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Abstract: This research aimed to study the effects of the nanosilica supply on Si absorption and the
physiological and nutritional aspects of beet plants with N and P deficiencies cultivated in a nutrient
solution. Two experiments were performed with treatments arranged in a 2 × 2 factorial scheme
in randomized blocks with five replications. The first experiment was carried out on plants under
a N deficiency and complete (complete solution with all nutrients), combined with the absence of
Si (0 mmol L−1) and the presence of Si (2.0 mmol L−1). In the other experiment, the plants were
cultivated in a nutrient solution with a P deficiency and complete, combined with the absence
(0 mmol L−1) and the presence of Si (2.0 mmol L−1). The beet crop was sensitive to the N and P
deficiencies because they sustained important physiological damage. However, using nanosilica via
fertigation could reverse the damage. Using nanotechnology from nanosilica constituted a sustainable
strategy to mitigate the damage due to a deficiency in the beet crop of the two most limiting nutrients
by optimizing the physiological processes, nutritional efficiency, and growth of the plants without
environmental risks. The future perspective is the feasibility of nanotechnology for food security.

Keywords: nanoparticles; nutrition; nutritional disorders; sustainable agriculture

1. Introduction

Most cultivated tropical soils may have source material with low nutrient levels associ-
ated with a low organic matter content and an acid reaction. The advance of climate change
with periods of excess rainfall and others with water deficits can reduce the availability of
nutrients in the soil, worsen the deficiency, and impair crop growth and productivity, such
as with the beet crop (Beta vulgaris L.).

This species has a high economic importance, being used as a sugar or vegetable
source [1]. N and P are the most limiting crop nutrients in different regions of the world.

A nitrogen deficiency in beet cultivation causes a loss of nutritional quality of the roots
and leaves and a morphological modification associated with a size reduction [2], mainly
due to its role in the structure of chloroplasts and photosynthesis as it is a constituent
of the chlorophyll molecule as well as proteins, nucleic acids, and coenzymes, among
others [3]. At the same time, a P deficiency promotes losses in the energy metabolism of the
plant, decreasing the enzymatic activity, protein synthesis, and signaling of carbohydrate
metabolism [4], compromising the development of the roots and the aerial part [5]. These
nutritional deficiencies cause morphological changes, translating them into characteristic
symptoms [5] that progress to severe ones, causing leaf necrosis and plant death. It is
necessary to search for sustainable alternatives such as Si that can mitigate the effects of
these nutritional disorders.

These nutritional deficiency facts have led to the need to develop ecologically correct
economic strategies, mainly to keep up with the demands of the growing population.
Therefore, nanoparticles are opening a new chapter in sustainable crop production [6].
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These authors added that applying nanoparticles improves growth and stress tolerance in
plants. Thus, information has emerged indicating that silicon (Si) is a beneficial element
that can be used as a strategy to improve plant development by reducing different abiotic
stresses without environmental risks [7] such as nutritional deficiencies [8]. However, in
beet, these effects are unknown [9].

There are reports in other species that supplying Si from conventional sources such as
sodium silicate alleviated N deficiency effects in quinoa [10] and forage plants [11]. It also
alleviated P deficiency effects in sorghum [12]. The beneficial effect of Si is attributed to
its action in the activation of antioxidant defense systems by increasing the synthesis of
phenols and carotenoids [13] as well as ascorbic acid [14], favoring membrane integrity [15]
and the protection of the photosynthetic system of the plant [15] when decreasing the
degradation of chlorophylls [16]. It can also increase nutrient absorption [17].

Several studies have demonstrated the beneficial effects of Si, especially using con-
ventional sources such as potassium silicate, sodium silicate, or calcium silicate in various
crops [18]. However, in the beet crop, studies are very limited and restricted to only the
foliar application of the element with conventional sources in unstressed plants [19–21].
Thus, another form of Si application would be via fertigation with a root application, which
could increase the absorption of the element as it would be continuously supplied during
the crop cycle, unlike the foliar application that occurs at a given time and growing sea-
son [18]. A recent report highlighted the benefits of Si when provided via the radicular
versus the foliar route, as seen in maize plants [22].

It was evidenced that most of the indicated studies on Si were not carried out using
nanotechnology such as nanosilica. Nanosilica consists of silicon dioxide (SiO2) nanoparti-
cles in a colloidal dispersion, with physicochemical characteristics different from those of
non-nanoparticulate matter due to its small size (usually less than 100 nm), varied shapes,
and large surface area [23]. Using nanosilica can modify the biochemistry and physiology of
a plant and, consequently, the agronomic benefits in several species such as rice plants [24],
sugar cane [25], sorghum [26], cotton [27], and tomato [28]. However, there is a need for
further research to prove this in other species, including vegetables.

Thus, if it is considered that the beet crop is sensitive to N and P deficiencies because
they result in stress and physiological disorders and that by applying Si in the form
of nanosilica via fertigation can promote a significant increase in Si absorption, it can
strengthen the following hypothesis. Using Si can mitigate N and P deficiencies in a beet
crop by promoting benefits in the antioxidant defense system, possibly with increased
antioxidant compounds favoring the physiological and nutritional aspects of the plant.

Therefore, in this research we aimed to study the effects of a nanosilica supply on the
Si absorption, antioxidant compound production, extravasation of cellular electrolytes, and
physiological and nutritional aspects of beet plants with N and P deficiencies cultivated in
a nutrient solution.

Suppose the hypothesis of this research is accepted. In that case, it will be possible to un-
derstand the action mechanisms of nanosilica in mitigating the effects of N and P deficiencies.
It should strengthen the sustainable cultivation of sugar beet without environmental risks or
global implications because there are many regions of vegetable cultivation in areas with a
deficiency of one or two of the most limiting macronutrients of this species.

2. Material and Methods
2.1. Location of Experiments

Two experiments were carried out in a greenhouse at UNESP Campus de Jaboticabal
from July to October 2021 using the cultivate ‘Early Wonder’ beet. During the experimental
period, the temperature and relative humidity data were recorded inside the greenhouse
with a thermo-hygrometer (U23-001, Sigma Sensors, São Paulo/SP, Brazil) (Figure 1).
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Figure 1. Maximum temperature, minimum temperature, and average relative humidity inside the
greenhouse during the experiments.

2.2. Treatments and Experimental Design

Two experiments were performed with treatments arranged in a 2 × 2 factorial scheme
in randomized blocks with five replications. The first experiment was conducted on
plants under a N deficiency and complete (complete solution with all nutrients), combined
with the absence of Si (0 mmol L−1) and the presence of Si (2.0 mmol L−1). In the other
experiment, the plants were grown in a nutrient solution with a P deficiency and com-
plete, combined with the absence (0 mmol L−1) and presence of Si (2.0 mmol L−1). The
nanosilica Bindzil (AkzoNobel®, Rio de Janeiro/RJ, Brazil) was used for the two exper-
iments (Si: 168.3 g/L; specific superficial area: 300 m2/g; pH: 10.5; density: 1.2 g cm−3;
Na2O: 0.5%; viscosity: 7cP).

The nutrient solution used was that of Hoagland and Arnon [29], with a modification
of the iron source to Fe-EDDHA.

Sowing was performed directly in a polypropylene pot with a 1.7 dm3 capacity filled
with 1.5 dm3 of medium-texture washed sand; two seeds per pot were used. Five days after
an emergence, the plants were fed daily with a supply of the complete nutrient solution,
with 100 mL of the solution supplied with an ionic strength of 10% of the concentration
of the original solution for ten days. From this period on, the omission of nutrients (−N
and −P) began according to each experiment and the concentration of the solution was
gradually increased until it reached 75%, maintaining it until the end of the experiment. The
pH value of the nutrient solution was adjusted to 5.5 ± 0.2 using a solution of 1.0 mol L−1

of hydrochloric acid or sodium hydroxide. The substrate was leached weekly by applying
500 mL of deionized water per vessel to avoid salinization. The nutrient solution was
applied to the experiment vessels after 2 h of leaching.

The plants were collected 90 days after emergence and the evaluations described
below were performed.
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2.3. Analysis
2.3.1. Nitrogen and Phosphorus Use: Efficiency and Accumulation

The plants were separated into shoots and roots and washed with a detergent solution
(0.1% v/v; 1 mL/1000 mL), a HCl solution (0.3% v/v; 3 mL/1000 mL), and deionized
water. The plant tissue samples were then dried in an oven with forced air circulation
(TE394/3-MP, Tecnal, Piracicaba/SP, Brazil) (65 ± 5 ◦C) until a constant mass was reached
and then ground. After that, a chemical analysis was performed to determine the N content
from an extraction with concentrated sulfuric acid, followed by distillation and titration
with sulfuric acid [30]. The P content was determined by digesting the samples of the plant
material using a digestive mixture of perchloric and nitric acid, according to the methods
described by Bataglia [30].

The calculation of N and P accumulations in the shoot was performed from the product
of the content (g kg−1) x shoot dry mass. With the data of the accumulation of each nutrient
in the aerial part of the plant, we calculated the use efficiencies of N and P as: (dry matter
of the aerial part)2/accumulation of nutrients in the aerial part [31].

2.3.2. Silicon Accumulation

The Si content was determined by digestion according to Kraska [32] and read ac-
cording to the methodology described by Korndörfer [33] in a spectrophotometer (B442,
Micronal, Santo André/SP, Brazil) at 410 nm. The silicon accumulation in the shoot was
calculated from the content (g kg−1) × dry mass.

2.3.3. Dry Mass of Plants

The dried plant material was weighed using an analytical balance (accuracy of 0.001 g)
to obtain the dry mass of the shoots and roots of the plants.

2.3.4. Photosystem II Quantum Efficiency (Fv/Fm)

Photosystem II (PSII) quantum efficiency photosynthetic measurements were taken
between 7 am and 8 am on the first fully grown sheet using a portable fluorometer (Os30P+,
Opti-Sciences Inc., Hudson, NH, USA) [34].

2.3.5. Electrolyte Extravasation Index

Five disks (26.4 mm2 each) were collected from the first fully developed leaf and
then immersed in deionized water for 2 h. The initial electrical conductivity (EC1) of the
solution was read using a conductivity meter (AK51, Akso, São Leopoldo/RS, Brazil). The
samples were autoclaved at 121 ◦C for 20 min and the final electrical conductivity (EC2)
was determined after cooling. The electrolyte extravasation index was then calculated
following the method described by Dionisio-Sese and Tobita [35].

2.3.6. Determination of Total Phenol Contents

The total phenol contents were determined in the leaves according to the method
proposed by [36]. Readings were performed in a spectrophotometer (B442, Micronal, Santo
André/SP, Brazil) at 765 nm.

2.3.7. Quantification of Chlorophyll and Carotenoid Pigments

The quantification of chlorophyll and carotenoid pigments in the fresh leaf samples
was performed according to the methodology proposed by Lichtenthaler [37]. The ab-
sorbances were read at 663 nm for chlorophyll a (Chl a), 647 nm for chlorophyll b (Chl b),
and 470 nm for carotenoids (Chl x + c) using a spectrophotometer (Beckman DU 640, East
Lyme, CT, USA). The absorbance values were introduced into Equation (1) for the determi-
nation of chlorophyll a, Equation (2) for chlorophyll b, and Equation (3) for carotenoids:

ca = ((12.25·(d·A663)) − (2.79·(d·A647)))·m (1)
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where d is the sample dilution, A663 is the reading value at an absorbance of 663 nm, A647
is the reading value at an absorbance of 647 nm, and m is the mass of the sample.

cb = ((21.5·(d·A647)) − (5.1·(d·A663)))·m (2)

where d is the sample dilution, A647 is the reading value at an absorbance of 647 nm, A663
is the reading value at an absorbance of 663 nm, and m is the mass of the sample.

x + c = (((1000·(d·A470)) − (1.82·ca) − (85.02·cb))/198)·m (3)

where d is the sample dilution, A470 is the reading value at an absorbance of 470 nm, ca is
the result of Equation (1), cb is the result of Equation (2), and m is the mass of the sample.

2.4. Statistical Analysis

The data were checked for normality (the Shapiro–Wilk test) and homogeneity of variances
(Levene’s test) and then subjected to an analysis of variance using the F test (p ≤ 0.05). The
Tukey test (p ≤ 0.05) compared the mean values of the treatments. The statistical analyses were
performed using SAS® statistical software, single version (Cary, NC, USA).

3. Results

The plants from the complete treatment compared with those from the treatments
with N and P deficiencies showed a greater accumulation of N and P in the shoot and the
root, both in the absence and presence of Si (Figure 2a–d). The Si supply in the plants with
complete and N and P deficiencies increased the N and P accumulations in the shoot and
root (Figure 2a–d).

There was a greater Si accumulation in the shoots and roots of the beet plants in the
complete treatment in the absence or presence of Si compared with the plants grown under N
and P deficiencies in the nutrient solution (Figure 2e,f). Regarding its absence, the Si supply in
the nutrient solution promoted a greater Si accumulation in all the treatments studied.

It was observed that there was a greater N use efficiency in the control treatment
plants than in the N-deficient treatment plants in the absence and presence of Si (Figure 2g).
However, the treatment deficiency in P compared with the plants of the complete treatment
in the absence or presence of Si provided a greater P use efficiency (Figure 2h). It was also
observed that the Si supply in the nutrient solution provided a greater use efficiency in all
the treatments studied (Figure 2g,h).

Compared with the other treatments in the absence and presence of Si, the complete
treatment plants provided higher levels of total phenols (Figure 3a). However, the supply of
Si via the nutrient solution increased the total phenol content in all treatments (Figure 3a).

The carotenoid production in the complete treatment plants was higher than in the
other treatments, both in the absence and presence of Si (Figure 3b). However, it was
observed that the Si supply in the nutrient solution increased the carotenoid production in
the plants with a deficiency of the two nutrients studied (Figure 3b).

There was a lower rate of extravasation of cellular electrolytes in the complete
treatment plants compared with the plants under N or P deficiencies, regardless of the Si
supply (Figure 3c). There was a decrease in cellular electrolyte extravasation when there
was a Si supply via a nutrient solution in all treatments compared with the plants lacking
Si (Figure 3c).

Compared with the plants deficient in N or P, the complete treatment plants showed a
higher production of total chlorophyll, both in the absence and presence of Si (Figure 3d).
Furthermore, it was observed that there was a greater production of total chlorophyll when
Si was supplied in the nutrient solution in all the treatments of this study (Figure 3d).

It was also verified that, in the plants of the complete treatment, there was no difference
regarding the supply of Si in the PSII quantum efficiency (Figure 3e). However, in the
plants with N or P deficiencies, there was an increase in the PSII quantum efficiency with
the presence of Si compared with its absence in the nutrient solution (Figure 3e).
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Figure 2. Accumulation of nitrogen (a,c), phosphorus (b,d), silicon (e,f), and nitrogen and phosphorus
use efficiency (g,h) in beet plants with complete nutrition and nitrogen or phosphorus deficiencies
in the presence and absence of silicon. Lowercase letters demonstrate differences from Si within
the same nutritional status and uppercase letters demonstrate differences from the full treatment
according to Tukey’s test at a 5% probability.
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Figure 3. Total phenols (a), carotenoids (b), electrolyte leakage (c), total chlorophyll (d), and Fv/Fm
(e) in beet plants with complete nutrition and nitrogen or phosphorus deficiency in the presence and
absence of Si. Lowercase letters demonstrate differences from Si within the same nutritional status
and uppercase letters demonstrate differences from the full treatment according to Tukey’s test at a
5% probability.

Compared with the plants in the treatments with N and P deficiencies, the complete
treatment plants showed a higher shoot and root dry mass production, both in the absence
and presence of Si (Figure 4a,b). Regarding its absence, the Si supply increased the dry
mass production in the shoot and root in the complete treatment plants and the N- and
P-deficient plants (Figure 4a,b).



Nanomaterials 2022, 12, 4038 8 of 11

Nanomaterials 2022, 11, x FOR PEER REVIEW 8 of 12 
 

 

There was a lower rate of extravasation of cellular electrolytes in the complete treat-
ment plants compared with the plants under N or P deficiencies, regardless of the Si sup-
ply (Figure 3c). There was a decrease in cellular electrolyte extravasation when there was 
a Si supply via a nutrient solution in all treatments compared with the plants lacking Si 
(Figure 3c). 

Compared with the plants deficient in N or P, the complete treatment plants showed 
a higher production of total chlorophyll, both in the absence and presence of Si (Figure 
3d). Furthermore, it was observed that there was a greater production of total chlorophyll 
when Si was supplied in the nutrient solution in all the treatments of this study (Figure 
3d). 

It was also verified that, in the plants of the complete treatment, there was no differ-
ence regarding the supply of Si in the PSII quantum efficiency (Figure 3e). However, in 
the plants with N or P deficiencies, there was an increase in the PSII quantum efficiency 
with the presence of Si compared with its absence in the nutrient solution (Figure 3e). 

Compared with the plants in the treatments with N and P deficiencies, the complete 
treatment plants showed a higher shoot and root dry mass production, both in the absence 
and presence of Si (Figure 4a,b). Regarding its absence, the Si supply increased the dry 
mass production in the shoot and root in the complete treatment plants and the N- and P-
deficient plants (Figure 4a,b). 

 
Figure 4. Dry mass of the aerial part (a) and roots (b) of beet plants with complete nutrition and 
nitrogen or phosphorus deficiencies in the presence and absence of Si. Lowercase letters demon-
strate differences from Si within the same nutritional status and uppercase letters demonstrate dif-
ferences from the full treatment according to Tukey’s test at a 5% probability. 

4. Discussion 
In beet plants, nitrogen (-N) and phosphorus (-P) deficiencies in the nutrient solution 

led to a decrease in these elements due to low N and P absorption, which caused biological 
damage to the plants. The N and P deficiencies promoted an imbalance in the nutrient 
absorption [38], compromising the nutritional roles of these elements in the plants. Nitro-
gen has a structural function constituting the chlorophyll molecule that plays a funda-
mental role in transferring excitation energy to photosystems [39]. P is also linked to met-
abolic activities, from energy transfer as a constituent of NADP (nicotinamide adenine 
dinucleotide phosphate) and ATP (adenosine triphosphate) [40] to a high activity of the 
enzyme ribulose 1,5-bisphosphate carboxylase (Rubisco). Its low supply directly affects 
the gas exchange and photosynthetic rate [41], decreasing new cell formation and cell 
elongation [42]. 

Thus, it is common to see disturbances in the physiological mechanisms of plants 
with N and P deficiencies [43] due to the decrease in the levels of chlorophyll and carote-

(a) (b)

bA

bB

bB

aA

aB

aB

0

2

4

6

8

10

12

14

Complete Nitrogen Phosphorus

D
ry

 m
as

s o
f t

he
 a

er
ia

l p
ar

t (
g)

bA

bB

bB

aA

aB

aB

0

1

1

2

2

3

3

4

4

Complete Nitrogen Phosphorus

D
ry

 m
as

s o
f t

he
 ro

ot
s (

g)

+ Si̶  Si

Figure 4. Dry mass of the aerial part (a) and roots (b) of beet plants with complete nutrition and
nitrogen or phosphorus deficiencies in the presence and absence of Si. Lowercase letters demonstrate
differences from Si within the same nutritional status and uppercase letters demonstrate differences
from the full treatment according to Tukey’s test at a 5% probability.

4. Discussion

In beet plants, nitrogen (-N) and phosphorus (-P) deficiencies in the nutrient solution
led to a decrease in these elements due to low N and P absorption, which caused biological
damage to the plants. The N and P deficiencies promoted an imbalance in the nutrient ab-
sorption [38], compromising the nutritional roles of these elements in the plants. Nitrogen
has a structural function constituting the chlorophyll molecule that plays a fundamental
role in transferring excitation energy to photosystems [39]. P is also linked to metabolic ac-
tivities, from energy transfer as a constituent of NADP (nicotinamide adenine dinucleotide
phosphate) and ATP (adenosine triphosphate) [40] to a high activity of the enzyme ribulose
1,5-bisphosphate carboxylase (Rubisco). Its low supply directly affects the gas exchange
and photosynthetic rate [41], decreasing new cell formation and cell elongation [42].

Thus, it is common to see disturbances in the physiological mechanisms of plants with
N and P deficiencies [43] due to the decrease in the levels of chlorophyll and carotenoid
pigments, which leads to a reduction in the PSII quantum efficiency and, consequently, a
reduction in the dry mass of the plants, as observed in this research with beet plants.

Silicon is a sustainable strategy to mitigate N and P deficiencies of plants. It is
interesting because this beneficial element is already known as a great mitigator of different
stresses, whether biotic [9,44] or abiotic [45,46]. However, there is little information on
plants grown without stress [47]. In the beet crop, studies are restricted to a foliar application
of Si from conventional sources, which has promoted improvements in crop growth and
productivity [48]. Studies are incipient with the application of the element in innovative
sources from nanosilica nanotechnology, with application via fertigation, especially when
evaluating plants deficient in N and P.

The importance of Si in the uptake of N and P in plants deficient in these nutrients
was observed when the nutrients were supplied at the beginning of the experiment and
especially in the N and P use efficiency. The effect of Si in increasing the use efficiency
of these nutrients drew attention, constituting a good indication that this element favors
the ability of the plant to use N and P in important nutritional functions involved in the
physiological processes responsible for dry mass production.

In addition to the nutritional benefits of Si in plants deficient in N and P, its antioxidant
action became clear from the increased levels of phenols and carotenoids. Silicon acts on
the metabolism of these phenolic and carotenoid compounds, favoring their synthesis [49],
which can be maximized due to the Si enzymatic action increasing the activation of the
enzymes involved in the secondary defense metabolism [50]. This increase in the phenol
content in the plant, mediated by Si, acts on the balance of the antioxidant system, directly
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eliminating active molecular oxygen and H2O2, inhibiting lipid peroxidation [51], and
avoiding cellular compound degradation.

This study proved that Si decreased the electrolyte leakage rate in plants with N
and P deficiencies, reinforcing its modulation of antioxidant production, thus preventing
membrane damage and cytosol efflux into the free space between cells.

Another benefit of Si is that the increase in antioxidant compounds and the decrease
in oxidative stress reduces chlorophyll degradation [13]. Therefore, the effect of Si delaying
this process benefits plants with N and P deficiencies, as evidenced by the increase in the
Fv/Fm values; that is, the quantum efficiency of photosynthesis.

Overall, it became evident that an increase in the Si accumulation by the plant by
increasing the photosynthetic pigments and the photosynthetic efficiency favored the
ability of the plant to convert dry mass, favoring the dry mass increase and proving that the
nanosilica alleviated the N and P deficiencies in beet plants. This effect of Si on the plant
physiological aspects has also been recently reported in other species such as quinoa [10]
and forager plants [52].

The results of this study allow us to accept the hypothesis that using nanosilica can
mitigate N and P deficiencies in beet crops by promoting benefits in the antioxidant defense
system, possibly with an increase in the antioxidant compounds favoring the physiological
and nutritional aspects of the plant.

It should also be noted that the beneficial effect of nanosilica was evidenced even
in plants cultivated without a nutritional deficiency. This effect of Si occurred due to the
improvement of the antioxidant capacity, demonstrated by the increase in the production
of phenolic compounds, which, in turn, reduced the electrolyte leakage rate. It favored an
increase in the total chlorophyll and carotenoid levels, even though it did not affect the PSII
quantum efficiency. However, there was an increase in the dry matter production.

The results of this study open the way for nanosilica nanotechnology to enable the
sustainable cultivation of beet for marginal regions in low fertility soils or that employ
sub-doses of nitrogen and phosphate fertilizers typical of the low-technology agriculture
developed in many underdeveloped countries with limited financial resources. The per-
spective is that further studies will be conducted on this vegetable with nanosilica in field
crops, which may include K, Ca, Mg, and S in addition to the nutrients studied, as it may
increase benefits in beet production in different regions of the world.

5. Conclusions

A beet crop was sensitive to N and P deficiencies because it sustained important
physiological damage. However, using nanosilica via fertigation could reverse the damage.
Using nanosilica nanotechnology constituted a sustainable strategy for beet cultivation
regarding the two most limiting nutrients of the crop by optimizing the physiological
processes, nutritional efficiency, and growth of the plant without any environmental risks.

The future perspective is the feasibility of nanotechnology for food security, enabling
the production of vegetables in nutrient-poor environments.
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