Ag-Activated Metal−Organic Framework with Peroxidase-like Activity Synergistic Ag+ Release for Safe Bacterial Eradication and Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Wang, F.; Fang, R.H.; Luk, B.T.; Hu, C.J.; Thamphiwatana, S.; Dehaini, D.; Angsantikul, P.; Kroll, A.V.; Pang, Z.; Gao, W.; et al. Nanoparticle-Based Antivirulence Vaccine for The Management of Methicillin-Resistant Staphylococcus Aureus Skin Infection. Adv. Funct. Mater. 2016, 26, 1628–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, Y.; Wang, J.; Wang, Y.; Chen, A.; Wang, C.; Mo, W.; Li, Y.; Yuan, Q.; Zhang, Y. Photon-Responsive Antibacterial Nanoplatform for Synergistic Photothermal-/Pharmaco-Therapy of Skin Infection. ACS Appl. Mater. Interfaces 2019, 11, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Yao, X.; Chen, W.; Wang, F.; He, H.; Liu, L.; He, Y.; Chen, J.; Jiang, P.; Zhang, R.; et al. Dissecting Complicated Viral Spreading of Enterovirus 71 Using in Situ Bioorthogonal Fluorescent Labeling. Biomaterials 2018, 181, 199–209. [Google Scholar] [CrossRef]
- Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and Promise of Bacterial Quorum Sensing Research. Nature 2017, 551, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varadi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the Detection and Identification of Pathogenic Bacteria: Past, Present, and Future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef]
- Raffatellu, M. Learning from Bacterial Competition in the Host to Develop Antimicrobials. Nat. Med. 2018, 24, 1097–1103. [Google Scholar] [CrossRef]
- D’Elia, R.V.; Woods, S.; Butcher, W.; McGahon, J.; Khadke, S.; Perrie, Y.; Williamson, E.D.; Roberts, C.W. Exploitation of The Bilosome Platform Technology to Formulate Antibiotics and Enhance Efficacy of Melioidosis Treatments. J. Control. Release 2019, 298, 202–212. [Google Scholar] [CrossRef]
- Rizzello, L.; Pompa, P.P. Nanosilver-Based Antibacterial Drugs and Devices: Mechanisms, Methodological Drawbacks, and Guidelines. Chem. Soc. Rev. 2014, 43, 1501–1518. [Google Scholar] [CrossRef]
- Dik, D.A.; Fisher, J.F.; Mobashery, S. Cell-Wall Recycling of The Gram-Negative Bacteria and The Nexus to Antibiotic Resistance. Chem. Rev. 2018, 118, 5952–5984. [Google Scholar] [CrossRef]
- Chen, J.; Su, F.Y.; Das, D.; Srinivasan, S.; Son, H.N.; Lee, B.; Radella, F., 2nd; Whittington, D.; Monroe-Jones, T.; West, T.E.; et al. Glycan Targeted Polymeric Antibiotic Prodrugs for Alveolar Macrophage Infections. Biomaterials 2019, 195, 38–50. [Google Scholar] [CrossRef]
- Piepenbreier, H.; Diehl, A.; Fritz, G. Minimal Exposure of Lipid II Cycle Intermediates Triggers Cell Wall Antibiotic Resistance. Nat. Commun. 2019, 10, 2733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Zhang, X.; Mei, L.; Ma, D.; Liao, Y.; Zu, Y.; Xu, P.; Yin, W.; Gu, Z. A Two-step Gas/Liquid Strategy for The Production of N-doped Defect-rich Transition Metal Dichalcogenide Nanosheets and Their Antibacterial Applications. Nanoscale 2020, 12, 8415–8424. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.W. Biofilms and Antibiotic Therapy: Is There a Role for Combating Bacterial Resistance by The Use of Novel Drug Delivery Systems? Adv. Drug Deliv. Rev. 2005, 57, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Fang, G.; Tian, X.; Yin, J.J.; Chen, C.; Ge, C. Optimization of Antibacterial Efficacy of Noble-Metal-Based Core-Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano 2019, 13, 12694–12702. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.X.; Chang, C.H.; Liu, R.; Chang, C.H.; Liu, R.; et al. Toxicity Mechanisms in Escherichia Coli Vary for Silver Nanoparticles and Differ from Ionic Silver. ACS Nano 2013, 8, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Eshed, M.; Lellouche, J.; Gedanken, A.; Banin, E. A Zn-Doped CuO Nanocomposite Shows Enhanced Antibiofilm and Antibacterial Activities Against Streptococcus Mutans Compared to Nanosized CuO. Adv. Funct. Mater. 2014, 24, 1382–1390. [Google Scholar] [CrossRef]
- Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K.W.K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; et al. Enhanced Photocatalytic Activity and Photothermal Effects of Cu-doped Metal-organic Frameworks for Rapid Treatment of Bacteria-infected Wounds. Appl. Catal. B 2020, 261, 118248. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Multiple Topological Isomerism of Three-Connected Networks in Silver-based Metal-organoboron Frameworks. Chem. Commun. 2010, 46, 2608–2610. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Y.; Liu, X.; Yeung, K.W.K.; Wu, S. Construction of Poly (Vinyl Alcohol)/Poly (Lactide-glycolide Acid)/Vancomycin Nanoparticles on Titanium for Enhancing the Surface Self-antibacterial Activity and Cytocompatibility. Colloids Surf. B 2017, 151, 165–177. [Google Scholar] [CrossRef]
- Sedghi, R.; Shaabani, A. Electrospun Biocompatible Core/Shell Polymer-free Core Structure Nanofibers with Superior Antimicrobial Potency Against Multi Drug Resistance Organisms. Polymer 2016, 101, 151–157. [Google Scholar] [CrossRef]
- Tian, T.; Shi, X.; Cheng, L.; Luo, Y.; Dong, Z.; Gong, H.; Xu, L.; Zhong, Z.; Peng, R.; Liu, Z. Graphene-based Nanocomposite as an Effective, Multifunctional, and Recyclable Antibacterial Agent. ACS Appl. Mater. Interfaces 2014, 6, 8542–8548. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.J.; Wu, R.S.; Lin, T.Y.; Li, Y.J.; Lin, H.J.; Harroun, S.G.; Lai, J.Y.; Huang, C.C. Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano 2017, 11, 6703–6716. [Google Scholar] [CrossRef] [PubMed]
- Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Gotz, H.; Gorelik, T.E.; Gural’skiy, I.A.; Pfitzner, F.; Link, T.; Schenk, S.; et al. Haloperoxidase Mimicry by CeO2-x Nanorods Combats Biofouling. Adv. Mater. 2017, 29, 1603823. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef]
- Sun, X.; Sun, J.; Sun, Y.; Li, C.; Fang, J.; Zhang, T.; Wan, Y.; Xu, L.; Zhou, Y.; Wang, L.; et al. Oxygen Self-Sufficient Nanoplatform for Enhanced and Selective Antibacterial Photodynamic Therapy against Anaerobe-Induced Periodontal Disease. Adv. Funct. Mater. 2021, 31, 2101040. [Google Scholar] [CrossRef]
- Marino, N.; Perez-Lloret, M.; Blanco, A.R.; Venuta, A.; Quaglia, F.; Sortino, S. Photo-antimicrobial Polymeric Films Releasing Nitric Oxide with Fluorescence Reporting under Visible Light. J. Mater. Chem. B 2016, 4, 5138–5143. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. Engl. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, P.; Zhang, L.; Wang, Z.; Wang, F.; Dong, K.; Liu, Z.; Ren, J.; Qu, X. Silver-Infused Porphyrinic Metal-Organic Framework: Surface-Adaptive, On-Demand Nanoplatform for Synergistic Bacteria Killing and Wound Disinfection. Adv. Funct. Mater. 2019, 29, 1808594. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, M.; Deng, W.; Chris Le, X. Is There a Silver Lining? Aggregation and Photo-transformation of Silver Nanoparticles in Environmental Waters. J. Environ. Sci. 2015, 34, 259–262. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Vilela, D.; Stanton, M.M.; Parmar, J.; Sanchez, S. Microbots Decorated with Silver Nanoparticles Kill Bacteria in Aqueous Media. ACS Appl. Mater. Interfaces 2017, 9, 22093–22100. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.M.; Zhang, Q.B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J. Negligible Particle-specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Mao, C.; Liu, X.; Zhang, Y.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Chu, P.K.; Wu, S. Synergistic Bacteria Killing Through Photodynamic and Physical Actions of Graphene Oxide/Ag/Collagen Coating. ACS Appl. Mater. Interfaces 2017, 9, 26417–26428. [Google Scholar] [CrossRef] [PubMed]
- Lucia, B.; Javier, A.; Gracia, M.; Silvia, I.; Stefano, C.; Ernesto, R. Production, Characterization and Testing of Antibacterial PVA Membranes Loaded with HA-Ag3PO4 Nanoparticles, Produced by SC-CO2 Phase Inversion. J. Chem. Technol. Biotechnol. 2019, 94, 98–108. [Google Scholar]
- Jaime, G.C.; Loredana, S.; Begonya, V.; Maxim, G.; Víctor, I.R.; Samuel, P.; Diego, F.; Juan, B.C. ZnO/Ag Nanocomposites with Enhanced Antimicrobial Activity. Appl. Sci. 2022, 12, 5023. [Google Scholar] [CrossRef]
- Lange, A.; Sawosz, E.; Wierzbicki, M.; Kutwin, M.; Daniluk, K.; Strojny, B.; Ostrowska, A.; Wojcik, B.; Lojkowski, M.; Golebiewski, M.; et al. Nanocomposites of Graphene Oxide-Silver Nanoparticles for Enhanced Antibacterial Activity: Mechanism of Action and Medical Textiles Coating. Materials 2022, 15, 3122. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Yang, W.; Gao, S.; Sun, C.; Li, Q. Mesoporous Silica-protected Silver Nanoparticle Disinfectant with Controlled Ag+ Ion Release, Efficient Magnetic Separation, and Effective Antibacterial Activity. Nanoscale Adv. 2019, 1, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Sukhorukova, I.V.; Sheveyko, A.N.; Shvindina, N.V.; Denisenko, E.A.; Ignatov, S.G.; Shtansky, D.V. Approaches for Controlled Ag+ Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content. ACS Appl. Mater. Interfaces 2017, 9, 4259–4271. [Google Scholar] [CrossRef]
- Tan, Z.K.; Gong, J.L.; Fang, S.Y.; Li, J.; Cao, W.C.; Chen, Z.P. Outstanding Anti-bacterial Thin-film Composite Membrane Prepared by Incorporating Silver-based Metal–Organic Framework (Ag-MOF) for Water Treatment. Appl. Surf. Sci. 2022, 590, 153059. [Google Scholar] [CrossRef]
- James, S.L. Metal-organic Frameworks. Chem. Soc. Rev. 2003, 32, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Meek, S.T.; Greathouse, J.A.; Allendorf, M.D. Metal-organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater. 2011, 23, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R.E.; Serre, C. Metal-organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y.W. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846. [Google Scholar] [CrossRef]
- Wang, D.; Jana, D.; Zhao, Y. Metal-Organic Framework Derived Nanozymes in Biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. Two-Dimensional Metal-Organic Framework/Enzyme Hybrid Nanocatalyst as a Benign and Self-Activated Cascade Reagent for in Vivo Wound Healing. ACS Nano 2019, 13, 5222–5230. [Google Scholar] [CrossRef]
- Rahmati, Z.; Abdi, J.; Vossoughi, M.; Alemzadeh, I. Ag-doped Magnetic Metal Organic Framework as a Novel Nanostructured Material for Highly Efficient Antibacterial Activity. Environ. Res. 2020, 188, 109555. [Google Scholar] [CrossRef]
- Ximing, G.; Bin, G.; Yuanlin, W.; Shuanghong, G. Preparation of Spherical Metal-organic Frameworks Encapsulating Ag Nanoparticles and Study on its Antibacterial Activity. Mater. Sci. Eng. C 2017, 80, 698–707. [Google Scholar] [CrossRef]
- Chen, N.; Fu, W.; Zhou, J.; Mei, L.; Yang, J.; Tian, Y.; Wang, Q.; Yin, W. Mn2+-doped ZrO2@PDA Nanocomposite for Multimodal Imaging-guided Chemo-photothermal Combination Therapy. Chin. Chem. Lett. 2021, 32, 2405–2410. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Ghasemzadeh, M.A.; Zand Monfared, M.R. The Preparation and Characterization of UiO-66 Metal–organic Frameworks for the Delivery of the Drug Ciprofloxacin and an Evaluation of their Antibacterial Activities. New J. Chem. 2019, 43, 16033–16040. [Google Scholar] [CrossRef]
- Gao, P.; Feng, Y.; Wang, M.; Jiang, N.; Qi, W.; Su, R.; He, Z. Ferrocene-Modified Metal–Organic Frameworks as a Peroxidase-Mimicking. Catalyst. Catal. Lett. 2020, 151, 478–486. [Google Scholar] [CrossRef]
- Xu, X.; Chu, C.; Fu, H.; Du, X.; Wang, P.; Zheng, W.; Wang, C. Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle Composites for the Capture and Release of Sulfamethoxazole. Chem. Eng. J. 2018, 350, 436–444. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, L.; Wang, X.; Dong, X.; Zhou, R.; Gu, Z.; Zhao, Y. Tumor Microenvironment-Responsive Cu2(OH)PO4 Nanocrystals for Selective and Controllable Radiosentization via the X-ray-Triggered Fenton-like Reaction. Nano Lett. 2019, 19, 1749–1757. [Google Scholar] [CrossRef]
- Ji, S.; Jiang, B.; Hao, H.; Chen, Y.; Dong, J.; Mao, Y.; Zhang, Z.; Gao, R.; Chen, W.; Zhang, R.; et al. Matching the Kinetics of Natural Enzymes with a Single-atom Iron Nanozyme. Nat. Catal. 2021, 4, 407–417. [Google Scholar] [CrossRef]
- Cui, S.; Ye, Z.; Qian, C.; Liu, J.; Jin, J.; Liang, Q.; Liu, C.; Xu, S.; Li, Z. Construction of Ternary Ag/AgBr@UIO-66(NH2) Heterojunctions with Enhanced Photocatalytic Performance for The Degradation of Methyl Orange. J. Mater. Sci. Mater. Electron. 2018, 29, 15138–15146. [Google Scholar] [CrossRef]
- Rodríguez-González, V.; Alfaro, S.O.; Torres-Martínez, L.M.; Cho, S.-H.; Lee, S.-W. Silver–TiO2 Nanocomposites: Synthesis and Harmful Algae Bloom UV-Photoelimination. Appl. Catal. B 2010, 98, 229–234. [Google Scholar] [CrossRef]
- Cui, J.; Xu, X.; Yang, L.; Chen, C.; Qian, J.; Chen, X.; Sun, D. Soft foam-like UiO-66/Polydopamine/Bacterial Cellulose Composite for the Removal of Aspirin and Tetracycline Hydrochloride. Chem. Eng. J. 2020, 395, 125174. [Google Scholar] [CrossRef]
- Vellingiri, K.; Deep, A.; Kim, K.-H.; Boukhvalov, D.W.; Kumar, P.; Yao, Q. The Sensitive Detection of Formaldehyde in Aqueous Media Using Zirconium-based Metal Organic Frameworks. Sens. Actuators B Chem. 2017, 241, 938–948. [Google Scholar] [CrossRef]
- Huang, Y.; Mu, L.; Zhao, X.; Han, Y.; Guo, B.L. Bacterial Growth-Induced Tobramycin Smart Release Self-Healing Hydrogel for Pseudomonas Aeruginosa-Infected Burn Wound HealingSens. ACS Nano 2022, 8, 13022–13036. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Chen, N.; Liao, J.; Tian, G.; Mei, L.; Yang, G.; Wang, Q.; Yin, W. Ag-Activated Metal−Organic Framework with Peroxidase-like Activity Synergistic Ag+ Release for Safe Bacterial Eradication and Wound Healing. Nanomaterials 2022, 12, 4058. https://doi.org/10.3390/nano12224058
Zhou J, Chen N, Liao J, Tian G, Mei L, Yang G, Wang Q, Yin W. Ag-Activated Metal−Organic Framework with Peroxidase-like Activity Synergistic Ag+ Release for Safe Bacterial Eradication and Wound Healing. Nanomaterials. 2022; 12(22):4058. https://doi.org/10.3390/nano12224058
Chicago/Turabian StyleZhou, Jie, Ning Chen, Jing Liao, Gan Tian, Linqiang Mei, Guoping Yang, Qiang Wang, and Wenyan Yin. 2022. "Ag-Activated Metal−Organic Framework with Peroxidase-like Activity Synergistic Ag+ Release for Safe Bacterial Eradication and Wound Healing" Nanomaterials 12, no. 22: 4058. https://doi.org/10.3390/nano12224058
APA StyleZhou, J., Chen, N., Liao, J., Tian, G., Mei, L., Yang, G., Wang, Q., & Yin, W. (2022). Ag-Activated Metal−Organic Framework with Peroxidase-like Activity Synergistic Ag+ Release for Safe Bacterial Eradication and Wound Healing. Nanomaterials, 12(22), 4058. https://doi.org/10.3390/nano12224058