Acute and Subacute Toxicity of Fluorescent Gold Nanoclusters Conjugated with α-Lipoic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of FANC via a One-Pot Synthetic Strategy
2.2. Animals and Ethical Statements
2.3. Acute Toxicity Test
2.4. Subacute Toxicity Test
2.5. Hematological Parameter Analysis
2.6. Serum Biochemistry Analysis
2.7. Statistics
3. Results
3.1. Acute Toxicity Test
3.2. Subacute Toxicity Test
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Ma, A.; Shang, L. Conjugating Existing Clinical Drugs with Gold Nanoparticles for Better Treatment of Heart Diseases. Front. Physiol. 2018, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Yasemi, M.; Safaie-Qamsari, E.; Rashidiani, J.; Abkar, M.; Hassani, M.; Mirhosseini, S.A.; Kooshki, H. Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 462–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleh, C.; Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.; Schäffler, M.; Schmid, G.; Simon, U.; Kreyling, W.G. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 2012, 6, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, J.; Shi, X.; Yang, Y. The Clinical Effect of Psychological Nursing on Patients Undergoing Coronary Angiography Based on Gold Nanoparticle Contrast Agents. J. Nanosci. Nanotechnol. 2020, 20, 6577–6583. [Google Scholar] [CrossRef]
- Wang, H.-H.; Lin, C.-A.J.; Lee, C.-H.; Lin, Y.-C.; Tseng, Y.-M.; Hsieh, C.-L.; Chen, C.-H.; Tsai, C.-H.; Hsieh, C.-T.; Shen, J.-L.; et al. Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells. ACS Nano 2011, 5, 4337–4344. [Google Scholar] [CrossRef]
- Tam, J.M.; Tam, J.O.; Murthy, A.; Ingram, D.R.; Ma, L.L.; Travis, K.; Johnston, K.P.; Sokolov, K.V. Controlled Assembly of Biodegradable Plasmonic Nanoclusters for Near-Infrared Imaging and Therapeutic Applications. ACS Nano 2010, 4, 2178–2184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-D.; Wu, D.; Shen, X.; Liu, P.-X.; Fan, F.-Y.; Fan, S.-J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012, 33, 4628–4638. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Singh, P.; Pandey, A.K.; Dhawan, A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res. 2012, 745, 84–91. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Nan, J.; Hou, J.; Yu, B.; Zhao, T.; Xu, S.; Lv, S. Cytotoxicity of gold nanoclusters in human liver cancer cells. Int. J. Nanomed. 2014, 9, 5441–5448. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J. A Trail of Research from Lipoic Acid to α-Keto Acid Dehydrogenase Complexes. J. Biol. Chem. 2001, 276, 38329–38336. [Google Scholar] [CrossRef]
- Perham, R.N.; Jones, D.D.; Chauhan, H.J.; Howard, M.J. Substrate channelling in 2-oxo acid dehydrogenase multienzyme complexes. Biochem. Soc. Trans. 2002, 30, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Bilska, A.; Wlodek, L. Lipoic acid—The drug of the future? Pharmacol. Rep. 2005, 57, 570–577. [Google Scholar] [PubMed]
- Packer, L.; Tritschler, H.J.; Wessel, K. Neuroprotection by the Metabolic Antioxidant α-Lipoic Acid. Free Radic. Biol. Med. 1997, 22, 359–378. [Google Scholar] [CrossRef]
- Houng, W.-L.; Lin, C.-A.J.; Shen, J.-L.; Yeh, H.-I.; Wang, H.-H.; Chang, W.H.; Chan, W.-H. Dihydrolipoic Acid Induces Cytotoxicity in Mouse Blastocysts through Apoptosis Processes. Int. J. Mol. Sci. 2012, 13, 3988–4002. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-A.; Yang, T.-Y.; Lee, C.-H.; Huang, S.H.; Sperling, R.; Zanella, M.; Li, J.K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; et al. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009, 3, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.-A.; Lee, C.-H.; Hsieh, J.-T.; Wang, H.-H.; Li, J.K.; Shen, J.-L.; Chan, W.-H.; Yeh, H.-I.; Chang, W.H. Review: Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. J. Med. Biol. Eng. 2009, 29, 276–283. [Google Scholar]
- Abdul, H.M.; Butterfield, D.A. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and α-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Free Radic. Biol. Med. 2007, 42, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Yu, J.H.; Kim, H. Mechanism of α-Lipoic Acid-Induced Apoptosis of Lung Cancer Cells. Ann. N. Y. Acad. Sci. 2009, 1171, 149–155. [Google Scholar] [CrossRef]
- Moungjaroen, J.; Nimmannit, U.; Callery, P.S.; Wang, L.; Azad, N.; Lipipun, V.; Chanvorachote, P.; Rojanasakul, Y. Reactive Oxygen Species Mediate Caspase Activation and Apoptosis Induced by Lipoic Acid in Human Lung Epithelial Cancer Cells through Bcl-2 Down-Regulation. J. Pharmacol. Exp. Ther. 2006, 319, 1062–1069. [Google Scholar] [CrossRef]
- Simbula, G.; Columbano, A.; Ledda-Columbano, G.M.; Sanna, L.; Deidda, M.; Diana, A.; Pibiri, M. Increased ROS generation and p53 activation in α-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 2007, 12, 113–123. [Google Scholar] [CrossRef]
- Singh, L.P.; Cheng, D.W.; Kowluru, R.; Levi, E.; Jiang, Y. Hexosamine induction of oxidative stress, hypertrophy and laminin expression in renal mesangial cells: Effect of the anti-oxidant α-lipoic acid. Cell Biochem. Funct. 2007, 25, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yamaguchi, H.; Tian, C.; Lee, M.W.; Tang, H.; Wang, H.-G.; Chen, Q. Arsenic trioxide (As2O3) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 2005, 24, 3339–3347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.-H.; Houng, W.-L.; Lin, C.-A.J.; Lee, C.-H.; Li, P.-W.; Hsieh, J.-T.; Shen, J.-L.; Yeh, H.-I.; Chang, W.H. Impact of dihydrolipoic acid on mouse embryonic stem cells and related regulatory mechanisms. Environ. Toxicol. 2013, 28, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xie, D.; Wu, T.; Xu, W.; Meng, Q.; Cao, K.; Hu, J. Evaluation of the protective roles of alpha-lipoic acid supplementation on nanomaterial-induced toxicity: A meta-analysis of in vitro and in vivo studies. Front. Nutr. 2022, 9, 991524. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-H.; Lin, C.-A.J.; Tseng, Y.-M.; Lee, H.-I.; Lee, Y.-N.; Yeh, H.-I.; Yang, P.-S.; Peng, H.-Y.; Wu, Y.-J. Dihydrolipoic acid-coated gold nanocluster bioactivity against senescence and inflammation through the mitochondria-mediated JNK/AP-1 pathway. Nanomedicine 2021, 36, 102427. [Google Scholar] [CrossRef] [PubMed]
- Traesel, G.K.; Menegati, S.E.L.T.; dos Santos, A.C.; Souza, R.I.C.; Boas, G.R.V.; Justi, P.N.; Kassuya, C.A.L.; Argandoña, E.J.S.; Oesterreich, S.A. Oral acute and subchronic toxicity studies of the oil extracted from pequi (Caryocar brasiliense, Camb.) pulp in rats. Food Chem. Toxicol. 2016, 97, 224–231. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; He, Q.; Wu, L.; Zhang, Z.; Chang, C. Comparison of Immunological Abnormalities of Lymphocytes in Bone Marrow in Myelodysplastic Syndrome (MDS) and Aplastic Anemia (AA). Intern. Med. 2010, 49, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Huang, X.; Yang, M.; Xu, J.; Chen, Z.; Yu, Z.; Liu, J. Ameliorative effect of berberine coated bio-active nanoparticles in acetaminophen induced hepato-renal damage in diabetic rats. J. Photochem. Photobiol. B Biol. 2018, 189, 250–257. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Hung, Y.-C.; Liau, I.; Huang, G.S. Assessment of the In Vivo Toxicity of Gold Nanoparticles. Nanoscale Res. Lett. 2009, 4, 858–864. [Google Scholar] [CrossRef] [Green Version]
- Traesel, G.K.; de Souza, J.C.; de Barros, A.L.; Souza, M.A.; Schmitz, W.O.; Muzzi, R.M.; Oesterreich, S.A.; Arena, A.C. Acute and subacute (28 days) oral toxicity assessment of the oil extracted from Acrocomia aculeata pulp in rats. Food Chem. Toxicol. 2014, 74, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Ezeja, M.I.; Anaga, A.O.; Asuzu, I.U. Acute and sub-chronic toxicity profile of methanol leaf extract of Gouania longipetala in rats. J. Ethnopharmacol. 2014, 151, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Ipe, B.I.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Tyner, K.; Sadrieh, N. Considerations When Submitting Nanotherapeutics to FDA/CDER for Regulatory Review. Methods Mol. Biol. 2011, 697, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.A.; Salleng, K.J.; Cliffel, D.E.; Feldheim, D.L. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 2013, 9, 257–263. [Google Scholar] [CrossRef]
Male | 0 | 0.6 | 2 | 6 | 20 |
RBC | 6.3 ± 0.3 | 6.2 ± 0.2 | 6.2 ± 0.4 | 6.1 ± 0.1 | 6.2 ± 0.5 |
HCT | 34.5 ± 1.3 | 34.7 ± 1.2 | 33.9 ± 1.9 | 33.3 ± 1.2 | 34.0 ± 2.8 |
RDW | 2.6 ± 12.2 | 12.1 ± 1.1 | 7.3 ± 10.2 | 7.2 ± 10.1 | 11.5 ± 0.4 |
WBC | 4.0 ± 1.2 | 5.4 ± 2.3 | 3.7 ± 0.5 | 3.5 ± 1.3 | 3.0 ± 0.3 |
LYM% | 78.2 ± 2.7 | 75.6 ± 7.9 | 81.4 ± 9.2 | 73.6 ± 2.9 | 73.0 ± 10.6 |
LYM# | 3.2 ± 0.9 | 4.2 ± 2.2 | 3.1 ± 0.7 | 2.6 ± 1.0 | 2.2 ± 0.2 |
PLT | 910.4 ± 87.3 | 896.8 ± 54.3 | 830.8 ± 69.7 | 870.6 ± 119.9 | 949.2 ± 232.3 |
PDW | 5.8 ± 0.4 | 5.9 ± 0.3 | 5.8 ± 0.2 | 5.8 ± 0.2 | 5.7 ± 0.2 |
MPV | 5.2 ± 0.2 | 5.4 ± 0.3 | 5.2 ± 0.1 | 5.3 ± 0.2 | 5.2 ± 0.1 |
P-LCR | 2.1 ± 0.2 | 2.6 ± 1.4 | 2.1 ± 0.7 | 2.0 ± 0.6 | 2.1 ± 0.5 |
Female | 0 | 0.6 | 2 | 6 | 20 |
RBC | 6.7 ± 0.3 | 5.9 ± 0.1 ** | 6.4 ± 0.3 | 6.6 ± 0.3 | 6.6 ± 0.2 |
HCT | 35.9 ± 1.9 | 31.4 ± 1.2 * | 34.2 ± 2.2 | 35.3 ± 1.4 | 34.7 ± 1.5 |
RDW | 7.4 ± 10.2 | 12.3 ± 0.9 | 7.9 ± 10.6 | 12.2 ± 1.0 | 12.5 ± 0.6 |
WBC | 3.9 ± 0.7 | 3.4 ± 0.6 | 4.5 ± 1.0 | 4.5 ± 2.2 | 4.2 ± 1.2 |
LYM% | 80.4 ± 3.8 | 82.5 ± 9.3 | 83.7 ± 6.8 | 81.8 ± 4.8 | 78.6 ± 10.3 |
LYM# | 3.3 ± 0.5 | 2.8 ± 0.8 | 3.8 ± 0.9 | 3.7 ± 1.9 | 3.3 ± 1.4 |
PLT | 801.2 ±192.0 | 705.4 ± 225.7 | 747.8 ± 153.7 | 906.0 ± 131.8 | 768.8 ± 181.2 |
PDW | 5.8 ± 0.4 | 5.8 ± 0.2 | 5.6 ± 0.1 | 5.8 ± 0.4 | 5.8 ± 0.1 |
MPV | 5.2 ± 0.2 | 5.3 ± 0.1 | 5.1 ± 0.0 | 5.3 ± 0.4 | 5.2 ± 0.1 |
P-LCR | 2.0 ± 0.8 | 2.4 ± 0.6 | 1.8 ± 0.4 | 3.0 ± 2.1 | 1.9 ± 0.2 |
Male | GOT | GPT | LDH | BUN | CRE |
(μM) | (U/L) | (U/L) | (U/L) | (mg/dL) | (mg/dL) |
0 | 36.2 ± 3.9 | 33.4 ± 10.7 | 479.0 ± 210.7 | 19.6 ± 3.4 | 0.2 ± 0.1 |
0.6 | 34.3 ± 5.1 | 32.3 ± 8.8 | 275.5 ± 115.7 | 23.2 ± 1.3 | 0.3 ± 0.1 |
2 | 32.6 ± 4.7 | 28.2 ± 10.5 | 310.0 ± 152.1 | 22.7 ± 5.1 | 0.2 ± 0.1 |
6 | 38.4 ± 6.1 | 29.4 ± 3.0 | 373.2 ± 283.7 | 25.7 ± 2.9 | 0.3 ± 0.1 |
20 | 48.6 ± 9.8 | 34.8 ± 7.4 | 515.8 ± 238.1 | 20.5 ± 2.3 | 0.2 ± 0.0 |
Female | GOT | GPT | LDH | BUN | CRE |
(μM) | (U/L) | (U/L) | (U/L) | (mg/dL) | (mg/dL) |
0 | 50.6 ± 8.6 | 32.4 ± 6.5 | 363.4 ± 93.6 | 23.7 ± 2.2 | 0.1 ± 0.0 |
0.6 | 46.4 ± 8.1 | 30.4 ± 4.9 | 369.8 ± 155.3 | 21.8 ± 1.9 | 0.1 ± 0.0 |
2 | 40.8 ± 8.5 | 32.8 ± 8.4 | 260.4 ± 97.0 | 21.4 ± 2.6 | 0.1 ± 0.0 |
6 | 41.4 ± 9.0 | 32.8 ± 10.0 | 257.4 ± 116.1 | 23.4 ± 4.4 | 0.1 ± 0.1 |
20 | 46.0 ± 10.4 | 31.4 ± 9.3 | 302.2 ± 77.9 | 23.0 ± 3.5 | 0.1 ± 0.0 |
Male | 0 | 0.6 | 2 | 6 | 20 |
RBC | 5.9 ± 0.3 | 5.8 ± 0.3 | 6.7 ± 0.3 | 5.9 ± 0.5 | 6.7 ± 0.6 |
HGB | 11.0 ± 0.5 | 11.2 ± 0.4 | 11.9 ± 0.9 | 10.9 ± 0.5 | 12.2 ± 0.8 |
HCT | 31.0 ± 1.6 | 31.0 ± 2.2 | 35.3 ± 0.6 * | 31.2 ± 3.2 | 35.2 ± 3.0 |
MCV | 52.7 ± 0.8 | 53.4 ± 1.2 | 53.9 ± 0.5 | 53.4 ± 1.0 | 52.6 ± 2.1 |
MCH | 18.7 ± 1.3 | 19.4 ± 1.2 | 17.9 ± 0.9 | 18.7 ± 1.8 | 18.3 ± 1.3 |
MCHC | 35.5 ± 2.5 | 36.4 ± 3.0 | 33.2 ± 1.6 | 35.1 ± 3.9 | 34.7 ± 1.3 |
RDW | 15.5 ± 0.8 | 15.2 ± 2.2 | 13.1 ± 0.8 * | 14.4 ± 2.0 | 13.7 ± 0.9 |
WBC | 4.2 ± 0.9 | 4.1 ± 0.6 | 3.4 ± 1.1 | 3.7 ± 1.1 | 4.5 ± 0.5 |
LYM% | 78.1 ± 5.3 | 86.5 ± 6.9 | 79.0 ± 6.4 | 81.8 ± 3.2 | 80.9 ± 1.4 |
LYM# | 3.3 ± 0.9 | 3.6 ± 0.5 | 2.7 ± 0.9 | 3.1 ± 1.0 | 3.6 ± 0.4 |
PLT | 582.4 ± 110.3 | 721.4 ± 168.6 | 739.0 ± 82.9 | 653.0 ± 242.8 | 699.4 ± 131.9 |
Female | 0 | 0.6 | 2 | 6 | 20 |
RBC | 6.8 ± 0.3 | 7.0 ± 0.4 | 6.4 ± 0.5 | 6.5 ± 0.3 | 6.6 ± 0.2 |
HGB | 11.3 ± 1.1 | 12.2 ± 0.7 | 10.4 ± 0.9 | 11.0 ± 0.6 | 10.5 ± 0.5 |
HCT | 37.5 ± 2.9 | 38.5 ± 2.3 | 34.1 ± 2.9 | 35.2 ± 1.5 | 35.2 ± 1.5 |
MCV | 54.8 ± 2.6 | 54.8 ± 1.9 | 53.3 ± 2.0 | 54.2 ± 1.5 | 53.3 ± 1.0 |
MCH | 16.4 ± 1.1 | 17.4 ± 0.9 | 16.3 ± 0.8 | 16.9 ± 0.9 | 15.9 ± 0.4 |
MCHC | 30.0 ± 1.0 | 31.7 ± 0.7 | 30.6 ± 0.5 | 31.2 ± 1.1 | 29.8 ± 0.5 |
RDW | 11.9 ± 0.5 | 12.0 ± 0.5 | 11.7 ± 0.5 | 11.1 ± 0.5 | 11.7 ± 0.5 |
WBC | 4.2 ± 1.4 | 3.9 ± 0.9 | 3.7 ± 1.5 | 3.0 ± 1.0 | 3.8 ± 0.9 |
LYM% | 84.1 ± 5.6 | 81.5 ± 1.4 | 81.4 ± 4.9 | 79.3 ± 7.1 | 83.2 ± 3.3 |
LYM# | 3.6 ± 1.3 | 3.2 ± 0.7 | 3.0 ± 1.3 | 2.4 ± 0.9 | 3.1 ± 0.7 |
PLT | 733.0 ± 171.2 | 651.8 ± 77.4 | 736.4 ± 168.9 | 797.0 ± 63.8 | 783.6 ± 160.2 |
Male | GOT | GPT | LDH | BUN | CRE |
(μM) | (U/L) | (U/L) | (U/L) | (mg/dL) | (mg/dL) |
0 | 35.8 ± 6.8 | 19.0 ± 3.0 | 295.0 ± 167.7 | 19.1 ± 4.3 | 0.2 ± 0.1 |
0.6 | 41.0 ± 8.2 | 24.2 ± 10.1 | 404.5 ± 94.1 | 23.2 ± 0.9 | 0.2 ± 0.1 |
2 | 33.8 ± 5.4 | 14.0 ± 2.3 | 295.2 ± 120.1 | 21.4 ± 1.8 | 0.1 ± 0.0 |
6 | 37.4 ± 2.5 | 15.4 ± 3.4 | 216.8 ± 47.9 | 22.7 ± 6.1 | 0.2 ± 0.1 |
20 | 36.4 ± 4.7 | 16.4 ± 2.9 | 239.3 ± 65.4 | 19.9 ± 3.7 | 0.2 ± 0.1 |
Female | GOT | GPT | LDH | BUN | CRE |
(μM) | (U/L) | (U/L) | (U/L) | (mg/dL) | (mg/dL) |
0 | 44.0 ± 5.6 | 21.0 ± 3.1 | 226.2 ± 47.4 | 20.3 ± 4.0 | 0.1 ± 0.0 |
0.6 | 47.3 ± 9.1 | 23.5 ± 14.7 | 280.8 ± 176.1 | 24.0 ± 5.8 | 0.1 ± 0.0 |
2 | 47.8 ± 6.2 | 14.8 ± 1.6 * | 335.8 ± 100.0 | 19.7 ± 1.4 | 0.1 ± 0.0 |
6 | 54.0 ± 12.7 | 17.0 ± 6.7 | 215.0 ± 94.6 | 20.8 ± 1.6 | 0.1 ± 0.0 |
20 | 46.8 ± 4.7 | 20.6 ± 5.8 | 197.8 ± 72.7 | 23.0 ± 2.3 | 0.1 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-F.; Hsu, C.-C.; Chung, C.-H. Acute and Subacute Toxicity of Fluorescent Gold Nanoclusters Conjugated with α-Lipoic Acid. Nanomaterials 2022, 12, 3868. https://doi.org/10.3390/nano12213868
Chen Y-F, Hsu C-C, Chung C-H. Acute and Subacute Toxicity of Fluorescent Gold Nanoclusters Conjugated with α-Lipoic Acid. Nanomaterials. 2022; 12(21):3868. https://doi.org/10.3390/nano12213868
Chicago/Turabian StyleChen, Yun-Fang, Chun-Chieh Hsu, and Ching-Hu Chung. 2022. "Acute and Subacute Toxicity of Fluorescent Gold Nanoclusters Conjugated with α-Lipoic Acid" Nanomaterials 12, no. 21: 3868. https://doi.org/10.3390/nano12213868
APA StyleChen, Y. -F., Hsu, C. -C., & Chung, C. -H. (2022). Acute and Subacute Toxicity of Fluorescent Gold Nanoclusters Conjugated with α-Lipoic Acid. Nanomaterials, 12(21), 3868. https://doi.org/10.3390/nano12213868