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Abstract: Vertical stacking of two-dimensional (2D) homo- and heterostructures are intriguing re-
search objects, as they are essential for fundamental studies and a key towards 2D device applications.
It is paramount to understand the interlayer coupling in 2D materials and to find a fast yet precise
characteristic signature. In this work, we report on a Raman fingerprint of interlayer coupling in 2D
transition metal dichalcogenides (TMDCs). We observed that the out-of-plane B2g vibrational mode
is absent when two monolayers form a vertical stack yet remain uncoupled but emerges after strong
coupling. Using systematic Raman, photoluminescence (PL), and atomic force microscopy (AFM)
studies of WSe2/WSe2 homo-bilayers and MoSe2/WSe2 hetero-bilayers, we conclude that the B2g

vibrational mode is a distinct Raman fingerprint of interlayer coupling in 2D TMDCs. Our results
propose an easy, fast, precise, and reliable measure to evaluate the interlayer coupling in 2D TMDCs.
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1. Introduction

The weak van der Waals (vdW) interlayer coupling nature of 2D materials enables the
possibility of vertical stacking, which leads to the formation of 2D homo- and heterostruc-
tures [1,2]. Novel physics phenomena emerge, and the mechanical, optical, electrical,
and magnetic properties can be strongly tuned, when two or more layered materials are
coupled to each other, or when the interlayer distance is tuned [3–12].

Vertical stacking of homo- or hetero-bilayer 2D materials forms moiré superlattices,
which induce periodic modulations, potential distribution, phonon renormalization, and lat-
tice reconstruction [13–19]. The unconventional superconductivity and correlated insulator
behavior in magic-angle twisted bilayer graphene opened the door of moiré physics and
attracted tremendous research attention to other 2D material systems [20,21]. Moreover,
researchers observed interlayer excitons in various combination of TMDC heterostruc-
tures such as WSe2/MoSe2, MoS2/WSe2, and WSe2/WS2 [22–24], as well as interlayer
trions in WSe2/MoSe2/WSe2 heterostructures [25], which builds a promising platform
for exploring many-body physics and new optoelectronic phenomena. The coupling of
TMDC heterostructures forms pn junctions and can result in type-I, type-II, and type-III
band alignment [26], which can significantly widen the application fields and enhance the
device performance of transistors, memory devices, light-emitting diodes, photodetectors,
and solar cells [27–32].

Proper interlayer coupling in 2D homo- and heterostructures is the key to preparing
high-quality samples for fundamental studies and achieving high performance in devices.
However, the 2D structures are often prepared by dry or wet transfer of mechanically exfo-
liated or CVD-grown 2D flakes, which always leave impurities consisting of atmospheric
gases, water molecules, and hydrocarbons at the interfaces [33]. It is, therefore, paramount
to find an easy, precise, and reliable characterization technique to evaluate the interlayer
coupling in 2D devices. PL spectroscopy can be used to provide information about the
interlayer coupling because of the direct-to-indirect bandgap transition from monolayer to
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multi-layer TMDCs, the formation of the interlayer excitons, charge transfer, and charge
dissociation at the interface all lead to a strong quenching of the PL intensity [3,23,34,35].
However, charge transfer and dissociation can also happen at the interface between 2D
materials and the substrates [34]. Moreover, the optical properties of 2D materials are
strongly influenced by the substrate [36–38], which makes PL spectroscopy not an ideal tool
for the characterization of interlayer coupling under certain circumstances, for instance,
when 2D materials are supported by a metallic substrate. Raman spectroscopy, on the
other hand, is a reliable and non-destructive technique to investigate lattice vibrations and
phonon modes of materials. Low-frequency Raman spectroscopy has been intensively
used because the interlayer shearing and breathing modes are highly sensitive to interlayer
coupling [39–45]. However, the low-frequency Raman spectroscopy has the drawback
of complicated and high-cost optical setup, relatively weak intensity, and disappearing
of modes at certain twisting angles [16,41]. Moreover, the low-frequency Raman modes
are so sensitive to interlayer coupling that they may also include signals originating from
the coupling between 2D materials and hBN, which is commonly used for encapsulation,
and thus makes data processing extremely challenging [16,46].

The high-frequency Raman features, on the other hand, are easy to access for almost
any conventional Raman spectrometer and do not require extra complicated optical setups.
It was reported that the frequency difference between the E2g and A1g vibrational modes
for uncoupled artificially stacked bilayer MoS2 is similar to that of monolayer MoS2 rather
than intrinsic bilayer MoS2 [45]. However, a distinct high-frequency Raman fingerprint
of interlayer coupling in 2D TMDCs has not yet been revealed. In this work, we present
a Raman spectroscopy study of interlayer coupling in WSe2/WSe2 homo-bilayer and
MoSe2/WSe2 hetero-bilayer as prototypes of homo- and heterostructures. We observe that
the out-of-plane B2g vibrational mode is absent in the as-transferred homo- and hetero-
bilayers but emerges after annealing. The out-of-plane B2g mode is known to be Raman-
active in pristine bilayer WSe2 from the perspective of symmetry [47]. The absence and re-
emergence of the B2g signal indicate a significant change in crystal structure and interlayer
interaction. Since the samples are prepared on a dielectric substrate (300 nm SiO2/Si) to
exclude potential substrate effects, the PL measurements are considered as additional proof
for the interlayer coupling. The AFM profiles suggest a significant height change after
annealing, which also confirms the coupling. In general, our work demonstrates that the
B2g vibrational mode is a Raman fingerprint and an easy, fast, precise, and reliable measure
to evaluate the interlayer coupling in 2D TMDCs, which is essential for fundamental studies
and device applications.

2. Materials and Methods
2.1. Sample Preparation

Monolayer WSe2 and MoSe2 were mechanically exfoliated from bulk 2H-phase crys-
tals (WSe2 from HQ Graphene, MoSe2 from 2D Semiconductors) onto polydimethylsiloxane
(PDMS) by Nitto tape. The WSe2 homo-bilayer was prepared by a combination of a deter-
ministic all-dry transfer technique and tear-and-stack method [19,48]. A large monolayer
WSe2 flake was first exfoliated onto PDMS. The substrate was mounted on a rotation stage.
Partial transfer of the monolayer WSe2, rotation of the substrate by 60°, alignment of the
flakes, and transfer again leads to an artificial 2H-phase bilayer WSe2. The MoSe2/WSe2
heterostructure was prepared by a deterministic all-dry transfer technique [48]. A detailed
description of the sample preparation can be found in the Supplementary Information.

All samples are pre-characterized by PL and Raman spectroscopy on PDMS to identify
the layer number. The samples were annealed in a nitrogen atmosphere at 150 °C for
2 h after the initial Raman, PL, and AFM measurements of the as-transferred homo- and
hetero-bilayers.
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2.2. Optical Spectroscopy

Raman and PL spectra were measured in ambient conditions with constant tempera-
ture and humidity using a Horiba XploRATM Plus Raman Microscope equipped with a
100×, 0.9 NA objective, a spectrometer comprising 600 L/mm (for PL) and 2400 L/mm (for
Raman) gratings, and an electron multiplying charge coupled device (EMCCD). A DPSS
532 nm continuous wave (CW) laser source was used to excite the samples with an excita-
tion power of 100 µW measured under the objective. The Raman microscope is equipped
with a Märzhäuser motorized xyz stage with a 100 nm step size precision for Raman and
PL mapping.

2.3. Atomic Force Microscope

We used an AIST-NT SmartSPMTM 1000 for AFM measurements. The AFM measure-
ments were performed in ambient conditions with constant temperature and humidity.
The NSG10 tip is commercially available with a typical tip radius of ∼6 nm.

3. Results and Discussion
3.1. WSe2 Homo-Bilayers

Figure 1a displays the three vibrational modes of WSe2 located in the spectral range
of our interest. It is noteworthy that the irreducible representations (irreps) for the same
vibrational mode may change in different layer numbers [47], but we refer to these phonon
modes by their irreps in the bulk structures to be consistent. The E2g (short for E1

2g) mode
is an in-plane vibrational mode, where the W and Se atoms vibrate against each other.
The A1g and B2g modes are out-of-plane vibrational modes. For the A1g mode, the two Se
atoms within the same layer vibrate against each other, while the W atom has no relative
motion. For the B2g mode, the Se and W atoms within the same layer vibrate against each
other with a 180° phase difference to the vibration in the adjacent layers.
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Figure 1. (a) E2g, A1g, and B2g vibrational modes of 2H-phase bilayer WSe2. (b) Raman spectra of
monolayer and intrinsic bilayer WSe2.

From the symmetry point of view, 2H-phase bulk, bilayer, and monolayer WSe2 belong
to the D6h, D3d, and D3h point groups, respectively [49]. The number of symmetry elements
is reduced from 24 to 12 when the material is thinned from infinite to few layers. To be clear,
though the numbers of symmetry elements are the same in both monolayer and bilayer
WSe2, the symmetry elements are actually different. There is one important element present
in both bulk and monolayer but missing in bilayer WSe2: a mirror plane in the W atom
layer perpendicular to the c-axis [50]. The lack of this c-axis mirror plane in bilayer WSe2
makes the out-of-plane B2g vibrational mode active [47]. In monolayer WSe2, the existence
of a c-axis mirror plane and the lack of an adjacent layer makes the B2g mode inactive.
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The symmetry analysis interprets the Raman spectra in Figure 1b, where the B2g mode
at ∼309 cm−1 is absent in monolayer WSe2 while it emerges in bilayer WSe2. The most
pronounced peak at ∼250 cm−1 corresponds to the combination of E2g and A1g vibrational
modes, almost degenerating at the same frequency [47,50–52]. The feature at ∼260 cm−1 is a
second-order peak caused by a double-resonance effect involving the longitudinal acoustic
phonon at the M point in the Brillouin zone, which is usually assigned as 2LA(M) [52,53]. It
is extremely sensitive to the resonance condition due to its double-resonance nature, which
explains the different line shapes between monolayer and bilayer WSe2 [53,54].

We suggest that the B2g vibrational mode should be a good measure for the interlayer
coupling in 2D TMDCs because of the unique property mentioned above. To confirm
our hypothesis, we prepared an artificial bilayer WSe2 with a 60° relative twisting angle
(shown in Figure 2a) to simulate the situation of the intrinsic bilayer and measured Raman,
PL, and AFM before and after the coupling (annealing). It is well known that the interlayer
coupling of as-transferred homo- and heterostructures is usually poor [23,33]. Annealing is
a practical strategy to improve the interlayer coupling due to the self-cleansing mechanism
in vdW heterostructures. The elastic potential energy-induced affinities are higher among
the adjacent layers than that between 2D materials and the impurities. The impurities
are physically mobile and, therefore, can be driven by the affinity to migrate along the
interfaces and finally form isolated bubbles [2,55,56].

Indeed, as shown in the Raman intensity map and spectra in Figure 2b–d, the B2g
mode does not exist in monolayer WSe2 and bilayer WSe2 before annealing. However,
a clear B2g peak emerges after annealing. The shape of the monolayer flake in the Raman
intensity maps in Figure 2b,c originates from the slight change in the background signal.
Since a dielectric substrate is used for the sample, the influence of the substrate is negligible
in this case. Therefore, PL provides strong additional evidence for the interlayer coupling.
As shown in the PL intensity map before annealing in Figure 2e, the PL intensity is extremely
high due to the direct bandgap nature of monolayer WSe2, which leads to high radiative
recombination efficiency [3,57]. The uncoupled bilayer emits almost twice the intensity
as the monolayer part. However, a strong PL quenching is observed on the bilayer part
after annealing, as demonstrated in Figure 2f. The strong decrease in PL intensity is caused
by the change from direct bandgap in monolayer to indirect bandgap semiconductor in
bilayer [3]. An extra emission feature corresponding to the indirect bandgap transition
is also observed in Figure 2g. The PL measurements are in excellent agreement with the
Raman measurements confirming that the as-transferred bilayer is not coupled, while
becoming strongly coupled after annealing. Note that the bilayer area rolled up a bit after
annealing along the wrinkle, which causes a slight change in the sample area before and
after annealing (as shown in Figure S3 in the Supplementary Information). The comparison
of optical microscope images before and after annealing can be found in the Supplementary
Materials. All spectra displayed here are taken from the non-rolled-up area.
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Figure 2. Raman and PL measurements of monolayer and bilayer WSe2. (a) Optical microscope
image of monolayer and bilayer WSe2. Raman intensity map of the WSe2 B2g peak (304–314 cm−1)
(b) before and (c) after annealing. (b,c) share the same color scale. (d) Raman spectra of monolayer
and bilayer WSe2 before and after annealing. PL intensity map of WSe2 A exciton (1.60–1.75 eV)
(e) before and (f) after annealing. (g) PL spectra of monolayer and bilayer WSe2 before and after
annealing. Inset: as-measured (not-normalized) PL spectra. The scale bar in figure is 5 µm.

In addition to the optical spectroscopy measurements, we also investigated the topog-
raphy of the samples before and after annealing by means of an atomic force microscope.
A clear change in AFM topography is observed. First, the bubbles on the bilayer area
in Figure 3a diffuse along the interface and form the big bubbles in Figure 3b. This
phenomenon confirms the self-cleaning mechanism in vdW heterostructures. More inter-
estingly, the height profile in Figure 3d suggests that the distance between the top Se atom
layer of each individual monolayer decreases from 4.0 nm to 0.7 nm, which agrees with the
reported thickness of monolayer WSe2 [58]. The PL and AFM results conclusively confirm
that the as-transferred bilayer is not coupled and behaves like two independent monolayers,
while becoming tightly coupled after annealing. Combining the Raman, PL, and AFM mea-
surements, it is shown that the B2g mode is a reliable measure for the interlayer coupling
in homo-bilayers.
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Figure 3. AFM of monolayer and bilayer WSe2 (a) before and (b) after annealing. (a,b) share the same
color scale. The measured area corresponds to the white squared area in Figure 2a. (c) Schematic
diagram of the AFM profile. (d) Height profile of monolayer and bilayer WSe2 before and after
annealing. Scale bar in figure is 4 µm.

3.2. MoSe2/WSe2 Hetero-Bilayers

We demonstrated that the B2g vibrational mode can be considered as a Raman fin-
gerprint to evaluate the interlayer coupling in WSe2/WSe2 homo-bilayers. Furthermore,
we investigated the interlayer coupling in TMDC heterostructures using MoSe2/WSe2
hetero-bilayer as a prototype.

Figure 4a displays the Raman spectra of monolayer and bilayer MoSe2. MoSe2 has
three Raman active modes in the spectral range of our interest, which correspond to the out-
of-plane A1g mode, in-plane E2g mode, and out-of-plane B2g mode located at ∼241 cm−1,
∼287 cm−1, and ∼353 cm−1, respectively. Similar to WSe2, the B2g vibrational mode is
inactive in bulk and monolayer but becomes active in the bilayer [51].

Figure 4b shows the Raman spectra of monolayer WSe2, MoSe2, and MoSe2/WSe2
heterostructure before and after annealing. The Raman spectra of MoSe2/WSe2 heterostruc-
ture before annealing is simply a superposition of the Raman spectra of monolayer MoSe2
and WSe2. Interestingly, both individual B2g modes of WSe2 and MoSe2 emerge after the
coupling (annealing). As the key point for the B2g mode to be active is the existence of
an adjacent layer and the 180° vibrational phase difference, we propose that the similar
structure of TDMCs makes the detection of the B2g mode a fingerprint for bilayer coupling
applicable widely for various TMDC combinations. It was reported that the combination
of MoSe2 and WSe2 forms interlayer excitons [22], at which point the PL intensity is signifi-
cantly quenched due to the interlayer charge transfer. Indeed, we observed a ∼25 times
PL quenching and an interlayer exciton emission feature at ∼1.35 eV on MoSe2/WSe2
heterostructure after annealing, as shown in Figure 4c, which confirms the proper coupling
after annealing. We, therefore, propose that the B2g vibrational mode also serves as a
Raman fingerprint for interlayer coupling in TMDC heterostructures.
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Figure 4. (a) Raman spectra of monolayer and bilayer MoSe2. (b) Raman and (c) PL spectra of
monolayer WSe2, MoSe2, and MoSe2/WSe2 hetero-bilayer before and after annealing. The spectra
between 1.80 eV and 1.45 eV are normalized from 0 to 1, and the spectra between 1.45 eV and 1.23 eV
are normalized from 0 to 0.4 for better visualization. Inset: as-measured (not-normalized) PL spectra.

4. Conclusions

In summary, taking WSe2/WSe2 homo-bilayer and MoSe2/WSe2 hetero-bilayer as
prototypes, we investigated the interlayer coupling in 2D TDMCs. Using systematic
Raman, PL, and AFM, we conclude that the out-of-plane B2g vibrational mode is the Raman
fingerprint of interlayer coupling. The B2g mode is absent in an uncoupled vertical stack,
but emerges after the coupling. Our work demonstrates an easy, fast, precise, and reliable
measure to evaluate interlayer coupling in 2D TMDCs, which is essential for fundamental
studies and device applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12223949/s1, Figure S1: Sample preparation of WSe2/WSe2
homo-bilayer; Figure S2: Sample preparation of MoSe2/WSe2 hetero-bilayer; Figure S3:
WSe2/WSe2 homo-bilayer before and after annealing; Figure S4: Raman and PL map of
MoSe2/WSe2 hetero-bilayer.
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