An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform
Abstract
:1. Introduction
2. RiskGONE Instance of the Enalos Cloud Platform
2.1. Required Data/Input to the “In Vitro Dosimetry” Simulation
2.2. Output
3. Case Studies
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, X.; Lowry, G.V. Progress towards Standardized and Validated Characterizations for Measuring Physicochemical Properties of Manufactured Nanomaterials Relevant to Nano Health and Safety Risks. NanoImpact 2018, 9, 14–30. [Google Scholar] [CrossRef]
- Ivask, A.; Mitchell, A.J.; Malysheva, A.; Voelcker, N.H.; Lombi, E. Methodologies and Approaches for the Analysis of Cell–Nanoparticle Interactions. WIREs Nanomed. Nanobiotechnology 2018, 10, e1486. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K.A. Quantitative Assessment of the Comparative Nanoparticle-Uptake Efficiency of a Range of Cell Lines. Small 2011, 7, 3341–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guggenheim, E.J.; Milani, S.; Röttgermann, P.J.F.; Dusinska, M.; Saout, C.; Salvati, A.; Rädler, J.O.; Lynch, I. Refining in Vitro Models for Nanomaterial Exposure to Cells and Tissues. NanoImpact 2018, 10, 121–142. [Google Scholar] [CrossRef]
- Drasler, B.; Sayre, P.; Steinhäuser, K.G.; Petri-Fink, A.; Rothen-Rutishauser, B. In Vitro Approaches to Assess the Hazard of Nanomaterials. NanoImpact 2017, 8, 99–116. [Google Scholar] [CrossRef]
- Romeo, D.; Salieri, B.; Hischier, R.; Nowack, B.; Wick, P. An Integrated Pathway Based on in Vitro Data for the Human Hazard Assessment of Nanomaterials. Environ. Int. 2020, 137, 105505. [Google Scholar] [CrossRef]
- Moore, T.L.; Urban, D.A.; Rodriguez-Lorenzo, L.; Milosevic, A.; Crippa, F.; Spuch-Calvar, M.; Balog, S.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Administration Method in Cell Culture Alters Particle-Cell Interaction. Sci. Rep. 2019, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Murdock, R.C.; Braydich-Stolle, L.; Schrand, A.M.; Schlager, J.J.; Hussain, S.M. Characterization of Nanomaterial Dispersion in Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique. Toxicol. Sci. 2008, 101, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Wang, S.; Yan, X.; Zhou, H.; Zhan, J.; Liu, S.; Sharma, V.K.; Jiang, G.; Zhu, H.; Yan, B. Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries. ACS Nano 2020, 14, 289–302. [Google Scholar] [CrossRef]
- Duan, Y.; Coreas, R.; Liu, Y.; Bitounis, D.; Zhang, Z.; Parviz, D.; Strano, M.; Demokritou, P.; Zhong, W. Prediction of Protein Corona on Nanomaterials by Machine Learning Using Novel Descriptors. NanoImpact 2020, 17, 100207. [Google Scholar] [CrossRef]
- Konduru, N.V.; Molina, R.M.; Swami, A.; Damiani, F.; Pyrgiotakis, G.; Lin, P.; Andreozzi, P.; Donaghey, T.C.; Demokritou, P.; Krol, S.; et al. Protein Corona: Implications for Nanoparticle Interactions with Pulmonary Cells. Part. Fibre Toxicol. 2017, 14, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.M.; Beltran-Huarac, J.; Pyrgiotakis, G.; Demokritou, P. Effective Delivery of Sonication Energy to Fast Settling and Agglomerating Nanomaterial Suspensions for Cellular Studies: Implications for Stability, Particle Kinetics, Dosimetry and Toxicity. NanoImpact 2018, 10, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Konduru, N.V.; Murdaugh, K.M.; Swami, A.; Jimenez, R.J.; Donaghey, T.C.; Demokritou, P.; Brain, J.D.; Molina, R.M. Surface Modification of Zinc Oxide Nanoparticles with Amorphous Silica Alters Their Fate in the Circulation. Nanotoxicology 2016, 10, 720–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships. J. Chem. Inf. Modeling 2015, 55, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Konduru, N.V.; Jimenez, R.J.; Swami, A.; Friend, S.; Castranova, V.; Demokritou, P.; Brain, J.D.; Molina, R.M. Silica Coating Influences the Corona and Biokinetics of Cerium Oxide Nanoparticles. Part. Fibre Toxicol. 2015, 12, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, J.G.; Quevedo, D.F.; Faccani, L.; Costa, A.L.; Landsiedel, R.; Werle, K.; Wohlleben, W. Dosimetry in Vitro—Exploring the Sensitivity of Deposited Dose Predictions vs. Affinity, Polydispersity, Freeze-Thawing, and Analytical Methods. Nanotoxicology 2021, 15, 21–34. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Demokritou, P. Preparation, Characterization, and in Vitro Dosimetry of Dispersed, Engineered Nanomaterials. Nat. Protoc. 2017, 12, 355–371. [Google Scholar] [CrossRef]
- Teeguarden, J.G.; Hinderliter, P.M.; Orr, G.; Thrall, B.D.; Pounds, J.G. Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments. Toxicol. Sci. 2007, 95, 300–312. [Google Scholar] [CrossRef]
- Price, S.R.; Kinnear, C.; Balog, S. Particokinetics and in Vitro Dose of High Aspect Ratio Nanoparticles. Nanoscale 2019, 11, 5209–5214. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Jensen, K.A.; Baun, A.; Rasmussen, K.; Rauscher, H.; Tantra, R.; Cupi, D.; Gilliland, D.; Pianella, F.; Riego Sintes, J.M. Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media—Is There a Rationale for Harmonization? Null 2015, 18, 299–326. [Google Scholar] [CrossRef]
- Liu, R.; Liu, H.H.; Ji, Z.; Chang, C.H.; Xia, T.; Nel, A.E.; Cohen, Y. Evaluation of Toxicity Ranking for Metal Oxide Nanoparticles via an in Vitro Dosimetry Model. ACS Nano 2015, 9, 9303–9313. [Google Scholar] [CrossRef] [PubMed]
- Poli, D.; Mattei, G.; Ucciferri, N.; Ahluwalia, A. An Integrated In Vitro–In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures. Ann. Biomed. Eng. 2020, 48, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
- Böhmert, L.; König, L.; Sieg, H.; Lichtenstein, D.; Paul, N.; Braeuning, A.; Voigt, A.; Lampen, A. In Vitro Nanoparticle Dosimetry for Adherent Growing Cell Monolayers Covering Bottom and Lateral Walls. Part. Fibre Toxicol. 2018, 15, 42. [Google Scholar] [CrossRef]
- Hinderliter, P.M.; Minard, K.R.; Orr, G.; Chrisler, W.B.; Thrall, B.D.; Pounds, J.G.; Teeguarden, J.G. ISDD: A Computational Model of Particle Sedimentation, Diffusion and Target Cell Dosimetry for in Vitro Toxicity Studies. Part. Fibre Toxicol. 2010, 7, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.M.; Teeguarden, J.G.; Demokritou, P. An Integrated Approach for the in Vitro Dosimetry of Engineered Nanomaterials. Part. Fibre Toxicol. 2014, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.G.; Smith, J.N.; Thrall, B.D.; Baer, D.R.; Jolley, H.; Munusamy, P.; Kodali, V.; Demokritou, P.; Cohen, J.; Teeguarden, J.G. ISD3: A Particokinetic Model for Predicting the Combined Effects of Particle Sedimentation, Diffusion and Dissolution on Cellular Dosimetry for in Vitro Systems. Part. Fibre Toxicol. 2018, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.K.; Shim, Y.J.; Yoon, T.H. Effects of Agglomeration on in Vitro Dosimetry and Cellular Association of Silver Nanoparticles. Environ. Sci. Nano 2018, 5, 446–455. [Google Scholar] [CrossRef]
- Sohal, I.S.; DeLoid, G.M.; O’Fallon, K.S.; Gaines, P.; Demokritou, P.; Bello, D. Effects of Ingested Food-Grade Titanium Dioxide, Silicon Dioxide, Iron (III) Oxide and Zinc Oxide Nanoparticles on an in Vitro Model of Intestinal Epithelium: Comparison between Monoculture vs. a Mucus-Secreting Coculture Model. NanoImpact 2020, 17, 100209. [Google Scholar] [CrossRef]
- Liu, H.H.; Surawanvijit, S.; Rallo, R.; Orkoulas, G.; Cohen, Y. Analysis of Nanoparticle Agglomeration in Aqueous Suspensions via Constant-Number Monte Carlo Simulation. Environ. Sci. Technol. 2011, 45, 9284–9292. [Google Scholar] [CrossRef]
- Mukherjee, D.; Leo, B.F.; Royce, S.G.; Porter, A.E.; Ryan, M.P.; Schwander, S.; Chung, K.F.; Tetley, T.D.; Zhang, J.; Georgopoulos, P.G. Modeling Physicochemical Interactions Affecting in Vitro Cellular Dosimetry of Engineered Nanomaterials: Application to Nanosilver. J. Nanoparticle Res. 2014, 16, 2616. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Pirela, S.V.; Pal, A.; Liu, J.; Srebric, J.; Demokritou, P. Advanced Computational Modeling for in Vitro Nanomaterial Dosimetry. Part. Fibre Toxicol. 2015, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLoid, G.; Cohen, J.M.; Darrah, T.; Derk, R.; Rojanasakul, L.; Pyrgiotakis, G.; Wohlleben, W.; Demokritou, P. Estimating the Effective Density of Engineered Nanomaterials for in Vitro Dosimetry. Nat. Commun. 2014, 5, 3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huk, A.; Izak-Nau, E.; Reidy, B.; Boyles, M.; Duschl, A.; Lynch, I.; Dušinska, M. Is the Toxic Potential of Nanosilver Dependent on Its Size? Part. Fibre Toxicol. 2014, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputo, F.; Clogston, J.; Calzolai, L.; Rösslein, M.; Prina-Mello, A. Measuring Particle Size Distribution of Nanoparticle Enabled Medicinal Products, the Joint View of EUNCL and NCI-NCL. A Step by Step Approach Combining Orthogonal Measurements with Increasing Complexity. J. Control. Release 2019, 299, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Van Holde, K.E.; Johnson, W.C.; Johnson, C.; Ho, P.S. Principles of Physical Biochemistry; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2006; ISBN 978-0-13-046427-9. [Google Scholar]
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [Green Version]
- Avramescu, M.-L.; Chénier, M.; Palaniyandi, S.; Rasmussen, P.E. Dissolution Behavior of Metal Oxide Nanomaterials in Cell Culture Medium versus Distilled Water. J. Nanoparticle Res. 2020, 22, 222. [Google Scholar] [CrossRef]
- Pem, B.; Pongrac, I.M.; Ulm, L.; Pavičić, I.; Vrček, V.; Domazet Jurašin, D.; Ljubojević, M.; Krivohlavek, A.; Vinković Vrček, I. Toxicity and Safety Study of Silver and Gold Nanoparticles Functionalized with Cysteine and Glutathione. Beilstein J. Nanotechnol. 2019, 10, 1802–1817. [Google Scholar] [CrossRef] [Green Version]
- Jurašin, D.D.; Ćurlin, M.; Capjak, I.; Crnković, T.; Lovrić, M.; Babič, M.; Horák, D.; Vrček, I.V.; Gajović, S. Surface Coating Affects Behavior of Metallic Nanoparticles in a Biological Environment. Beilstein J. Nanotechnol. 2016, 7, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Tadjiki, S.; Montaño, M.D.; Assemi, S.; Barber, A.; Ranville, J.; Beckett, R. Measurement of the Density of Engineered Silver Nanoparticles Using Centrifugal FFF-TEM and Single Particle ICP-MS. Anal. Chem. 2017, 89, 6056–6064. [Google Scholar] [CrossRef]
- Afantitis, A.; Melagraki, G.; Tsoumanis, A.; Valsami-Jones, E.; Lynch, I. A Nanoinformatics Decision Support Tool for the Virtual Screening of Gold Nanoparticle Cellular Association Using Protein Corona Fingerprints. Nanotoxicology 2018, 12, 1148–1165. [Google Scholar] [CrossRef]
Nanoparticle | Material | Density (g/cm3) | Effective Density * (g/cm3) | dH (nm) (% Volume) | ζ Potential (mV) |
---|---|---|---|---|---|
AOT-AgNP | Ag | 10.49 | 8.58 | 48.1 ± 2.0 (100%) | −35.1 ± 0.7 |
PLL-AgNP | Ag | 10.49 | 8.58 | 24.2 ± 2.6 (100%) | 47.6 ± 2.4 |
CYS-AgNP | Ag | 10.49 | 8.58 | 6.6 ± 1.5 (100%) | −44.5 ± 6.2 |
GSH-AgNP | Ag | 10.49 | 8.58 | 4.5 ± 1.7 (100%) | −19.5 ± 6.1 |
CYS-AuNP | Au | 19.30 | 17.73 | 18.7 ± 11.1 (100%) | −32.3 ± 4.5 |
GSH-AuNP | Au | 19.30 | 17.73 | 3.9 ± 1.2 (100%) | −41.2 ± 6.4 |
Calculated Value | Nominal conc. (mg/cm3) | AOT-AgNP | PLL-AgNP | GSH-AuNP | GSH-AgNP | CYS AuNP | CYS AgNP |
---|---|---|---|---|---|---|---|
Mass concentration of NPs at well bottom (mg/cm3) | 0.005 | 0.042 | 0.189 | 0.008 | 0.005 | 0.057 | 0.005 |
0.01 | 0.084 | 0.378 | 0.017 | 0.010 | 0.114 | 0.010 | |
Mass per unit area of well (mg/cm2) | 0.005 | 4.192 × 10−5 | 1.891 × 10−4 | 8.353 × 10−6 | 5.019 × 10−6 | 5.676 × 10−5 | 5.034 × 10−6 |
0.01 | 8.384 × 10−5 | 3.782 × 10−4 | 1.671 × 10−5 | 1.004 × 10−5 | 1.135 × 10−4 | 1.007 × 10−5 | |
NPs number at well bottom (cm−3) | 0.005 | 2.196 × 1010 | 6.382 × 1011 | 4.556 × 1012 | 1.016 × 1013 | 5.564 × 1010 | 4.350 × 1012 |
0.01 | 4.392 × 1010 | 1.276 × 1011 | 9.112 × 1012 | 2.031 × 1013 | 1.113 × 1011 | 8.701 × 1012 | |
NPs number per unit area of well (cm−2) | 0.005 | 2.196 × 107 | 6.382 × 107 | 4.556 × 109 | 1.016 × 1010 | 5.564 × 107 | 4.350 × 109 |
0.01 | 4.392 × 107 | 1.276 × 108 | 9.112 × 109 | 2.031 × 1010 | 1.113 × 108 | 8.701 × 109 | |
NPs surface area at well bottom (cm2/cm3) | 0.005 | 2.656 | 4.482 | 2.967 | 5.550 | 2.024 | 4.223 |
0.01 | 5.313 | 8.964 | 5.934 | 11.101 | 4.048 | 8.446 | |
NPs surface area per unit area of well (cm2/cm2) | 0.005 | 0.003 | 0.004 | 0.003 | 0.006 | 0.002 | 0.004 |
0.01 | 0.005 | 0.009 | 0.006 | 0.011 | 0.004 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheimarios, N.; Pem, B.; Tsoumanis, A.; Ilić, K.; Vrček, I.V.; Melagraki, G.; Bitounis, D.; Isigonis, P.; Dusinska, M.; Lynch, I.; et al. An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform. Nanomaterials 2022, 12, 3935. https://doi.org/10.3390/nano12223935
Cheimarios N, Pem B, Tsoumanis A, Ilić K, Vrček IV, Melagraki G, Bitounis D, Isigonis P, Dusinska M, Lynch I, et al. An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform. Nanomaterials. 2022; 12(22):3935. https://doi.org/10.3390/nano12223935
Chicago/Turabian StyleCheimarios, Nikolaos, Barbara Pem, Andreas Tsoumanis, Krunoslav Ilić, Ivana Vinković Vrček, Georgia Melagraki, Dimitrios Bitounis, Panagiotis Isigonis, Maria Dusinska, Iseult Lynch, and et al. 2022. "An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform" Nanomaterials 12, no. 22: 3935. https://doi.org/10.3390/nano12223935
APA StyleCheimarios, N., Pem, B., Tsoumanis, A., Ilić, K., Vrček, I. V., Melagraki, G., Bitounis, D., Isigonis, P., Dusinska, M., Lynch, I., Demokritou, P., & Afantitis, A. (2022). An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform. Nanomaterials, 12(22), 3935. https://doi.org/10.3390/nano12223935