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Abstract: The zirconium-based metal–organic framework (MOF) (UiO-66)/bamboo carbon (BC)
composite with chitosan was prepared using hydrothermal and impregnation methods and used for
capacitive desalination (CDI) and disinfection of water. The results showed that these composites
had fast ion exchange and charge transfer properties. During the CDI process, these composites’
electrodes exhibited good cycle stability, electrosorption capacity (4.25 mg/g) and excellent bacte-
ricidal effect. These carbon-based composites electrodes’ bactericidal rate for Escherichia coli could
reach 99.99% within 20 minutes; therefore, they had good performance and were a good choice for
high-performance deionization applications.
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1. Introduction

As society progresses, environmental problems are increasingly obvious and fresh
water shortages are increasingly serious [1–4]. To address this, it is necessary to recycle
water resources, which requires the application of water treatment technology. At present,
conventional water treatment methods include precipitation, filtration, chemistry, and
advanced oxidation processes; however, these methods produce toxic secondary pollutants
and carcinogens, which affect human health [5–8]. For example, chlorination and disin-
fection by-products are carcinogenic [9–11]. Therefore, new water treatment technologies
need to be developed.

Capacitive deionization (CDI) technology is a new type of water treatment, which was
mainly used in the early stages of desalination. As technology developed, it was gradually
applied to wastewater, heavy metal removal, and bacteria removal. CDI technology is non-
toxic, pollution-free, and operates simply and economically [12–15]. CDI water treatment
mainly depends on the performance of electrode materials and their specific capacitance,
conductivity, pore structure, etc. [16,17].

Metal–organic frameworks (MOFs), which have ordered crystal structures, high spe-
cific surface areas and good thermal stability properties [18], have been used in electrochem-
ical sensing [19], electrocatalysis, electrochemical energy storage devices (e.g., batteries and
supercapacitors) [20], gas capture and separation [21], drug delivery [22], sensing [23,24],
catalysis [25], and energy storage [26].

The zirconium-based MOF material UiO-66 is composed of octahedral and tetrahedral
cages and has excellent thermal, aqueous, and acid stability [27–29]. Based on these
advantages, UiO-66 has been used as a catalytic carrier of precious metals to detect H2O2
and telomerase [30–32]. However, research regarding UiO-66 and its composites used
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in the CDI desalination process is scarce. Therefore, we hoped to synthesize the UiO-66
carbon-based material as an electrode for use in CDI desalination. Antimicrobial agents,
such as chitosan, kill microorganisms on contact by physically destroying their cytoplasmic
membranes, and are less sensitive to microbial resistance than traditional antibiotics [33–38].
Therefore, antimicrobial agents were loaded onto the UiO-66 carbon-based materials to
possibly expand the CDI disinfection process.

In this study, carbon-based composite BC@UiO-66 was synthesized via solvothermal
treatment of the UiO-66 precursor mixture and bamboo carbon (BC) [39]. Next, chitosan
(CS) was loaded onto the BC@UiO-66 material using the immersion method to obtain the
composites, which were defined as BC@UiO-66-CS-x. The BC@UiO-66-CS-x were prepared
as CDI electrodes for the capacitive deionization disinfection of water.

2. Experimental
2.1. Materials

All chemicals, including zirconium chloride (ZrCl4, 98%), terephthalic acid (H2BDC,
99%), bamboo carbon (BC, 20 nm), methanol (CH3OH, 99.5%), N-Methyl pyrrolidone (NMP,
99.5%), N,N-Dimethylformamide (DMF, 99%), acetone (CH3COCH3, 99.5%), acetic acid
(CH3COOH, 99.5%), potassium hydroxide (KOH, 90%), polyvinylidene fluoride (PVDF,
99.5%), sodium chloride (NaCl, 99.5%), and chitosan powder (99.5%) were purchased from
Sigma-Aldrich and were of analytical grade.

2.2. Preparation of BC@UiO-66-Chitosan

UiO-66 was prepared according to the procedure reported in the literature [39,40].
First, under ultrasonic conditions, ZrCl4 (0.36 g), H2BDC (0.26 g), DMF (21.00 mL), and
CH3COOH (8.60 mL) were thoroughly mixed to obtain a uniform suspension. Next, the
BC suspension, which was prepared by dissolving the bamboo carbon in deionized water
under ultrasonication, was added to the above uniform suspension to obtain a mixed
suspension. The mixed suspension was transferred to a hydrothermal synthesis reactor and
placed at a constant 120 ◦C for 24 h. Second, when the mixed suspension sample returned
to room temperature, white crystals were obtained. After centrifugation, the supernatant
was removed, and the products were repeatedly washed using acetone. After stirring, the
products were dried at 65 ◦C for 24 h. The dried product was bamboo carbon/UiO-66
composite, named BC@UiO-66. Finally, BC@UiO-66 was modified with chitosan. To obtain
chitosan solutions, 1.00, 2.00, and 3.00 g of chitosan were each dissolved in a 3 wt% acetic
acid solution. Next, 0.25 g BC@UiO-66 were immersed into each chitosan solution for
24 h at 30 ◦C. After immersion, the mixed products were transferred to the oven to dry at
80 ◦C. Samples were then washed, filtered with deionized water, and transferred to the
oven to dry at 105 ◦C. The dried products were BC@UiO-66 modified with chitosan, named
BC@UiO-66-CS-x; x represented different chitosan weights.

2.3. Characterization

SEM images and nitrogen adsorption isotherms of the samples were measured using
field emission scanning electron microscopy (FESEM, JSM-7800) (Electronics Japan-Oxford,
TKY, Tokyo, Japan) and an ASAP 2020 (Micromeritics) (NSK Ltd., TKY, Tokyo, Japan),
respectively. The Brunauer–Emmett–Teller (BET) method was utilized to calculate specific
surface areas, pore volumes, and pore size. X-ray photoelectron spectroscopy (XPS) was per-
formed using the Thermo Fisher Scientific ESCALAB 250Xi (Thermo Fisher Scientific-CN,
Shanghai, China). Thermal decomposition of the solid was measured using SDT Q600 TA.

2.4. CDI Electrode Fabrication

BC@UiO-66/BC@UiO-66-CS-x, acetylene black, and PVDF (mass ratio 8:1:1) were
added to the mortar. An appropriate amount of NMP was added to fully grind the mortar
to obtain a slurry. Graphite paper (5 × 5 cm2) was coated with the slurry; samples were
then transferred to dry in a vacuum drying oven at 80 ◦C.
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2.5. CDI Experiments

The CDI device consisted of four main firmware: a DC power supply, a conductivity
monitor, a peristaltic pump, and a CDI cell (Figure 1). The CDI cell included four main
parts: end plates, soft silica gel plates, electrodes, and a spacer. The bio-contaminated
water/NaCl was pumped into the CDI device at a flow rate of 12 mL/min under 1.2 V.
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2.6. Electrochemical Measurements

The electrochemical performance of the samples was evaluated using cyclic voltam-
metry (CV), which was performed in a CHI 660D electrochemical workstation using a
three-electrode system. The system included a saturated calomel electrode (the reference
electrode), a platinum gauze electrode (the counter electrode), and a BC@UiO-66/BC@UiO-
66-CS-x electrode (the working electrode). This experiment was performed in triplicate.
The specific capacitances were calculated using the following formula:

C =
∫ IdV

2v∆Vm

where C was the specific capacitance (F/g), I was the response current density (A), V was
the voltage (V), v was the potential scan rate (V/s), and m was the mass of the electrode
material (g).

2.7. Preparation of Microbial Cells

Escherichia coli (ATCC8739), broths, and agar media were obtained from American Type
Culture Collection and Becton Dickinson Company (Franklin Lakes, NJ, USA). Freeze-dried
bacteria were inoculated in Mueller Hinton (MH) broth and cultured at 37 ◦C overnight
to recovery. Bacteria cells were inoculated in LB agar, cultured at 37 ◦C overnight, and
then harvested, centrifuged, and washed with phosphate buffered saline (PBS) solution to
remove residual nutrition. Cell numbers were determined using the plate colony counting
method. Next, 100 µL of 10-fold dilutions was pipetted into the LB agar of a disposable
sterile culture plate. Plates were cultured in a humidity incubator at a constant 37 ◦C
overnight for colony formation.

2.8. In Vitro Culture

First, the BC@UiO-66/BC@UiO-66-CS-x samples, which were dispersed in sterile
water under ultrasonication, were sterilized under the UV lamp for 30 min. Next, 1 mL
of 106 CFU cells was pipetted into the dispersion of the sample and cultured in vitro. The
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in vitro culture condition was 200 rpm shaking at a constant 37 ◦C. After in vitro culturing
for 15, 30, 60, 120, and 180 min, 0.1 mL of each suspension was pipetted into LB agar and
cultured overnight at 37 ◦C.

2.9. CDI Percent Killing Calculation

The E. coli suspension (106 CFU mL−1) was prepared as the starting bio-contaminated
water. During the CDI process, 0.1 mL of CDI outflow was pipetted into the LB agar of
a disposable sterile culture plate and incubated overnight at 37 ◦C for colony formation.
This experiment was performed in triplicate. The percentage kills were calculated using
the following formula:

%kill =
cell count o f control − survivor count on sample

cell count o f control
× 100%

3. Results and discussion
3.1. Characterization of BC@UiO-66 and BC@UiO-66-CS-x

Figure 2a is an FESEM micrograph of BC@UiO-66, which illustrates the UiO-66 crystal-
lites’ octahedral shape and the pore structure of bamboo carbon. It also shows that UiO-66
successfully formed composite materials with bamboo carbon. In comparison, Figure 2b–d
show that a thin layer of chitosan formed on BC@UiO-66’s surface, and that the surfaces
of BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-66-CS-3 became blurry; this showed
that chitosan did not destroy BC@UiO-66’s structure, and indicated cooperation between
BC@UiO-66 and chitosan, possibly because chitosan loaded into BC@UiO-66’s pores and
onto its surfaces.
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The nitrogen adsorption–desorption isotherm of BC@UiO-66 (Figure 3a) indicates that
BC@UiO-66’s isotherm was a type-IV isotherm, indicating the existence of mesopores in
BC@UiO-66. However, isotherms of BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-
66-CS-3 were type-I isotherms, indicating the existence of micropores in these samples.
The samples’ BJH pore size distributions (Figure 3b), pore sizes, and BET surface areas



Nanomaterials 2022, 12, 3901 5 of 12

are presented in Table 1. BC@UiO-66’s specific surface area and total pore volume were
453.29 m2/g and 0.97 cm3/g, respectively. However, BC@UiO-66-CS-x’s specific surface
area and total pore volume were significantly lower than BC@UiO-66’s were. This was
possibly associated with the chitosan loaded on the samples. Additionally, the loss of
pore volume was possibly associated with the introduction of chitosan onto BC@UiO-66’s
entrance and walls.
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Table 1. Comparison data from adsorption isotherms.

Sample SBET
(m2/g)

Vtot
(cm3/g)

Dpore
(Å)

BC@UiO-66 453.29 0.97 42.7
BC@UiO-66-CS-1 58.09 0.06 21.3
BC@UiO-66-CS-2 48.06 0.06 25.7
BC@UiO-66-CS-3 124.64 0.11 17.1

Figure 4 shows thermogravimetric behaviors of pure chitosan, BC@UiO-66, BC@UiO-
66-CS-1, BC@UiO-66-CS-2, and BC@UiO-66-CS-3. Weight loss at 100 ◦C was mainly due
to water evaporation. The large weight loss at TG 235–322 ◦C was mainly due to chitosan
cleavage. In comparison, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-66-CS-3 sam-
ples exhibited similar weight loss at 300 ◦C. This further demonstrated that chitosan was
successfully loaded on the BC@UiO-66 sample, which corresponds with the above results.
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The XPS N 1s spectra of BC@UiO-66, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-
66-CS-3 were measured using X-ray photoelectron spectroscopy (XPS). Figure 5 shows
that BC@UiO-66 had no nitrogen element; however, BC@UiO-66-CS-1, BC@UiO-66-CS-2,
and BC@UiO-66-CS-3 had apparent N 1s peaks, and the peak value increased with an
increase in the load chitosan, corresponding to data presented in Table 2. The samples’
nitrogen contents increased from 0.8% to 2.26%; Table 2 shows that chitosan existed in
BC@UiO-66-CS’s channel and on its surface.
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Figure 5. N 1s spectra of BC@UiO-66, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-66-CS-3.

Table 2. Surface elemental composition of BC@UiO-66, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and
BC@UiO-66-CS-3 from XPS N 1s spectra.

Sample
Atomic Concentration (%)

C O N

BC@UiO-66 92.46 7.54 0.00
BC@UiO-66-CS-1 93.16 6.04 0.80
BC@UiO-66-CS-2 85.82 12.15 2.03
BC@UiO-66-CS-3 83.77 13.97 2.26

CV experiments using BC@UiO-66, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-
66-CS-3 electrodes samples in 0.5 M NaCl were measured at different scan rates (5, 10, 15,
25, 50, and 100 mV/s). Figure 6 illustrates a pair of wide and symmetrical redox peaks
in the samples’ CV curves, indicating that the redox process was a reversible electrode
process. Additionally, as the scanning rate increased from 5 mV/s to 100 mV/s, redox peaks
shifted in a positive way and the peak current gradually increased, indicating a positive
relationship between the scanning rate and the redox process. When Figure 6a–d were
compared, it was noted that peak current gradually decreased after loading the chitosan,
indicating that chitosan film on BC@UiO-66’s surface affected electron transfer, and that
the greater the load, the more significant this influence would be.
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(d) BC@UiO-66-CS-3 at different scan rates.

Figure 7a shows conductivity variation curves with time at NaCl 200 mg/L. After
four cycles, the CDI capacitance desalination process showed good stability; the CDI
capacitance desalination adsorption process began quickly, slowed, and gradually tended
toward dynamic balance. When positive electricity began, the ion adsorption effect of the
electrode material was obvious; ions were quickly adsorbed to the corresponding electrode.
Ion enrichment, which tended to be stable, increased with time. The BC@UiO-66-CS-2
electrode material’s adsorption effect was the most obvious; conductivity was reduced from
541.1 to 530.5 µS/cm, which was significantly higher than for other electrode materials. In
addition, BC@UiO-66’s adsorption effect could be appropriately increased using chitosan,
but weakened when the load was too large. For example, the BC@UiO-66-CS-3 electrode
material’s adsorption effect was lower than that of the other electrode materials, indicating
that an excessive chitosan load affected the capacitance desalination effect. Additionally,
Figure 7b shows that the BC@UiO-66-CS-2 electrode material’s electrosorptive capacity was
4.25 mg/g, which was higher than that of other electrode materials, whereas the BC@UiO-
66-CS-3 electrode material’s electrosorptive capacity was the lowest, which corresponds to
results presented in Figure 7a.
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3.2. Antimicrobial Activity

Figure 8 shows E. coli results for samples cultured in vitro for 15 min and 180 min.
Figure 8a–d show that E. coli colony numbers significantly decreased after in vitro culture,
indicating that E. coli was adsorbed and killed by the material during in vitro culture. Data
presented in Figure 8e show that the percentage of E. coli killed increased as in vitro culture
time increased, which further indicated that the material had a good bactericidal effect on
E. coli. The BC@UiO-66-CS-2 material’s percentage of E. coli kills was the most significant,
ranging from 68.94% to 98.48%, which was higher than those of the other materials were.
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Figure 8. (a–d) Colony forming units; and (e) microbe kill rates after in vitro cultures using BC@UiO-
66, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-66-CS-3 (100 µg mL−1) for 15, 30, 60, 120, and
180 min at 106 CFU mL−1.

To further examine E. coli’s morphological changes during in vitro culture, it was
observed using SEM after 60 min in vitro culture. E. coli’s morphology changed significantly
from Figure 9a–e. First, its surface changed from smooth to wrinkled. Second, its length
changed, and obvious defects appeared at both ends. This indicated that after 60 min of
in vitro culture, E. coli’s surface was damaged by the physical action of the samples’ raw
edges, and that chitosan’s action destroyed E. coli’s cell membrane, resulting in its death.
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3.3. CDI Process

Figure 10 shows E. coli results when samples were cultured for 5 min and 30 min in
CDI. As seen in Figure 10a–d, E. coli colony numbers decreased significantly after CDI,
indicating that E. coli was adsorbed and killed by the material during the CDI process. No
colonies were found after 30 min of CDI using BC@UiO-66-CS-1, BC@UiO-66-CS-2, and
BC@UiO-66-CS-3 electrodes, indicating that the electrodes’ CDI disinfection effects were
ideal. Data presented in Figure 10e indicates that the BC@UiO-66-CS-2 material’s kills
percentage at 20 min was 100%, which was higher than those of the other materials were.
This result was significantly higher than that of in vitro culture, which indicated that E. coli
was rapid enriched to the surface of electrode materials under the action of CDI, and that
E. coli was quickly killed under the physical effects of the electrode material and chitosan.
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Figure 10. (a–d) Colony forming units; and (e) microbe kill rates after CDI processing using BC@UiO-
66, BC@UiO-66-CS-1, BC@UiO-66-CS-2, and BC@UiO-66-CS-3 electrodes for 5, 10, 15, 20, 25, and 30
min at 106 CFU mL−1.

To further examine the adsorption and desorption of E. coli during CDI, after CDI,
E. coli was observed using SEM. Figure 11a,b indicate that E. coli was obviously adsorbed on
the surface of electrode material in the process of CDI adsorption, and E. coli cells appeared
destroyed, with wrinkled edges. E. coli was obviously desorbed from the surface of the
electrode material into the solution during the CDI desorption process. This indicated
that the electrode materials had good adsorption, desorption and cycle stability during the
CDI process.
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4. Conclusions

In this work, BC@UiO-66 and BC@UiO-66-CS-x composites were prepared using con-
ventional hydrothermal and impregnation methods. The composites had the advantages
of large pore size, good electrical conductivity, and good electrochemical stability, which
could provide faster electron transfer. Therefore, the composite materials could be used
as a new type of electrode materials for CDI desalination and disinfection. The role of
chitosan was not as clear; it improved desalination performance but did not affect disin-
fection in an evident manner. Capacitance desalination results showed that the composite
materials had high electrosorption capacity and cycle stability, and capacitance disinfection
results showed that the composite materials had good disinfection effects over a short time.
Among the composite materials, BC@UiO-66-CS-2 had the best capacitance desalination
and disinfection performances. Therefore, this carbon-based composite could promote the
development of CDI and water treatment technology. In addition to bamboo carbon based
UiO-66 composites, there are many other UiO-66 composites, including the solvothermal
synthesis of UiO-66 nanocrystals with high surface area using acetone as the synthesis
medium [41] and UiO-66/nanocellulose aerogels with hierarchical pores and low density,
which were prepared using a self-crosslinking method [42]. These both have potential as
new electrode materials for capacitive desalination and disinfection of water.
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