Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of PEDOT:PSS HTLs with Different Dilution Ratios
2.3. Preparation of Perovskite (MAPbI3−xClx) Precursor Solution
2.4. Devices Fabrication
2.5. Characterization
3. Results and Discussion
3.1. Effect of Dilution Concentration
3.2. Photovoltaic Performance
3.2.1. Characterization of SEM and XRD
3.2.2. Characterization of Optical and Electrical Performance
3.2.3. Interfacial Defect States
3.2.4. Film Work Function
4. Conclusions
- (1)
- Through dilution of PEDOT:PSS, the transmittance and conductivity of D-PEDOT:PSS HTL are improved, and the density of defect states at the D-PEDOT:PSS/Perovskite interface are reduced, which is conducive to the separation and transmission of charges, and thus, JSC is significantly promoted.
- (2)
- According to UPS data, it is found that the work function of D-PEDOT:PSS film is changed, which is more consistent with the perovskite layer, and the voltage loss is reduced, so that the higher VOC is obtained.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Gratzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and Challenges of Perovskite Solar Cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.A.; Jiang, Y.; Soufiani, A.M.; Ho-Baillie, A. Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites. J. Phys. Chem. Lett. 2015, 6, 4774–4785. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Gratzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, Z.S.; Choy, W.C.H. Device Physics of the Carrier Transporting Layer in Planar Perovskite Solar Cells. Adv. Opt. Mater. 2019, 7, 1900407. [Google Scholar] [CrossRef]
- Wang, G.; Liao, L.; Chen, L.; Xu, C.; Yao, Y.; Liu, D.; Li, P.; Deng, J.; Song, Q. Perovskite Solar Cells Fabricated under Ambient Air at Room Temperature without any Post-Treatment. Org. Electron. 2020, 86, 105918. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- The National Renewable Energy Laboratory. Photovoltaic Research. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 30 June 2022).
- Khan, F.; Rezgui, B.D.; Kim, J.H. Analysis of PV cell parameters of solution processed Cu-doped nickel oxide hole transporting layer-based organic-inorganic perovskite solar cells. Sol. Energy 2020, 209, 226–234. [Google Scholar] [CrossRef]
- Xia, Y.; Dai, S. Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. J. Mater. Sci. Mater. Electron. 2020, 32, 12746–12757. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, G.; Liao, L.; Liu, D.; Zhou, G.; Xu, C.; Yang, X.; Wu, R.; Song, Q. Enhancing the Open Circuit Voltage of PEDOT:PSS-PC61BM Based Inverted Planar Mixed Halide Perovskite Solar Cells from 0.93 to 1.05 V by Simply Oxidizing PC61BM. Org. Electron. 2018, 59, 260–265. [Google Scholar] [CrossRef]
- Sandrez, S.; Molenda, Z.; Guyot, C.; Renault, O.; Barnes, J.P.; Hirsch, L.; Maindron, T.; Wantz, G. Halide Perovskite Precursors Dope PEDOT:PSS. Adv. Electron. Mater. 2021, 7, 2100394. [Google Scholar] [CrossRef]
- Xu, C.; Yao, Y.; Wang, G.; Dong, J.; Xu, G.; Zhong, Y.; Lu, D.; Zhao, X.; Liu, D.; Zhou, G.; et al. Self-Woven Monolayer Polyionic Mesh to Achieve Highly Efficient and Stable Inverted Perovskite Solar Cells. Chem. Eng. J. 2022, 428, 132074. [Google Scholar] [CrossRef]
- Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; et al. Suppressed Decomposition of Organometal Halide Perovskites by Impermeable Electron-Extraction Layers in Inverted Solar Cells. Nat. Commun. 2017, 8, 13938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Li, M.; Yang, K.; Xiong, Z.; Yang, B.; Wang, M.; Tang, X.; Zang, Z.; Liu, X.; Li, B.; et al. PEDOT:PSS Monolayers to Enhance the Hole Extraction and Stability of Perovskite Solar Cells. J. Mater. Chem. A 2018, 6, 16583–16589. [Google Scholar] [CrossRef]
- Ke, Q.B.; Wu, J.-R.; Lin, C.-C.; Chang, S.H. Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells. Polymers 2022, 14, 823. [Google Scholar] [CrossRef]
- Hu, W.; Xu, C.Y.; Niu, L.B.; Elseman, A.M.; Wang, G.; Liu, D.B.; Yao, Y.Q.; Liao, L.P.; Zhou, G.D.; Song, Q.L. High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Appl. Mater. Inter. 2019, 11, 22021–22027. [Google Scholar] [CrossRef]
- Huang, J.; Wang, K.-X.; Chang, J.-J.; Jiang, Y.-Y.; Xiao, Q.-S.; Li, Y. Improving the Efficiency and Stability of Inverted Perovskite Solar Cells with Dopamine-Copolymerized PEDOT:PSS as a Hole Extraction Layer. J. Mater. Chem. A 2017, 5, 13817–13822. [Google Scholar] [CrossRef]
- Jiang, K.; Wu, F.; Zhang, G.; Chow, P.C.Y.; Ma, C.; Li, S.; Wong, K.S.; Zhu, L.; Yan, H. Inverted Planar Perovskite Solar Cells Based on CsI-doped PEDOT:PSS with Efficiency Beyond 20% and Small Energy Loss. J. Mater. Chem. A 2019, 7, 21662–21667. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M.-K. Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ Doped PEDOT:PSS Hole Transport Layers. J. Mater. Chem. A 2017, 5, 5701–5708. [Google Scholar] [CrossRef]
- Chin, Y.-C.; Daboczi, M.; Henderson, C.; Luke, J.; Kim, J.-S. Suppressing PEDOT:PSS Doping-Induced Interfacial Recombination Loss in Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 560–568. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Guo, Q.; Yang, Y.; Luo, H.; Liu, Q.; Wang, X.; He, X.; Huang, M.; Lan, Z. Pyrrole: An Additive for Improving the Efficiency and Stability of Perovskite Solar Cells. J. Mater. Chem. A 2019, 7, 11764–11770. [Google Scholar] [CrossRef]
- Khan, F.; Khan, M.T.; Rehman, S.; Al-Sulaiman, F. Analysis of electrical parameters of p-i-n perovskites solar cells during passivation via N-doped graphene quantum dots. Surf. Interfaces 2022, 31, 102066. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Li, J.-W.; Zhang, D.-Y.; Yang, G.-J.; Yu, J.-S. Improving Efficiency of Inverted Perovskite Solar Cells via Ethanolamine-doped PEDOT:PSS as Hole Transport Layer. Chin. Phys. B 2022, 31, 087802. [Google Scholar] [CrossRef]
- Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Efficient High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 2014, 7, 2619–2623. [Google Scholar] [CrossRef]
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.T.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R.; et al. Perovskite-perovskite Tandem Photovoltaics with Optimized Band Gaps. Science 2016, 354, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Lv, F.; Luo, L.; Liao, L.; Wang, G.; Liu, D.; Xu, C.; Zhou, G.; Zhao, X.; Song, Q. Highly Efficient Sn–Pb Perovskite Solar Cell and High-Performance All-Perovskite Four-Terminal Tandem Solar Cell. Sol. RRL 2019, 4, 1900396. [Google Scholar] [CrossRef]
- Yao, Y.; Hang, P.; Wang, P.; Xu, L.; Cui, C.; Xie, J.; Xiao, K.; Li, G.; Lin, P.; Liu, S.; et al. CsPbBr3 Quantum Dots Assisted Crystallization of Solution-Processed Perovskite Films with Preferential Orientation for High Performance Perovskite Solar Cells. Nanotechnology 2020, 31, 085401. [Google Scholar] [CrossRef]
- Ye, K.; Zhao, B.; Diroll, B.T.; Ravichandran, J.; Jaramillo, R. Time-resolved Photoluminescence Studies of Perovskite Chalcogenides. Faraday Discuss. 2022, 239, 146–159. [Google Scholar] [CrossRef]
- Péan, E.V.; Dimitrov, S.; De Castro, C.S.; Davies, M.L. Interpreting Time-resolved Photoluminescence of Perovskite Materials. Phys. Chem. Chem. Phys. 2020, 22, 28345–28358. [Google Scholar] [CrossRef]
- Basumatary, P.; Agarwal, P. Photocurrent Transient Measurements in MAPbI3 Thin Films. J. Mater. Sci. Mater. Electron. 2020, 31, 10047–10054. [Google Scholar] [CrossRef]
- Ghorai, A.; Kumar, P.; Mahesh, S.; Lin, Y.-H.; Snaith, H.J.; Narayan, K.S. Insights into the Charge Carrier Dynamics in Perovskite/Si Tandem Solar Cells Using Transient Photocurrent Spectroscopy. Appl. Phys. Lett. 2022, 120, 173504. [Google Scholar] [CrossRef]
- Wang, Z.S.; Ebadi, F.; Carlsen, B.; Choy, W.C.H.; Tress, W. Transient Photovoltage Measurements on Perovskite Solar Cells with Varied Defect Concentrations and Inhomogeneous Recombination Rates. Small Methods 2020, 4, 2000290. [Google Scholar] [CrossRef]
- Duijnstee, E.A.; Ball, J.M.; Le Corre, V.M.; Koster, L.J.A.; Snaith, H.J.; Lim, J. Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites. ACS Energy Lett. 2020, 5, 376–384. [Google Scholar] [CrossRef]
- Qiu, L.; Zheng, X.; Yang, Y.; Dong, Y.; Dong, G.; Xia, D.; Liu, X.; Wu, Q.; Fan, R. A Copper Coordination Polymer with Matching Energy Level for Modifying Hole Transport Layers to Improve the Performance of Perovskite Solar Cells. ChemSusChem 2019, 12, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Li, F.; Zhang, X.; Shi, Y.; Du, Y.; Gong, J.; Xiao, X.; Ren, S.; Zhao, X.-Z.; Tai, Q. Reducing the Energy Loss to Achieve High Open-circuit Voltage and Efficiency by Coordinating Energy-Level Matching in Sn–Pb Binary Perovskite Solar Cells. Sol. RRL 2021, 5, 2100287. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Lv, F.; Yao, Y.; Li, P.; Wu, B.; Xu, C.; Zhou, G. Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer. Nanomaterials 2022, 12, 3941. https://doi.org/10.3390/nano12223941
Yang X, Lv F, Yao Y, Li P, Wu B, Xu C, Zhou G. Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer. Nanomaterials. 2022; 12(22):3941. https://doi.org/10.3390/nano12223941
Chicago/Turabian StyleYang, Xiude, Feng Lv, Yanqing Yao, Ping Li, Bo Wu, Cunyun Xu, and Guangdong Zhou. 2022. "Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer" Nanomaterials 12, no. 22: 3941. https://doi.org/10.3390/nano12223941
APA StyleYang, X., Lv, F., Yao, Y., Li, P., Wu, B., Xu, C., & Zhou, G. (2022). Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer. Nanomaterials, 12(22), 3941. https://doi.org/10.3390/nano12223941