diode (LED) has undergone great developments since its birth, pene-
trating every corner of our lives. Recently, great opportunities for LEDs are beginning to
emerge in visible light communications (VLC) [1,2]. However, the major factor limiting the
performance of GaN/InGaN LED-based VLC systems is the modulation bandwidth of the
LEDs, which is far from the needs of modern wireless communication systems, creating an
enormous obstacle to its application in VLC [3,4].

The modulation bandwidth of LEDs is inversely related to the Resistance–Capacitance
(RC) time constant and the carrier lifetime [5,6], and generally, the larger one plays a major
role. The pixel size of LEDs has been reported to be an important factor affecting their
inherent RC time constant [5–7]. Thus, the limitation of the RC time constant on the modu-
lation bandwidth of LEDs can be reduced by reducing the size of the LEDs [8–10]. Previous
studies have found that the modulation speed of LEDs can be increased by reducing the
thickness of the quantum barrier (QB), due to the enhancement of the recombination rate
caused by the amelioration of the carrier distribution [11]. Carrier lifetime is also a key
factor of the frequency response performance and usually decreases with increasing current
density [12,13]. Numerous studies have shown that high current density is the cornerstone
for supporting high modulation speed [14–16]. With this background, excellent thermal
performance, the negligible RC time constant [8,12], and high operating current density
make micro-light-emitting diodes (µ-LEDs) one of the most attractive candidates for high-
speed VLC applications [17–21]. However, a disadvantage in polar GaN/InGaN-based
µ-LEDs is the quantum-confined Stark effect (QCSE), in which the polarization electric
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field separates the wave functions of electrons and holes, leading to a reduction in the
recombination rate and an increase in carrier lifetime [22–24]. Besides, high operating
current densities often outweigh the benefits, as the resulting efficiency droop, so it makes
sense to achieve higher modulation bandwidths at lower current densities [25]. Compared
with conventional µ-LEDs grown on the c-plane, semi-polar and non-polar µ-LEDs exhibit
weaker QCSE, higher overlaps of electron-hole wave functions, and shorter carrier lifetimes,
attracting more and more research interest in recent years [9,16,21,25,26].

Through the great efforts of researchers, the modulation bandwidth of µ-LEDs mea-
sured in the laboratory has been significantly improved [8,27–29]. However, most studies
focused on the improvement of modulation bandwidth by adopting new materials and
new LED structures, but the mechanisms have not been well analyzed, which is crucial
to developing µ-LEDs with high modulation bandwidth. It is vital to study the influence
of the effects of quantum well (QW) structures on the modulation bandwidth and to clar-
ify the underlying physical mechanism, which will provide a valuable guide for µ-LEDs
fabrication in future VLC applications.

Simulation provides a device design method without relying on the epitaxial process,
saving development costs. In this article, APSYS (an acronym for Advanced Physical
Models of Semiconductor Devices) has been used to study the modulation bandwidth
of GaN-based blue µ-LEDs with different QW structures for VLC applications [30]. In
addition, the effect of band structure has been taken into account, and a series of diagrams
have been constructed to illustrate the physical mechanisms involved.

2. Theoretical Model and Device Structure

The carrier recombination rate (R) is defined as the number of carriers recombined
per unit time and unit volume. Based on the ABC efficiency model [31–33], the R is mainly
composed of Shockley–Read–Hall (SRH) recombination, radiative recombination, and
Auger recombination, which are proportional to the first, second, and third power of the
carrier concentration, respectively [34–36]. The carrier generation rate (G) is defined as the
number of carriers generated per unit time and unit volume. Under equilibrium conditions,
the carrier generation rate in the active region of a µ-LED is approximately equal to the
recombination rate in it, expressed by the following formula [35,37]:

G = R = An + Bnp + C
(

n2 p + p2n
)

(1)

where A, B, and C represent SRH recombination coefficient, radiative recombination coeffi-
cient, and Auger recombination coefficient, respectively, n represents electron concentration,
and p represents hole concentration.

Under high current density, the excess carriers dominate, while the excess electron con-
centration balances with the excess hole concentration [24,38–41]. When a high-frequency
small-amplitude signal is injected at high current density, the increase in electron concen-
tration is equal to that of hole concentration, and the increase in carrier concentration is
much smaller than the carrier concentration at direct current (DC) bias. Therefore, the
relationship between the increment of the carrier generation rate (∆G) and the increment of
the carrier concentration is (∆n) as follows:

∆G = A(n + ∆n) + B(n + ∆n)(p + ∆n)
+C

(
(n + ∆n)2(p + ∆n) + (n + ∆n)(p + ∆n)2

)
−
(

An + Bnp + C
(
n2 p + np2))

≈ A∆n + B(n + p)∆n + C
(
n2 + p2 + 4np

)
∆n

(2)

The differential carrier lifetime (τ) can be obtained from the derivative of the car-
rier generation rate with respect to the carrier concentration, expressed by the following
formula [12,42]:

1
τ
=

∆G
∆n

= A + B(n + p) + C
(

n2 + p2 + 4np
)

(3)
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In the frequency response of µ-LEDs, the −3 dB modulation bandwidth (f−3dB) is
defined as the corresponding frequency when the normalized power drops to half of the
maximum value. Generally, the differential carrier lifetime has a relationship with the 3 dB
modulation bandwidth of the LED as follows [12,25]:

f−3dB =
1

2πτ
(4)

In the physical model of simulation, band offset, internal loss, and the SRH recombi-
nation lifetimes are set to 70:30, 2000 m−1, and 200 ns [34,43,44], respectively. Moreover,
the Auger recombination coefficient is set to 3 × 10−31 cm−6/s [43,44]. Built-in polariza-
tions ranging from 20% to 80% of theoretical predictions have been reported, and 50% are
chosen for simulation in this study [34,45,46]. Other physical parameters can be found in
references [47].

The structures of the µ-LEDs in this work are shown in Figure 1. There is a layer of
10 µm thick sapphire substrate at the bottom, followed by a 3 µm thick GaN layer with an
n-type doping concentration of 5 × 1018 cm−3 and a three-period GaN/InGaN multiple
quantum well (MQW) layer. The thickness of QBs is 10 nm, where the n-type doping
concentration is 3 × 1017 cm−3. The indium content in QWs is set to 20% to ensure an
emission at a wavelength of around 450 nm. On the top of the active area, there is a 20 nm
thick Al0.23Ga0.77N as an electron blocking layer (EBL) with a p-type doping concentration
of 1.2 × 1018 cm−3 and a 50 nm thick GaN as a cladding layer with a p-type doping
concentration of 1.2 × 1018 cm−3. The ohmic contact on the cladding layer is defined as the
p-electrode of the µ-LED and that on the n-type GaN layer is defined as the n-electrode of
the µ-LED.
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Figure 1. µ-LEDs with different structures for simulation: µ-LED A with conventional QWs and
µ-LED B with trapezoidal QWs.

To study the effect of QWs on the modulation bandwidth, µ-LEDs with two different
QW structures have been designed, represented by µ-LED A and µ-LED B in Figure 1. The
size of the µ-LED is defined as 20 µm × 20 µm, making the influence of the RC time constant
negligible. For µ-LED A, the thickness of one QW is 3 nm with an indium composition of
0.2. For µ-LED B, the thicknesses of the falling side, bottom, and rising side of one QW
are 0.5 nm, 2 nm, and 0.5 nm, respectively, with an indium composition ranging from
0 to 0.2. This design enables the two µ-LEDs with the same QW thickness, supporting the
subsequent comparative analysis.
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3. Results and Discussion

Figure 2 shows the overlap of the electron-hole wave function as a function of current
density for µ-LED A and µ-LED B. It can be found that the overlap is far below 1 at low
current density due to the separation of the wave functions of electrons and holes caused by
QCSE [48]. In addition, the overlaps of µ-LED B are higher than those of µ-LED A, owing
to the trapezoidal QW, where there is less lattice mismatch and weaker QCSE, resulting in
less separation of electrons and holes [49]. Furthermore, the overlap increases as the current
density increases due to the band-filling effect that counteracts the separation of carriers,
which also leads to a reduction in the gap between the overlaps of µ-LED A and µ-LED
B [37,48]. The above demonstrates that the trapezoidal QW can improve the electron-hole
wave function overlap and attenuate the QCSE.
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Figure 2. Overlaps of electron-hole wave function vs. current density for µ-LED A and µ-LED B.

To understand the internal differences between the two devices, Figure 3 shows
the electron and hole concentrations as a function of vertical distance relative to the n-
side (relative distance) for the two µ-LEDs at 1 kA/cm2. It can be seen that the electron
concentration reaches a maximum near the p-side in µ-LED A, but that reaches a maximum
near the n-side in µ-LED B. Besides, the hole concentration reaches a maximum at the
middle in µ-LED A, but that reaches a maximum near the n-side in µ-LED B. In Figure 3,
the peaks of the carrier concentration of the two µ-LEDs are selected and marked. It can
be found that the peaks of the carrier concentration of µ-LED A are higher than those of
µ-LED B. The above shows that the carrier distribution can be changed by adjusting the
structure of QWs, and the cause of which needs to be further analyzed.
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In order to study the variation rules of carrier concentration, Figure 4 shows the energy
band as a function of relative distance for the two µ-LEDs at 1 kA/cm2. The Φ is used
to represent the energy gap between QB and QW, calculated by the difference between
the peak energy of the next QB and the energy valley of the QW, reflecting the transport
capacity of carriers. The larger the Φ, the higher the barrier of the QB, the harder the
carriers escape, and the weaker the carrier transport. In Figure 4, the Φs are marked at
the QW located in the middle position. In the conduction band, it can be found that the Φ
of µ-LED B is higher than that of µ-LED A, indicating the stronger electron transport in
µ-LED A, which explains the different electron distribution between µ-LED A and µ-LED
B in Figure 3. On the contrary, in the valence band, it can be found that the Φ of µ-LED A
is higher than that of µ-LED B, indicating the enhanced hole transport in µ-LED B, which
explains the different hole distribution between µ-LED A and µ-LED B in Figure 3. The
∆E is used to represent the energy gap in the QW, calculated by the difference between the
Fermi energy level and the energy valley of the QW, reflecting the confinement ability of
carriers. The larger the ∆E, the easier the carriers are trapped by the QW, and the higher
the carrier concentration in the QW. In Figure 4, the ∆Es are marked at the QW with the
highest carrier concentration. It can be found that the ∆Es of µ-LED A are higher than those
of µ-LED B due to the less lattice mismatch in trapezoidal QWs, which explains the higher
peaks of the carrier concentration of µ-LED A than those of µ-LED B in Figure 3.
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Based on Equations (3) and (4), it can be concluded that the −3 dB modulation band-
width is positive relative to 1/τ, which is positive relative to carrier concentration. Figure 5
shows 1/τ as a function of relative distance for the two µ-LEDs at 1 kA/cm2. In Equation
(3), the concentrations of electrons and holes used to calculate 1/τ are taken from the data at
the corresponding locations in Figure 3, which means that 1/τ is also related to the overlap
of the electron-hole distribution. Different carrier concentrations lead to different carrier
lifetimes in different QWs, and the short-lived carriers reflect the high-frequency portion
of the frequency response, which greatly affects the modulation bandwidth. To facilitate
the analysis, the peaks of 1/τ of the two µ-LEDs are selected and marked in Figure 5.
Combining Figures 3 and 4, it can be found that although a higher ∆E exists in µ-LED A,
the improved hole transport makes the peaks of concentrations of electrons and holes of
µ-LED B almost coincide. As a result, the peaks of carrier concentrations of µ-LED B and
µ-LED A have little difference. Combining Figures 2, 3 and 5, it can be found that although
the peak of the carrier concentration of µ-LED B is slightly lower than that of µ-LED A, the
huge advantage in the overlap of electron-hole wave functions allows µ-LED B to create a
higher peak of 1/τ.
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To further illustrate the advantages of µ-LED B, we modify the QW thickness of µ-
LED A to 2.5 nm, denoted as µ-LED C (Figure S1). At 1 kA/cm2, we calculated the carrier
distribution and carrier wave function of µ-LED C (Figure S2 and Figure S3), then compared
the peak electron concentration, peak hole concentration, the peak of 1/τ (Figure S4), and
the electron-hole wave functions overlap of µ-LED A, µ-LED B, and µ-LED C, respectively,
as shown in Table 1. In Table 1, the QWs corresponding to the carrier concentration are
marked in brackets, and the QWs from the n-side to the p-side are sequentially denoted
as QW1, QW2, and QW3. Compared with µ-LED A, the carrier concentration of µ-LED
C is lower, but the advantage in the overlap of electron-hole wave functions gives it a
larger 1/τ. Compared with µ-LED B, the electron-hole wave function overlap of µ-LED C
is slightly lower, and the peak of electron concentration is slightly lower, but the peak of
hole concentration is slightly higher. Importantly, the peaks of the carrier concentration of
µ-LED B are concentrated in the same QW, making the peak of 1/τ greatly increased.

Table 1. Peak electron concentration, peak hole concentration, electron-hole wave function overlap,
and peak 1/τ for µ-LED A, µ-LED B, and µ-LED C at 1 kA/cm2.

Physical Value at 1 kA/cm2 µ-LED A µ-LED B µ-LED C

Peak Electron Concentration (×1018 cm−3) 32.28 (QW3) 31.99 (QW1) 30.23 (QW3)

Peak Hole Concentration (×1018 cm−3) 32.38 (QW2) 30.02 (QW1) 31.20 (QW2)

Electron-Hole Wave Function Overlap 0.617 0.784 0.737

Peak 1/τ (×109 s−1) 2.011 2.920 2.033

Compared with µ-LED A and µ-LED C, a higher peak of 1/τ in µ-LED B can be
found, implying a higher modulation bandwidth for µ-LED B. To verify our analysis, the
frequency responses of the three devices are simulated. To generate a high-frequency small-
amplitude signal, the current input is set as a Gaussian pulse signal with a signal width
of 0.1 ns and a signal amplitude of 1% of the DC bias. In this study, the modulated input
signal is converted to optical output signal by the µ-LED and then subjected to Fourier
analysis to obtain the frequency response. Figure 6 shows the −3 dB modulation bandwidth
vs. the current density of the three µ-LEDs. It can be seen that the −3 dB modulation
bandwidth of µ-LEDs increases with increasing current density, which is attributed to the
decrease in carrier lifetime. Moreover, the growth of the −3 dB modulation bandwidth
of µ-LEDs gradually slows down as the current density increases, attributed to slower
carrier concentration growth and more electron leakage. Furthermore, it can be found
that the modulation bandwidth of µ-LED B is always higher than that of µ-LED A and
µ-LED C as the current density shifts from 100 A/cm2 to 2 kA/cm2, and the modulation
bandwidth can be raised to 457.5 MHz. For µ-LED B, the improved hole transport allows
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the peak of the concentration of holes to meet that of electrons in the same QW, and the
large electron-hole wave function overlap greatly reduces the differential carrier lifetime.
Actually, a µ-LED with trapezoidal QWs can maximize the peak value of 1/τ, thereby
maximizing the modulation bandwidth.
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In addition to modulation bandwidth, the quantum efficiency is also an important
parameter when considering VLC application scenarios. Therefore, we further compared
the internal quantum efficiencies (IQEs) of µ-LED A, µ-LED B, and µ-LED C, as shown
in Figure 7. It can be seen that the IQE of µ-LED B is slightly lower than that of µ-LED
A and µ-LED C. Furthermore, the relationship between modulation bandwidth and IQE
for the µ-LED A, µ-LED B, and µ-LED C was analyzed. At 500 A/cm2, the modulation
bandwidths of µ-LED A, µ-LED B, and µ-LED C are 166.1 MHz, 220.8 MHz, and 191.1
MHz, respectively, while the IQEs of those are 66.9%, 62.5%, and 67.4%. Taking µ-LED A
sample as a reference, the modulation bandwidth of µ-LED B is increased by about 32.9%,
but the IQE is decreased by about 6.57%, while the modulation bandwidth of µ-LED C
is increased by about 15.1%, and the IQE is increased by about 0.75%. Our results prove
that there is a trade-off between modulation bandwidth and IQE, and we believe that it is
worthwhile to optimize the design of MQWs for high-efficiency VLC devices.
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4. Conclusions

The modulation bandwidths of µ-LEDs with different QW structures were compared,
and the physical mechanisms involved were discussed in detail. Compared with µ-LEDs
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with 3 nm and 2.5 nm thick QWs, µ-LEDs with trapezoidal QWs are superior in both carrier
distribution and electron-hole wave function overlap, exhibiting a higher modulation
bandwidth. It is desired that the modulation bandwidth will continue to increase as the
QW thickness continues to decrease, but the trapezoidal QW structure we designed is
still excellent at lower current densities, where the µ-LED can operate more efficiently.
Although it is natural to use thinner QWs, our research provides an alternative design for
developing high-efficiency and high-speed µ-LEDs for VLC application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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of electron-hole wave function vs. current density for µ-LED A, µ-LED B, and µ-LED C, Figure S4:
Reciprocal carrier lifetime vs. relative distance at 1 kA/cm2 for µ-LED C.
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