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Abstract: We investigated the composition uniformity of InGaN epilayers in presence of metal
droplets on the surface. We used Plasma Assisted MBE to grow an InGaN sample partially covered
by metal droplets and performed structural and compositional analysis. The results showed a marked
difference in indium incorporation between the region under the droplets and between them. Based
on this observation we proposed a theoretical model able to explain the results by taking into
account the vapour liquid solid growth that takes place under the droplet by direct impingement of

nitrogen adatoms.
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1. Introduction

InGaN is a semiconductor with an energy gap that ranges from from 0.7 eV (InN)
to 3.4 eV (GaN) depending on its alloy composition [1]. The possibility to cover all the
visible spectrum makes InGaN a very interesting material for photovoltaic [2] and op-
toelectronic [3] applications, such as light emitters and detectors. Moreover, due to its
exceptional chemical stability, InGaN can be used for photoelectrochemical applications
and biosensing [4-6]. Despite the high interest in this material, the growth of InGaN in the
entire composition range is still extremely challenging. These difficulties arise from the
different thermal stability of In-N and Ga-N bonds and the much larger size of In atoms
compared to Ga. The large lattice mismatch of InN and GaN leads to a miscibility gap
that can cause fluctuations of the In content in the epilayer [7-9]. The calculated effects of
strain in the InGaN binodal and spinodal curves show that the miscibility problem remains
significant for a large InN mole fraction. InGaN phase separation has also been demon-
strated experimentally for both plasma assisted molecular beam epitaxy (PA-MBE) [10] and
metalorganic chemical vapor epitaxy (MOCVD) growth [11]. The different In-N and Ga-N
bond energies are reflected in the different decomposition temperatures of InN (500-630 °C)
and GaN (850 °C) [12]. Therefore, above 500 °C a reduction of In incorporation in the
epilayer occurs not only due to the re-evaporation of physisorbed surface adatoms but
also due to the thermal decomposition of In-N bonds. Hence, at usual InGaN growth
temperatures, namely ~650 °C for MBE and ~800 °C for MOCVD, the incorporation of
indium atoms is insufficient to achieve high indium concentrations [7,13-15]. One of the
possibilities to avoid InGaN decomposition is to grow at low temperature [16]. PA-MBE is
the most suitable technique for this purpose since with this equipment the generation of
active nitrogen species does not depend on substrate temperature. However, if the growth
conditions are not perfectly tuned this could easily lead to a poor crystal quality of the
epilayer. This is particularly critical at low growth temperatures since the window for
the optimal growth parameters is extremely narrow. If the growth is carried out under
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metal rich conditions, the excess metal atoms start to accumulate on the surface in form of
droplets [17-19]. On the other hand, trying to balance this drawback by growing in N-rich
conditions will cause 3D growth and a rough surface [19-21].

Yamaguchi et al. [22,23] showed that it is possible to grow thick and uniform InGaN
films in the entire alloy composition range exploiting the droplet formation and their
elimination by radical beam irradiation (DERI). With this method, the Ga and N fluxes are
kept constant while the In flux is continuously changed in order to have an alternation
of In excess and In interruption, dictated by the necessity to consume the excess of In
accumulated on the surface. High In-content InGaN layers were also obtained by using
metal-modulated (MME) PA-MBE, growing at low tempeature under constant N flux, while
modulating Ga and In fluxes under metal-rich conditions [24,25]. Despite the success of
DERI and MME growth techniques, the presence of droplets on the surface and their effect
on growth dynamics has been only recently studied [17].

Here we show that the presence of metal droplets on the surface, in addition to the
already discussed effect on the growth rate [17], affects the incorporation of In in the
InGaN epilayer and causes strong composition fluctuations. We demonstrate that this
phenomenon is related to Vapor-Liquid-Solid (VLS) growth that takes place at the interface
between the solid and the droplet [26,27].

2. Materials and Methods

The sample growth was performed on a single-side polished undoped Si(111) wafer
by PA-MBE equipped with a radio frequency (RF) plasma source. As a first step, the
native Si oxide was removed in situ by heating the substrate up to 935 °C for 10 min.
The complete oxide removal was confirmed by RHEED, observing the Si(111) 1 x 1 to
7 x 7 surface reconstruction change. Prior to the InGaN growth, the silicon surface was
nitridized by exposing it to an active nitrogen flux of 0.9 sccm with an RF power of
360 W for 5 min at a substrate temperature of 910 °C. This resulted in an amorphous SiN
layer (as confirmed by RHEED), which is known to improve the crystal quality of the
epitaxyal InGaN layers grown on top [4,28]. Finally, the InGaN growth was performed
at a substrate temperature of 450 °C, a nitrogen flux of 0.9 sccm with a RF power of
360 W and Ga and In beam equivalent pressures (BEP) of 5.5 x10~8 Torr for 90 min.
The sample morphology and surface composition were measured by a combination of
Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX).
SEM-EDX analysis were performed via a FEG-SEM Zeiss Gemini 500 equipped with an
in-lens detector for high-resolution imaging and a Bruker QUANTAX X-ray spectrometer.
For structural analysis, we carried out X-ray diffraction (XRD) using a PANalytical X'Pert
PRO high-resolution diffractometer. The Ka1 radiation from the Cu anode (A = 0.15406 nm)
was selected using a hybrid mirror and 2-bounce Ge monochromator. The sample was
mounted on a high-precision goniometer with translational (x, y and z) and rotational
(incidence angle w, diffraction angle 20, sample rotation ® and sample tilt x) degrees of
freedom. A three-bounce Ge monochromator was placed in front of the detector as an
analyzer crystal, in order to obtain high precision in 26 and to reject fluorescence from the
sample. w — 26 scans of the InGaN(0002) peak were obtained, using the Si(111) peak from
the substrate as a reference. Finally, to investigate the local variation in the composition [29],
line scan Raman spectroscopy was obtained using micro-Raman with an excitation lambda
of 532 nm, excitation power of ~2.5 mW, and spot diameter on the sample of 0.7 pm.

3. Results

Figure 1a shows the SEM image of the grown sample. As can be seen, the surface
is partially covered by droplets. The droplets exhibit an average size of few um and are
separated by a compact layer. In order to investigate the composition of the metal droplets,
EDX was performed and the results are shown in Figure 1b—d. In particular, Figure 1b,c,
show the distribution of Ga and In respectively, while Figure 1d combines both of them. It
is evident that metal droplets are almost entirely made of In, whereas in the surrounding
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region both Ga and In are present. Figure 1d clearly shows that in this region the amount of
Ga is much larger compared to In, even if the nominal Ga and In fluxes during the growth
were equal.

Figure 1. (a) SEM image and (b-d) EDX analysis of a metal droplet. Here are shown separately Ga
(b) and In (c) compositions and their combination (d). As can be seen, the metal droplets are almost
entirely made of indium.

In order to confirm this qualitative observation, we performed XRD w — 26 scan. The
result is shown in Figure 2. The peak at 20 = 28.5° originates from the Si(111) substrate
whereas the sharp peak at 260 = 33° corresponds to the In (101) diffraction of crystallized In
droplets on the surface [30]. The broader peak centered at 26 = 34.3° is the InGaN(0002)
diffraction peak. The In content of the InGaN layer was calculated to be ~13% by linear
interpolation between the lattice constants of InN and GaN. This agrees with the observation
based on EDX that the InGaN epilayer was Ga rich.
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Figure 2. XRD w — 20 scan in which it is possible to individuate the Si (111) peak at 20 = 28.5° a
sharp In (101) peak at 26 = 33° due to the diffraction of crystallized indium on the surface and the
InGaN (0002) peak at 260 = 34.3°, which corresponds to an In concentration of 13%.

In samples grown under metal-rich conditions, it is possible to find droplets” footprints
caused by Ostwald ripening [31], which takes place during the cooling of the substrate.
Examples of these footprints can be seen in the SEM image of Figure 1a where they appear as
darker spots, while in the EDX analysis they were indistinguishable from the surrounding
epilayer. The presence of these features allows for the investigation of the local InGaN
composition of the crystallized layer at the bottom of the droplet. Micro-Raman analysis
shown in Figure 3a,b revealed a clear increase in Ga concentration in the droplet footprint
with respect to the surrounding areas. The Raman line-scan spectrum around the footprint
of a metal droplet (Figure 3a) shows a shift in the position of the A1 (LO) peak [32] from
710 cm~! to 718 cm™! as the laser beam moves from the area surrounding the droplet
to its footprint. The observed Raman shift of the main peak (Figure 3b), highlighted by
the dashed lines, corresponds to an In concentration of 13% in the droplet footprint and
of 19% in the surrounding area [29]. Tthe spectrum taken in the droplet footprint shows
an additional peak at ~540 cm !, which could be identified as the E2 mode [33], and
a second one less intense at ~630 cm ™!, which is typically addressed to compositional
inhomogeneities [33].
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Figure 3. Line scan (a) and spot scan (b) micro-Raman spectroscopy across the footprint of a metal
droplet, revealing the increase in Ga concentration in the droplet footprint with respect to the
surroundings. The measured Raman shifts of the A1(LO) peaks are 710 em™! (red line) and 718 cm ™!
(blue line), corresponding to an indium concentration of 19% and 13% respectively.

These results clearly indicate a complex growth dynamic in presence of droplets when
ternary compounds are involved. In particular, we have observed a strong inhomogeneity
in the In incorporation between and under the droplets.

4. Discussion

In order to explain the experimental observations, we propose here a theoretical model
that describes the growth dynamic under the droplets. This model is able to explain the
composition of the metal droplets and of the epilayer below when ternary III/V are grown.
As soon as droplets begin to form on the surface, a new growth channel starts due to the
VLS process that takes place under the droplets [17]. In the most general case, when a
droplet composed of two metals is irradiated with a flux of a group V element, the VLS
growth mode takes place at the liquid—solid interface. This process leads to the segregation
of the metal with the higher reactivity with the group V element.

As a matter of fact, the VLS growth at the interface involves two crystallization
reactions of the two metal species (Ga and In) and the group V element (N) in the liquid:
Ga' + N' — GaN® and In' + N — InN°®. If the activity coefficients are independent of the
concentrations, we can write the ratio of the law of mass action as [34]:

Uin ¥GaN _ QGaN _
Uga XN Qmn

€ 1)

Here ug, and uj, are the Ga and In mole fractions in the droplet, xg,y = (g, and
XN = 1 — (g, are the InN and GaN mole fractions in the [ _;Ga; N growing layer. Qgan
and Qp,n are the reaction quotients (which at equilibrium become the equilibrium constants
Kgan and Kj, N ), respectively. In case of Ga and In, since the enthalpy of formation of GaN
(AHg,n = 157 £16 k] /mol) is much larger than the one of InN (AHj,n = 29 £ 9 kJ/mol),
the reaction quotient ratio is € > 1.

Therefore, the compositions of the more reactive element (in our case Ga) in the liquid
droplet (1,) and in the solid ({¢,) are related by [34]:

UGu€

T 1+ (e— Duca @

CGa(uca)
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On the basis of Equation (2), being € > 1, we expect a strong increase of the Ga
concentration (g, in the layer growing under the droplet with respect to the concentration
« calculated based on Ga and In fluxes. The outcome of this process is that the excess of
Ga, with respect to steady state conditions within the droplet, will be segregated at the
interface, leaving an excess of In in the droplet. The rate equation governing the molar
fraction evolution with the deposition time of Ga in the droplet, 1¢,, and in the bulk, (¢,
is [34]:

WSt — —Glaa(uce) +K ©
where we have considered that mole fraction ug, depends on two contributions: (1) the
loss of atoms due to the incorporation in the crystal under the droplet —G{g,(ug,), where
G is the adatom incorporation rate in the crystal by VLS, which depends on the Nitrogen
flux incorporated in the droplet, and (2) the flux of Ga atoms impinging on the droplet
at constant flux from the growth environment, normalized to the total number of atoms
present in the droplet, K. Under droplet growing conditions, that is whenever the flux of
each metal element is larger than the incorporation rate at the bottom of the droplet (i.e.,
K — G{ga(ugs) > 0), the solution of Equation (3), for € > 1, is

K
UGy > m . (4)

Combining Equations (2) and (4), the Ga concentration (¢, in the InGaN layer growing
by VLS under the droplet is (g, > fo X which, being € > 1, reduces to:

Coa> & ©

Under droplet growing conditions, K > aG so that the concentration of Ga under
the droplet is (g, > «. As a consequence, the VLS growth under the droplets strongly
favors the Ga segregation at the droplet footprint, which due to the large value of € can be
considered close to pure GaN.

These predictions agree well with the experimental results shown in Figures 1 and 3.
The application of the model to our sample results in two predictions: the metal droplets
are mostly made of indium and the InGaN layer grown below the droplets is more Ga-rich
than the one grown in between droplets. Both these predictions are in agreement with the
observations of Figures 1 and 2 respectively.

5. Conclusions

In this work we have shown that when growing ternary compounds the presence of
metal droplets on the surface has a detrimental effect on the composition uniformity of the
epilayer. We addressed this effect to the VLS growth mode favoring the Ga segregation at
the interface between the droplets and the substrate and we discussed a theoretical model
which describes the growth dynamics under these circumstances. These findings suggest
that even if the growth modes which take advantage of droplet formation (in particular
MME [35,36] and DERI [22,23]) work nicely with binary compounds, they may lead to local
composition fluctuations if applied to grow ternary compounds.
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