Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Measurements and Instrumentations
2.3. Preparation of NH2-VMSF Modified SPCE
2.4. Fabrication of the Immuonsensor
2.5. Electrochemical Determination of CRP
3. Results and Discussion
3.1. Fabrication of Electrochemical Immunosensor on NH2-VMSF Modified SPCE
3.2. Characterization of NH2-VMSF and ErGO
3.3. Fabrition of the Immunosensor
3.4. Sensitive Determination of CRP Using the Developed Immunosensor
3.5. Selectivity, Reproducibility, and Stability of the Developed Immunosensor
3.6. Detection of CRP in Real Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, P.; Suman, P.; Airon, H.; Mukherjee, M.; Kumar, P. Prospects and advancements in C-reactive protein detection. World J. Methodol. 2014, 4, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dykun, I.; Clark, D.; Carlo, J.; Lincoff, A.; Menon, V.; Nissen, S.; Nicholls, S.; Puri, R. Longitudinal high-sensitivity C-reactive protein and longer-term cardiovascular outcomes in optimally-treated patients with high-risk vascular disease. Am. J. Cardiol. 2022, 181, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Phung, N.; Walter, J.; Jonczyk, R.; Seiler, L.; Scheper, T.; Blume, C. Development of an aptamer-based lateral flow assay for the detection of c-reactive protein using microarray technology as a prescreening platform. ACS Comb. Sci. 2020, 22, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhao, X.; Zhou, P.; Liu, C.; Chen, R.; Sheng, Z.; Li, J.; Zhou, J.; Song, L.; Zhao, H.; et al. Impact of postprocedural high-sensitivity C-reactive protein on lipoprotein(a)-associated cardiovascular risk with ST-segment elevation myocardial infarction with percutaneous coronary intervention. Am. J. Cardiol. 2021, 150, 8–14. [Google Scholar] [CrossRef]
- Zeller, J.; Bogner, B.; McFadyen, J.; Kiefer, J.; Braig, D.; Pietersz, G.; Krippner, G.; Nero, T.L.; Morton, C.; Shing, K.; et al. Transitional changes in the structure of C-reactive protein create highly pro-inflammatory molecules: Therapeutic implications for cardiovascular diseases. Pharmacol. Ther. 2022, 235, 108165. [Google Scholar] [CrossRef]
- Antonio, M.; Lima, T.; Vitorino, R.; Daniel-da-Silva, A. Label-free dynamic light scattering assay for C-reactive protein detection using magnetic nanoparticles. Anal. Chim. Acta 2022, 1222, 340169. [Google Scholar] [CrossRef]
- Bayansal, F.; Çetinkara, H. Chemiresistive CuO sensors for label-free C-reactive protein detection. J. Alloys Compd. 2022, 926, 166737. [Google Scholar] [CrossRef]
- Hong, D.; Kim, K.; Jo, E.J.; Kim, M. Electrochemiluminescence-incorporated lateral flow immunosensors using Ru(bpy)3(2+)-labeled gold nanoparticles for the full-range detection of physiological C-reactive protein levels. Anal. Chem. 2021, 93, 7925–7932. [Google Scholar] [CrossRef]
- Wang, S.; Luo, J.; He, Y.; Chai, Y.; Yuan, R.; Yang, X. Combining porous magnetic Ni@C nanospheres and CaCO3 microcapsule as surface-enhanced raman spectroscopy sensing platform for hypersensitive C-reactive protein detection. ACS Appl. Mater. Interfaces 2018, 10, 33707–33712. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, P.; Xing, X.; Lv, Q.; Jiang, Y.; Jiang, Y.; Wang, Z. Improving the fluorescence intensity of lanthanide-doped microspheres via incorporation of lauryl methacrylate: Synthesis and their application in C-reactive protein detection. Colloid Surface A 2022, 653, 130065. [Google Scholar] [CrossRef]
- Jampasa, S.; Siangproh, W.; Laocharoensuk, R.; Vilaivan, T.; Chailapakul, O. Electrochemical detection of c-reactive protein based on anthraquinone-labeled antibody using a screen-printed graphene electrode. Talanta 2018, 183, 311–319. [Google Scholar] [CrossRef]
- Boonyasit, Y.; Chailapakul, O.; Laiwattanapaisal, W. A folding affinity paper-based electrochemical impedance device for cardiovascular risk assessment. Biosens. Bioelectron. 2019, 130, 389–396. [Google Scholar] [CrossRef]
- Baradoke, A.; Hein, R.; Li, X.; Davis, J. Reagentless redox capacitive assaying of C-reactive protein at a polyaniline interface. Anal. Chem. 2020, 92, 3508–3511. [Google Scholar] [CrossRef] [Green Version]
- Mahyari, M.; Hooshmand, S.; Sepahvand, H.; Gholami, S.; Rezayan, A.; Zarei, M. Gold nanoparticles anchored onto covalent poly deep eutectic solvent functionalized graphene: An electrochemical aptasensor for the detection of C-reactive protein. Mater. Chem. Phys. 2021, 269, 124730. [Google Scholar] [CrossRef]
- Sheen, H.; Panigrahi, B.; Kuo, T.; Hsu, W.; Chung, P.; Xie, Q.; Lin, C.; Chang, Y.; Lin, C.; Fan, Y. Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection. Biosens. Bioelectron. 2022, 210, 114338. [Google Scholar] [CrossRef]
- Sohrabi, H.; kholafazad Kordasht, H.; Pashazadeh-Panahi, P.; Nezhad-Mokhtari, P.; Hashemzaei, M.; Majidi, M.; Mosafer, J.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem. J. 2020, 158, 105287. [Google Scholar] [CrossRef]
- Yan, F.; Luo, T.; Jin, Q.; Zhou, H.; Sailjoi, A.; Dong, G.; Liu, J.; Tang, W. Tailoring molecular permeability of vertically-ordered mesoporous silica-nanochannel films on graphene for selectively enhanced determination of dihydroxybenzene isomers in environmental water samples. J. Hazard. Mater. 2021, 410, 124636. [Google Scholar] [CrossRef]
- Yan, F.; Chen, J.; Jin, Q.; Zhou, H.; Sailjoi, A.; Liu, J.; Tang, W. Fast one-step fabrication of a vertically-ordered mesoporous silica-nanochannel film on graphene for direct and sensitive detection of doxorubicin in human whole blood. J.Mater. Chem. C 2020, 8, 7113–7119. [Google Scholar] [CrossRef]
- Bhattacharya, G.; Fishlock, S.; Hussain, S.; Choudhury, S.; Xiang, A.; Kandola, B.; Pritam, A.; Soin, N.; Roy, S.; McLaughlin, J. Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene. ACS Appl. Mater. Interfaces 2022, 14, 31109–31120. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, Q.; Huo, X.; Bao, N. Copper tape to improve analytical performance of disposable carbon electrodes in stripping analysis. Microchem. J. 2022, 179, 107428. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, C.; Xi, F. Disposable amperometric label-free immunosensor on chitosan–graphene-modified patterned ITO electrodes for prostate specific antigen. Molecules 2022, 27, 5895. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, T.; Tang, H.; Liu, J. Novel electrochemical and electrochemiluminescence dual-modality sensing platform for sensitive determination of antimicrobial peptides based on probe encapsulated liposome and nanochannel array electrode. Front. Nutr. 2022, 9, 962736. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Yang, J.; Hong, S.; Park, J. Molecularly imprinted polymer-based electrochemical impedimetric sensors on screen-printed carbon electrodes for the detection of trace cytokine IL-1beta. Biosens. Bioelectron. 2022, 204, 114073. [Google Scholar] [CrossRef] [PubMed]
- Madej, M.; Lipińska, J.; Kapica, R.; Kędzierska-Sar, A.; Frątczak, E.; Kochana, J.; Baś, B.; Tyczkowski, J. Innovative modification of the surface of screen-printed carbon electrodes by nanofilms directly deposited in cold acrylonitrile plasma. Electrochem. Commun. 2022, 137, 107263. [Google Scholar] [CrossRef]
- Stoica, B.; Gavrila, A.; Sarbu, A.; Iovu, H.; Brisset, H.; Miron, A.; Iordache, T. Uncovering the behavior of screen-printed carbon electrodes modified with polymers molecularly imprinted with lipopolysaccharide. Electrochem. Commun. 2021, 124, 106965. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, Z.; Huang, X.; Guo, Y. Blocker displacement amplification mediated PCR based screen-printed carbon electrode biosensor and lateral flow strip strategy for CYP2C19*2 genotyping. Biosens. Bioelectron. 2022, 207, 114138. [Google Scholar] [CrossRef]
- Wang, G.; Han, R.; Su, X.; Li, Y.; Xu, G.; Luo, X. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor. Biosens. Bioelectron. 2017, 92, 396–401. [Google Scholar] [CrossRef]
- Xu, Z.; Han, R.; Liu, N.; Gao, F.; Luo, X. Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sens. Actuators B Chem. 2020, 319, 128253. [Google Scholar] [CrossRef]
- Zhou, P.; Yao, L.; Chen, K.; Su, B. Silica Nanochannel membranes for electrochemical analysis and molecular sieving: A comprehensive review. Crit. Rev. Anal. Chem. 2019, 50, 424–444. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, X.; Sailjoi, A.; Zou, Y.; Lin, X.; Yan, F.; Su, B.; Liu, J. Vertical silica nanochannels supported by nanocarbon composite for simultaneous detection of serotonin and melatonin in biological fluids. Sens. Actuators B Chem. 2022, 353, 131101. [Google Scholar] [CrossRef]
- Walcarius, A. Electroinduced surfactant self-assembly driven to vertical growth of oriented mesoporous films. Acc. Chem. Res. 2021, 54, 3563–3575. [Google Scholar] [CrossRef]
- Ma, K.; Zheng, Y.; An, L.; Liu, J. Ultrasensitive immunosensor for prostate-specific antigen based on enhanced electrochemiluminescence by vertically ordered mesoporous silica-nanochannel film. Front. Chem. 2022, 10, 851178. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, T.; Zhou, H.; Yan, F.; Liu, Y. Silica nanochannels boosting Ru(bpy)32+-mediated electrochemical sensor for the detection of guanine in beer and pharmaceutical samples. Front. Nutr. 2022, 9, 987442. [Google Scholar] [CrossRef]
- Su, R.; Tang, H.; Xi, F. Sensitive electrochemical detection of p-nitrophenol by pre-activated glassy carbon electrode integrated with silica nanochannel array film. Front. Chem. 2022, 10, 954748. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.; Huang, H.; Lv, N.; Liu, J.; Liu, Y. Nanochannel array on electrochemically polarized screen printed carbon electrode for rapid and sensitive electrochemical determination of clozapine in human whole blood. Molecules 2022, 27, 2739. [Google Scholar] [CrossRef]
- Zou, Y.; Zhou, X.; Xie, L.; Tang, H.; Yan, F. Vertically-ordered mesoporous silica films grown on boron nitride-graphene composite modified electrodes for rapid and sensitive detection of carbendazim in real samples. Front. Chem. 2022, 10, 939510. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, Y.; Zhou, X.; Yan, F.; Ding, Z. Vertically-ordered mesoporous silica films for electrochemical detection of Hg(II) ion in pharmaceuticals and soil samples. Front. Chem. 2022, 10, 952936. [Google Scholar] [CrossRef]
- Zhu, X.; Xuan, L.; Gong, J.; Liu, J.; Wang, X.; Xi, F.; Chen, J. Three-dimensional macroscopic graphene supported vertically-ordered mesoporous silica-nanochannel film for direct and ultrasensitive detection of uric acid in serum. Talanta 2022, 238, 123027. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, T.; Chen, P.; Yan, F.; Liu, J. Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. Sens. Actuators B Chem. 2022, 368, 132086. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, T.; Luo, T.; Luo, X.; Yan, F.; Tang, W.; Liu, J. Bipolar silica nanochannel array confined electrochemiluminescence for ultrasensitive detection of SARS-CoV-2 antibody. Biosens. Bioelectron. 2022, 215, 114563. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, S.; Han, L.; Ren, W.; Liu, Y.; Wang, E. Multiple pH-responsive graphene composites by non-covalent modification with chitosan. Talanta 2012, 101, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Hummers, W.; Offeman, R. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Ma, K.; Yang, L.; Liu, J.; Liu, J. Electrochemical sensor nanoarchitectonics for sensitive detection of uric acid in human whole blood based on screen-printed carbon electrode equipped with vertically-ordered mesoporous silica-nanochannel film. Nanomaterials 2022, 12, 1157. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Wang, T.; Jiang, X.; Qu, X.; Duan, W.; Xi, F.; He, Z.; Wu, J. Tissue imprinting on 2D nanoflakes-capped silicon nanowires for lipidomic mass spectrometry imaging and cancer diagnosis. ACS Nano 2022, 16, 6916–6928. [Google Scholar] [CrossRef]
- Cui, Y.; Duan, W.; Jin, Y.; Wo, F.; Xi, F.; Wu, J. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose. ACS Sens. 2020, 5, 2096–2105. [Google Scholar] [CrossRef]
- Wan, Y.; Zhao, J.; Deng, X.; Chen, J.; Xi, F.; Wang, X. Colorimetric and fluorescent dual-modality sensing platform based on fluorescent nanozyme. Front. Chem. 2021, 9, 774486. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, J.; Ding, Y.; Tang, H.; Xi, F. Iron and nitrogen co-doped graphene quantum dots as highly active peroxidases for the sensitive detection of l-cysteine. New J. Chem. 2021, 45, 19056–19064. [Google Scholar] [CrossRef]
- Chang, Q.; Huang, J.; He, L.; Xi, F. Simple immunosensor for ultrasensitive electrochemical determination of biomarker of the bone metabolism in human serum. Front. Chem. 2022, 10, 940795. [Google Scholar] [CrossRef]
- Zhou, H.; Ding, Y.; Su, R.; Lu, D.; Tang, H.; Xi, F. Silica nanochannel array film supported by ß-cyclodextrin-functionalized graphene modified gold film electrode for sensitive and direct electroanalysis of acetaminophen. Front. Chem. 2022, 9, 812086. [Google Scholar] [CrossRef]
- Gong, J.; Tang, H.; Wang, M.; Lin, X.; Wang, K.; Liu, J. Novel three-dimensional graphene nanomesh prepared by facile electro-etching for improved electroanalytical performance for small biomolecules. Mater. Design 2022, 215, 110506. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, G.; Sailjoi, A.; Liu, J. Facile pretreatment of three-dimensional graphene through electrochemical polarization for improved electrocatalytic performance and simultaneous electrochemical detection of catechol and hydroquinone. Nanomaterials 2022, 12, 65. [Google Scholar] [CrossRef]
- Liu, Q.; Zhong, H.; Chen, M.; Zhao, C.; Liu, Y.; Xi, F.; Luo, T. Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv. 2020, 10, 33739–33746. [Google Scholar] [CrossRef]
- Shervedani, R.; Hatefi-Mehrjardi, A. Electrochemical characterization of directly immobilized glucose oxidase on gold mercaptosuccinic anhydride self-assembled monolayer. Sens. Actuators. B Chem. 2007, 126, 415–423. [Google Scholar] [CrossRef]
- Boonyasit, Y.; Chailapakul, O.; Laiwattanapaisal, W. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis. Anal. Chim. Acta 2016, 936, 1–11. [Google Scholar] [CrossRef]
- Pinyorospathum, C.; Chaiyo, S.; Sae-Ung, P.; Hoven, V.; Damsongsang, P.; Siangproh, W.; Chailapakul, O. Disposable paper-based electrochemical sensor using thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine) for the label-free detection of C-reactive protein. Microchim. Acta 2019, 186, 472. [Google Scholar] [CrossRef]
- Rong, Z.; Chen, F.; Jilin, Y.; Yifeng, T. A C-reactive protein immunosensor based on platinum nanowire/titania nanotube composite sensitized electrochemiluminescence. Talanta 2019, 205, 120135. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Sek, J.; Kasprzak, A.; Poplawska, M.; Grudzinski, I.; Nowicka, A. Occlusion phenomenon of redox probe by protein as a way of voltammetric detection of non-electroactive C-reactive protein. Biosens. Bioelectron. 2018, 117, 232–239. [Google Scholar] [CrossRef]
- Sonuc Karaboga, M.; Sezginturk, M. Determination of C-reactive protein by PAMAM decorated ITO based disposable biosensing system: A new immunosensor design from an old molecule. Talanta 2018, 186, 162–168. [Google Scholar] [CrossRef]
- Vilian, A.; Kim, W.; Park, B.; Oh, S.; Kim, T.; Huh, Y.; Hwangbo, C.; Han, Y. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosens. Bioelectron. 2019, 142, 111549. [Google Scholar] [CrossRef]
Electrode Material | Detection Method | Construction Method | Linear Range (ng/mL) | LOD (ng/mL) | Ref. |
---|---|---|---|---|---|
PMPC-SH/AuNPs-SPCE | DPV | Label-free | 5–5000 | 1.6 | [56] |
TiNTs/PtNWs/ITO | ECL | Label-free | 0.05–6.25 | 0.011 | [57] |
AuNPs/SPGE | DPV | Label-based | 10–15,000 | 1.5 | [12] |
GCE/PEI-Fc/Ab/CRP | DPV | Label-free | 1–5×104 | 0.5 | [58] |
11-CUTMS/PAMAM | EIS | Label-free | 2.1 × 10−5–6.148 × 10−3 | 3.4 × 10−7 | [59] |
MPA/Au substrate | SWV | Label-free | 5 × 10−6–2.2 × 10−4 | 2.25 × 10−6 | [60] |
Ab/GA/NH2-VMSF/ErGO/SPCE | DPV | Label-free | 0.01–100 | 8 × 10−3 | This work |
Sample | Spiked (ng/mL) | Found (ng/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Human serum a | 0.100 | 0.102 | 102 | 4.1 |
1.00 | 0.976 | 97.6 | 3.3 | |
100 | 99.1 | 99.1 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Luo, X.; Wu, W.; Liu, J. Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein. Nanomaterials 2022, 12, 3981. https://doi.org/10.3390/nano12223981
Ma N, Luo X, Wu W, Liu J. Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein. Nanomaterials. 2022; 12(22):3981. https://doi.org/10.3390/nano12223981
Chicago/Turabian StyleMa, Ning, Xuan Luo, Weidong Wu, and Jiyang Liu. 2022. "Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein" Nanomaterials 12, no. 22: 3981. https://doi.org/10.3390/nano12223981
APA StyleMa, N., Luo, X., Wu, W., & Liu, J. (2022). Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein. Nanomaterials, 12(22), 3981. https://doi.org/10.3390/nano12223981