Antimicrobial Activity and Sorption Behavior of Al2O3/Ag Nanocomposites Produced with the Water Oxidation of Bimetallic Al/Ag Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Al/Ag Nanoparticles and Al2O3/Ag Composites
2.2. Characterization of the Materials under Study
2.3. Antibacterial Activity Assay
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allafchian, A.; Banifatemi, S.S.; Jalali, S.A. Synthesis and Characterization of Ag/SiO2 Nanoparticles Embedded in TPS and TEOS Sol-gel Matrix with Excellent Antibacterial Activity. Nanosci. Nanotechnol.-Asia 2018, 8, 33–40. [Google Scholar] [CrossRef]
- Gupta, A.; Mumtaz, S.; Li, C.-H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.A.M.; Grinholc, M.; Dena, A.S.A.; El-Sherbiny, I.M.; Megahed, M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydr. Polym. 2021, 256, 117498. [Google Scholar] [CrossRef] [PubMed]
- Maruthapandi, M.; Saravanan, A.; Das, P.; Natan, M.; Jacobi, G.; Banin, E.; Luong, J.H.T.; Gedanken, A. Antimicrobial Activities of Zn-Doped CuO Microparticles Decorated on Polydopamine against Sensitive and Antibiotic-Resistant Bacteria. ACS Appl. Polym. Mater. 2020, 2, 5878–5888. [Google Scholar] [CrossRef]
- Yougbaré, S.; Mutalik, C.; Krisnawati, D.I.; Kristanto, H.; Jazidie, A.; Nuh, M.; Cheng, T.-M.; Kuo, T.-R. Nanomaterials for the Photothermal Killing of Bacteria. Nanomaterials 2020, 10, 1123. [Google Scholar] [CrossRef]
- Tilocca, A. Molecular dynamics simulations of a bioactive glass nanoparticle. J. Mater. Chem. 2011, 21, 12660–12667. [Google Scholar] [CrossRef]
- Ghaffari-Moghaddam, M.; Eslahi, H. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab. J. Chem. 2014, 7, 846–855. [Google Scholar] [CrossRef] [Green Version]
- El-Bendary, M.A.; Moharam, M.E.; Hamed, S.R.; Abo El-Ola, S.M.; Khalil, S.K.; Mounier, M.M.; Roshdy, A.M.; Allam, M.A. Mycosynthesis of silver nanoparticles using Aspergillus caespitosus: Characterization, antimicrobial activities, cytotoxicity, and their performance as an antimicrobial agent for textile materials. Appl. Organomet. Chem. 2021, 35, e6338. [Google Scholar] [CrossRef]
- Fang, Y.; Hong, C.-Q.; Chen, F.-R.; Gui, F.-Z.; You, Y.-X.; Guan, X.; Pan, X.-H. Green synthesis of nano silver by tea extract with high antimicrobial activity. Inorg. Chem. Commun. 2021, 132, 108808. [Google Scholar] [CrossRef]
- Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef]
- Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl. Environ. Microbiol. 2005, 71, 7589–7593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, H.H.; Ayala-Núñez, N.V.; Ixtepan Turrent, L.D.C.; Rodríguez Padilla, C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2009, 26, 615–621. [Google Scholar] [CrossRef]
- Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019, 14, 1469–1487. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, M.T.; Ghaly, M.F.; Fahmi, S.M. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J. Basic Microbiol. 2021, 61, 557–568. [Google Scholar] [CrossRef]
- Salem, S.S.; El-Belely, E.F.; Niedbała, G.; Alnoman, M.M.; Hassan, S.E.-D.; Eid, A.M.; Shaheen, T.I.; Elkelish, A.; Fouda, A. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials 2020, 10, 2082. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Zheng, S.; Zhong, L.; Xue, J. Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr. Polym. 2021, 257, 117671. [Google Scholar] [CrossRef]
- Shittu, O.K.; Oluyomi, O.I.; Gara, T.Y. Safety assessment of bio-synthesized iodine-doped silver nanoparticle wound ointment in experimental rats. Clin. Phytoscience 2021, 7, 74. [Google Scholar] [CrossRef]
- Wang, G.; Shi, C.; Zhao, N.; Du, X. Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition. Mater. Lett. 2007, 61, 3795–3797. [Google Scholar] [CrossRef]
- Saranya, A.; Alomayri, T.; Ramar, K.; Priyadharsan, A.; Raj, V.; Murugan, K.; Alsawalha, M.; Maheshwaran, P. Facile one pot microwave-assisted green synthesis of Fe2O3/Ag nanocomposites by phytoreduction: Potential application as sunlight-driven photocatalyst, antibacterial and anticancer agent. J. Photochem. Photobiol. B Biol. 2020, 207, 111885. [Google Scholar]
- Syarif, D.G.; Prajitno, D.H.; Usman, J.; Partiwi, Y.I.; Yamin, M. Synthesis of Al2O3-Ag nanocomposite for nanofluids. AIP Conf. Proc. 2021, 2382, 080003. [Google Scholar] [CrossRef]
- Li, X.; Natsuki, J.; Natsuki, T. Silver nanoparticles/graphene oxide nanoscroll composites synthesized by one step. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114249. [Google Scholar] [CrossRef]
- Qin, R.; Li, G.; Pan, L.; Han, Q.; Sun, Y.; He, Q. Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity. J. Nanosci. Nanotechnol. 2017, 17, 2305–2311. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.J.; Gai, P.L.; Lee, A.F.; Olivi, L.; Wilson, K. Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties. Chem. Commun. 2008, 34, 4013–4015. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cubillo, A.; Diaz, C.; Fernandez, A.; Diaz, L.A.; Percharroman, C.; Torecillas, R.; Moya, J.S. Silver nanoparticles supported on α-, η- and δ-alumina. J. Eur. Ceram. Soc. 2006, 26, 1–7. [Google Scholar] [CrossRef]
- Dubok, V.A. Bioceramics—Yesterday, today, tomorrow. Powder Metall. Metal Ceram. 2000, 39, 381–394. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Guo, X.; Mao, J.; Zhang, S. Ag/Al2O3 for glycerol hydrogenolysis to 1,2-propanediol: Activity, selectivity and deactivation. Green Chem. 2012, 14, 156–163. [Google Scholar] [CrossRef]
- Aparna, Z.; Michael, M.; Pabi, S.K.; Ghosh, S. Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: An experimental investigation and development of new correlation function. Powder Technol. 2019, 343, 714–722. [Google Scholar] [CrossRef]
- Kiseleva, M.A.; Sokovnin, S.Y.; Balezin, M.E. Synthesis and characterization of Al2O3+Ag composite nanopowders. AIP Conf. Proc. 2019, 2174, 020031. [Google Scholar] [CrossRef]
- Pan, G.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.P. Effective synthesis of Al2O3-silver nanoparticles hybrids. In Proceedings of the 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China, 16–19 August 2017; pp. 244–248. [Google Scholar]
- Ren, L.; Xu, J.; Zeng, X.; Wong, C.P.; Sun, R. Preparation and Characterization of Al2O3-AgNP hybrids for Application in Thermally Conductive Polymer Composites. In Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018; pp. 1205–1208. [Google Scholar]
- Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S.M. Green synthesis of the Ag/Al2O3 nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants. J. Mater. Sci. Mater. Electron. 2019, 30, 3847–3859. [Google Scholar] [CrossRef]
- Kurtycz, P.; Karwowska, E.; Ciach, T.; Olszyna, A.; Kunicki, A. Biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder prepared by electrospinning technique—Antibacterial properties. Fibers Polym. 2013, 14, 1248–1253. [Google Scholar] [CrossRef]
- Jastrzębska, A.M.; Kunicki, A.R.; Olszyna, A.R.; Karwowska, E. Al2O3–Ag nanopowders: New method of synthesis, characterisation and biocidal activity. Adv. Appl. Ceram. 2011, 110, 108–113. [Google Scholar] [CrossRef]
- Jastrzębska, A.M.; Radziun, E.; Roslon, M.; Kunicki, A.R.; Olszyna, A.R.; Dudkiewicz-Wilcznska, J.; Anuszewska, E.; Karwowska, E. In vitro assessment of antibacterial properties and cytotoxicity of Al2O3–Ag nanopowders. Adv. Appl. Ceram. 2011, 110, 353–359. [Google Scholar] [CrossRef]
- Jastrzębska, A.M.; Karcz, J.; Karwowska, E.; Fiedorczuk, A.; Olszyna, A. Synthesis and Bioactivity of Reduced Graphene Oxide/Alumina-Noble Metal Nanocomposite Flakes. Int. J. Appl. Ceram. Technol. 2016, 13, 856–870. [Google Scholar] [CrossRef]
- Jastrzębska, A.M.; Karwowska, E.; Olszyna, A.R.; Kunicki, A. Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. Surf. Coat. Technol. 2015, 271, 225–233. [Google Scholar] [CrossRef]
- Lozhkomoev, A.; Kazantsev, S.; Pervikov, A.; Fomenko, A.; Gotman, I. New approach to production of antimicrobial Al2O3-Ag nanocomposites by electrical explosion of two wires. Mater. Res. Bull. 2019, 119, 110545. [Google Scholar] [CrossRef]
- Lozhkomoev, A.; Pervikov, A.; Bakina, O.; Kazantsev, S.; Gotman, I. Synthesis of antimicrobial AlOOH–Ag composite nanostructures by water oxidation of bimetallic Al–Ag nanoparticles. RSC Adv. 2018, 8, 36239–36244. [Google Scholar]
- Bakina, O.V.; Kazantsev, S.O.; Pervikov, A.V.; Glazkova, E.A.; Svarovskaya, N.V.; Lozhkomoev, A.S.; Khorobraya, E.G. Structure, Morphology, and Antibacterial Properties of Mesoporous AlOOH–Metal Nanocomposites. Inorg. Mater. Appl. Res. 2021, 12, 767–775. [Google Scholar] [CrossRef]
- Pervikov, A.; Suliz, K.; Lerner, M. Nanoalloying of clusters of immiscible metals and the formation of bimetallic nanoparticles in the conditions of non-synchronous explosion of two wires. Powder Technol. 2020, 360, 855–862. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, A.; Szala, M.; Cłapa, T. Adsorption Studies of the Gram-Negative Bacteria onto Nanostructured Silicon Carbide. Appl. Biochem. Biotechnol. 2014, 175, 1448–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubarda, V. On the effective lattice parameter of binary alloys. Mech. Mater. 2003, 35, 53–68. [Google Scholar] [CrossRef]
- Pervikov, A.V.; Kazantsev, S.O.; Lozhkomoev, A.S.; Lerner, M.I. Bimetallic AlAg, AlCu and AlZn nanoparticles with controllable phase compositions prepared by the electrical explosion of two wires. Powder Technol. 2020, 372, 136–147. [Google Scholar] [CrossRef]
- Geisler, A.H.; Hill, J.K. Analyses and interpretations of X-ray diffraction effects in patterns of aged alloys. Acta Crystall. 1948, 1, 238–252. [Google Scholar] [CrossRef]
- Marquis, E.A. A Reassessment of the Metastable Miscibility Gap in Al-Ag Alloys by Atom Probe Tomography. Microsc. Microanal. 2007, 13, 484–492. [Google Scholar] [CrossRef]
- Erni, R.; Heinrich, H.; Kostorz, G. On the internal structure of Guinier-Preston zones in Al-3 at.% Ag. Philos. Mag. Lett. 2003, 83, 599–609. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Glazkova, E.A.; Bakina, O.V.; Lerner, M.I.; Gotman, I.; Gutmanas, E.Y.; Kazantsev, S.O.; Psakhie, S.G. Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water [Electronic resource]. Nanotechnology 2016, 27, 205603. [Google Scholar] [CrossRef] [Green Version]
- Kazantsev, S.; Lozhkomoev, A.; Glazkova, E.; Gotman, I.; Gutmanas, E.; Lerner, M.; Psakhie, S. Preparation of aluminum hydroxide and oxide nanostructures with controllable morphology by wet oxidation of AlN/Al nanoparticles. Mater. Res. Bull. 2018, 104, 97–103. [Google Scholar] [CrossRef]
- Gromov, D.G.; Savitskiy, A.I.; Pavlova, L.M.; Borgardt, N.I.; Grishina, Y.S.; Dubkov, S.V.; Trifonov, A.Y. Formation of gold and silver cluster arrays using vacuum-thermal evaporation on a non-heated substrate. Int. Conf. Micro Nano-Electron. 2014, 9440, 98–107. [Google Scholar]
- Ortiz, C.; Torres, R.; Paredes, D. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin- resistant Staphylococcus aureus (MRSA). Int. J. Nanomed. 2014, 9, 1717–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matai, I.; Sachdev, A.; Dubey, P.; Kumar, S.U.; Bhushan, B.; Gopinath, P. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf. B Biointerfaces 2014, 115, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Chumpol, J.; Siri, S. Simple green production of silver nanoparticles facilitated by bacterial genomic DNA and their antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2017, 46, 619–625. [Google Scholar] [CrossRef]
Sample | Precursor | Synthesis Conditions | ||||
---|---|---|---|---|---|---|
Time, Hours | Medium | Temperature, °C | Pressure, MPa | Relative Humidity, % | ||
1 | Al/Ag | 1 | Water | 60 | 0.1 | - |
2 | Al/Ag | 72 | Humid air | 60 | 0.1 | 80 |
3 | Al/Ag | 6 | Water | 200 | 16 | - |
4 | Sample 1 | 2 | Air | 500 | 0.1 | - |
5 | Sample 2 | 2 | Air | 500 | 0.1 | - |
6 | Sample 3 | 2 | Air | 500 | 0.1 | - |
Strain | MIC (mg × mL−1) | |||||
---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | |
E. coli ATCC 25922 | 1.30 | 2.50 | 2.50 | 0.16 | 0.32 | 0.32 |
S. aureus ATCC 6538P | 0.60 | 5.00 | 2.50 | 0.32 | 0.32 | 0.64 |
MRSA ATCC 43300 | 1.024 | 5.00 | 5.00 | 0.512 | 0.512 | 1.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazantsev, S.O.; Bakina, O.V.; Pervikov, A.V.; Rodkevich, N.G.; Quang, N.H.; Le Thi, L.A.; Timofeev, S.S.; Lozhkomoev, A.S. Antimicrobial Activity and Sorption Behavior of Al2O3/Ag Nanocomposites Produced with the Water Oxidation of Bimetallic Al/Ag Nanoparticles. Nanomaterials 2022, 12, 3888. https://doi.org/10.3390/nano12213888
Kazantsev SO, Bakina OV, Pervikov AV, Rodkevich NG, Quang NH, Le Thi LA, Timofeev SS, Lozhkomoev AS. Antimicrobial Activity and Sorption Behavior of Al2O3/Ag Nanocomposites Produced with the Water Oxidation of Bimetallic Al/Ag Nanoparticles. Nanomaterials. 2022; 12(21):3888. https://doi.org/10.3390/nano12213888
Chicago/Turabian StyleKazantsev, Sergey O., Olga V. Bakina, Aleksandr V. Pervikov, Nikolay G. Rodkevich, Nguyen Hong Quang, Lan Anh Le Thi, Sergei S. Timofeev, and Aleksandr S. Lozhkomoev. 2022. "Antimicrobial Activity and Sorption Behavior of Al2O3/Ag Nanocomposites Produced with the Water Oxidation of Bimetallic Al/Ag Nanoparticles" Nanomaterials 12, no. 21: 3888. https://doi.org/10.3390/nano12213888
APA StyleKazantsev, S. O., Bakina, O. V., Pervikov, A. V., Rodkevich, N. G., Quang, N. H., Le Thi, L. A., Timofeev, S. S., & Lozhkomoev, A. S. (2022). Antimicrobial Activity and Sorption Behavior of Al2O3/Ag Nanocomposites Produced with the Water Oxidation of Bimetallic Al/Ag Nanoparticles. Nanomaterials, 12(21), 3888. https://doi.org/10.3390/nano12213888