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Abstract: Catheter-associated urinary tract infections (CAUTIs) are significant complications among
catheterized patients, resulting in increased morbidity, mortality rates, and healthcare costs. Foley
urinary catheters coated with synthesized silver nanoparticles (AgNPs) using Eucalyptus camaldulensis
leaf extract were developed using a green chemistry principle. In situ-deposited AgNPs with particle
size ranging between 20 and 120 nm on the catheter surface were illustrated by scanning electron
microscopy. Atomic force microscopy revealed the changes in surface roughness after coating
with nanoparticles. The coated catheter could significantly inhibit microbial adhesion and biofilm
formation performed in pooled human urine-supplemented media to mimic a microenvironment
during infections (p < 0.05). AgNPs-coated catheter exhibited broad-spectrum antimicrobial activity
against important pathogens, causing CAUTIs with no cytotoxic effects on HeLa cells. A reduction in
microbial viability in biofilms was observed under confocal laser scanning microscopy. A catheter
bridge model demonstrated complete prevention of Proteus mirabilis migration by the coated catheter.
Significant inhibition of ascending motility of Escherichia coli and P. mirabilis along the AgNPs-coated
catheter was demonstrated in an in vitro bladder model (p < 0.05). The results suggested that the
AgNPs-coated urinary catheter could be applied as an alternative strategy to minimize the risk of
CAUTIs by preventing bacterial colonization and biofilm formation.

Keywords: urinary tract infection; silver nanoparticles; foley catheter; biofilm; antimicrobial coating;
Eucalyptus camaldulensis

1. Introduction

Catheter-associated urinary tract infections (CAUTIs) are among the most common
bacterial infections acquired both in hospitals and nursing homes. Patients with this
infection are likely to have a high risk for bacteremia, a serious complication leading
to increased morbidity and mortality [1]. The infections can occur within a few days
of catheterization, as the urinary catheter facilitates the migration of microorganisms
from the environment into the urinary bladder whilst impairing the natural antimicrobial
mechanisms of the urinary tract. Moreover, urinary catheters also allow microbial adhesion
and biofilm formation, resulting in the occurrence of drug-resistant microorganisms and
difficult-to-treat infections. The most common causative pathogens causing CAUTIs are
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Gram-negative bacteria including Escherichia spp. and Enterobacter spp. More than 70% of
these microorganisms are multidrug-resistant isolates [2].

Among antimicrobial agents, silver nanoparticles (AgNPs) are widely reported
as an effective antimicrobial compound against various species of bacteria and fungi
including multidrug-resistant microorganisms. Several approaches for the synthesis of
AgNPs have been reported. A synthesis method using plant extracts as reducing and
stabilizing agents is increasing in interest as it is simple, environmentally friendly, and
inexpensive. Our previous studies demonstrated that the green synthesis of AgNPs
using leaf extracts from plants in the Myrtaceae family, such as Eucalyptus sp., present
strong antimicrobial activity [3,4]. Eucalyptus camaldulensis is one of the most common
species, because it is widely cultivated in many countries, including Thailand, for paper
industries. In addition, E. camaldulensis leaf extract is composed of several phytochemicals,
such as polyphenols, carboxylic acids, and proteins, that may help in reducing Ag+ to
Ag0 [4]. Green synthesized AgNPs have been used as an antimicrobial coating compound
for many medical devices including endotracheal tubes, titanium implants, catheters,
surgical sutures, and textiles [5–9]. Material surfaces have been modified by fabricating
with AgNPs using different approaches including chemical, physical, and sputtering
deposition methods. However, an in situ method for depositing AgNPs on material
surfaces is a facile procedure that has been wildly reported to overcome the complicated
multistep techniques.

The current study proposes a dual-functional antimicrobial migration and antibiofilm
coating for urinary catheters. The method was developed using the principles of green
chemistry. E. camaldulensis-mediated synthesized silver nanoparticles were allowed to form
inside the substrate and on the catheter surfaces. The AgNPs-coated urinary catheter could
inhibit important microorganisms causing CAUTIs. Biofilm formation was substantially
reduced on the coated surface. An in vitro model simulating urinary tract infections caused by
catheterization showed that AgNPs-coated catheters could prevent the migration of the tested
pathogens. No cytotoxic effects on human cell lines were observed. The results suggested that
green-synthesized AgNPs-coated urinary catheters may reduce the chance of getting CAUTIs.

2. Materials and Methods
2.1. Materials

Silver nitrate (99.9999%) was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Microbial reference strains were obtained from the American Type Culture Collection
(Manassas, VA, USA). Clinical isolates were collected from Songklanagarind hospital
(Ethical Approval No. REC 63-073-10-1). Culture media for microorganisms was obtained
from Becton, Dickinson and Company (Sparks, MD, USA). Dulbecco’s modified Eagle’s
medium (DMEM), fetal bovine serum, and trypan blue stain were purchased from Gibco
Laboratories (Grand Island, NY, USA). Twenty-four well and 96-well cell culture plates
were obtained from SPL Life Science (Gyeonggi-do, Republic of Korea). All other chemicals
were purchased from Merck KGaA (Darmstadt, Germany) unless otherwise specified.
Commercial silicone-coated latex Foley catheters were used in this study. Eucalyptus
camaldulensis leaves were collected from Kaeng Khoi, Saraburi, Thailand, in April 2017.
The leaves were authenticated by Dr. Phattaravee Prommanut. A voucher specimen (BK
No. 070170) was deposited in the Bangkok Herbarium, Bangkok, Thailand [10].

2.2. Coating Process

Foley urinary catheters were cut into 0.5 cm segments. The segments were rinsed with
deionized water and then immersed in silver salt solution (0.1 g/mL). Following incubation
for 5 days under a dark condition, the samples were washed twice with deionized water,
and E. camaldulensis extract was added, left at room temperature for a further 24 h. To
obtain the AgNPs-coated urinary catheters, the samples were removed from the extract,
washed with deionized water, and air-dried.
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2.3. Characterization of AgNPs-Coated Urinary Catheter

Cross-sections of the coated urinary catheter were subjected to line scans using energy-
dispersive X-ray spectroscopy (EDX) (Quantax 70, Hitachi, Japan) to determine the presence
of silver elements on the top surface and inside the tube materials. Size distribution of
AgNPs on the coated surface was determined based on a scanning electron microscope
micrograph taken at magnification values of 150,000× by field emission-scanning elec-
tron microscope (FE-SEM) (Quanta 400, FEI, Eindhoven, The Netherlands), and the size
distribution of the particles was determined by ImageJ. Surface roughness and topology
were examined at the representative areas of the coated surface (5 × 5 mm) by using a
noncontact mode of atomic force microscopy (AFM) (easyScan 2, Nanosurf, Switzerland).

2.4. Preparation of Pooled Human Urine

To simulate biological conditions, antimicrobial activities of the coated catheter were
tested in a culture medium supplemented with sterile pooled human urine. Human urine
was collected from three to ten healthy men and women volunteers who had no history of
urinary tract infections or antibiotic use in the previous 2 months. The urine was pooled,
filter-sterilized, stored at 4 ◦C, and used within the following 2–3 days. Informed consent
was obtained from all volunteers. The protocol was approved by the Human Research Ethics
Committee, Faculty of Medicine, Prince of Songkla University (Protocol No. 63-073-10-1).

2.5. Agar Inhibition Assay

A modified Kirby–Bauer method was performed in order to measure the inhibition
zones of the AgNPs-coated urinary catheters against pathogenic microorganisms. Mueller
Hinton agar (MHA) was inoculated with the test organisms mentioned above. The coated
and uncoated urinary catheters were cut into 0.5 cm-long segments and embedded in the
inoculated MHA. The inhibition zones were measured after incubating the MHA plates at
37 ◦C for 24 h. The diameter of the clear zone was measured using a vernier caliper, which
is precise up to two decimal places. The results were mean ± standard deviation (SD) from
three independent experiments performed in triplicate.

2.6. Antimicrobial Adhesion

Anti-planktonic growth and antimicrobial adhesion of the AgNPs-coated urinary catheters
were tested against important pathogens causing CAUTIs including Enterococcus faecalis ATCC
29212, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 35984, Staphylococcus
saprophyticus NPRCoE 192201, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603,
Proteus mirabilis NPRCoE 192201, Pseudomonas aeruginosa ATCC 27853, and Candida albicans
ATCC 90028. The catheter segments were immersed in microbial suspension and incubated
at 37 ◦C for 24 h. After that, sample segments were removed from the cultures and washed
twice with phosphate-buffered saline (PBS) to remove nonadherent cells. To determine the
anti-adhesion effects, the attached microorganisms on urinary catheter surfaces were extracted
by placing the samples in a 0.9% saline solution, followed by sonication for 15 min, and vortex
for 1 min. The microbial cells in the solution were 10-fold serially diluted and plated on agar.
Colonies were counted after incubation at 37 ◦C for 24 h.

2.7. Antibiofilm Formation

The effects of the coated urinary catheter on biofilm formation of S. aureus ATCC 25923
and E. coli ATCC 25922, a representative strain of Gram-positive and Gram-negative bacteria,
respectively, were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reduction assay and confocal laser scanning microscope (CLSM). AgNPs-coated
catheters were challenged with 106 CFU/mL of S. aureus ATCC 25923 or E. coli ATCC 25922
in culture-media-supplemented pooled human urine. After incubation for 24 h, the coated
samples were washed twice with PBS to remove the unattached cells. Microbial cell viability in
biofilms was observed using MTT assay. The presence of microorganisms on material surfaces
was observed under CLSM after staining the materials with a LIVE/DEAD® viability kit.
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2.8. A Catheter Bridge Model

The model was constructed on tryptone soya agar with two 0.85 cm-wide perpen-
dicular channels. Ten microliters of the bacterial cultures (108 CFU/mL) were inoculated
at the edge of the central channel of each plate and dried before the 1.0 cm-long catheter
segments were placed across the channels. After 24, 48, and 72 h of incubation at 37 ◦C, the
growth of test strains on the uninoculated agar was examined.

2.9. A Modified in Vitro Bladder Model

A simple in vitro bladder model was modified according to a previously report [11].
The catheter segments (3.5 cm long) were perpendicularly immersed in the bacterial suspen-
sion (108 CFU/mL, 5% dextrose solution). The end of the catheter (0.5 cm long) immersed
in the bacterial suspension was regarded as the site of infection. After 7 days’ coincubation,
the catheters were removed from the suspension; microbial cell migration to the catheter
surface was determined using the method as described in antimicrobial adhesion.

2.10. Cytotoxicity Test

Cytotoxicity of the AgNPs-coated urinary catheter was carried out according to ISO
10993-5. Human cervical cancer (HeLa) cells were incubated with extracts solution from
the AgNPs-coated urinary catheter. The extracts were obtained by immersing the coated
catheter in a DMEM medium supplemented with pooled human urine and incubated at
37 ◦C for 24 h. Cell viability after the treatment was determined by a cell metabolic activity
assay by measuring optical density at 570 nm.

2.11. Ethical Approval

Our experiments on humans and/or the use of human tissue samples were performed
in accordance with relevant guidelines and regulations and we confirmed that informed
consent was obtained from all subjects and/or their legal guardians. The Songklana-
garind hospital Ethics Committee granted approval for this study in accordance with the
Declaration of Helsinki’s guiding principles (REC- 63-073-10-1).

3. Results and Discussion
3.1. Surface Characterization

The present development demonstrated a nano-modified surface of a Foley catheter
by fabricating the surface with eucalyptus-mediated synthesized AgNPs using an in situ
approach. The coating method allowed the deposition and formation of AgNPs both inside
and on the surface of materials. An increase in surface roughness was observed under
AFM, as demonstrated in Figure 1.
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An uncoated catheter showed a smooth surface with root mean square of 78 nm, while
an AgNPs-coated Foley catheter demonstrated a surface roughness of approximately 199 nm.
The presence of AgNPs on the material surface and inside the catheter was confirmed using
FESEM and EDX (Figure 2). EDX elemental color mapping images of the coated catheter
was demonstrated in Figure S1. AgNPs were found both on the surfaces and inside the
materials. FESEM illustrated small-size particles deposited on the coated catheter surface with
particle size distribution ranging between 20 and 120 nm (Figure 3). The highest Ag peak was
observed on the surface of the coated catheter. The synergy of both impregnated AgNPs inside
catheters and the presence of nano-roughness on the surface strengthens the antimicrobial
activities of the coated urinary catheter, making it more difficult for microorganisms to attach
and colonize. A surface topology represents one of the most important factors for bacterial
colonization. Surfaces with nano-scale roughness can prevent microbial adhesion. Small
pits and canyons of small size could restrict flagellar rotation and limit bacterial dispersion,
resulting in the reduction of microbial colonization and biofilm formation [12].
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Figure 2. Field emission scanning electron microscope micrographs and energy-dispersive X-ray
spectroscopy elemental mapping of (A) surface, (B) cross-sectional outer and (C) inner surfaces of
AgNPs-coated urinary catheters.
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Figure 3. (A) Representative scanning electron microscopy image of AgNPs-coated urinary catheters
and (B) particle size distribution of AgNPs on the coated surface.

3.2. Antibacterial Activity of the AgNPs-Coated Urinary Catheter

Inhibition zones were determined by the measurement of the inhibition zone diameter.
The AgNPs-coated urinary catheter demonstrated inhibition zones ranging between 8.98
and 10.58, 7.47 and 13.28, and 8.82 mm for Gram-negative, Gram-positive bacteria, and
fungi, respectively (Table 1). A modified Kirby–Bauer method has been extensively used to
screen the antibacterial activity of several antimicrobial compounds and antimicrobial-coated
medical devices. A silicon catheter coated with Pistacia lentiscus-mediated synthesized AgNPs
could inhibit both Gram-positive and Gram-negative bacteria [13]. Similarly, others have
demonstrated a bio-inspired antimicrobial coating against S. aureus and E. coli [14].

Table 1. Inhibition zone of AgNPs-coated urinary catheter against pathogenic microorganisms.

Microorganisms
Inhibition Zone (mm)

Uncoated Urinary Catheters AgNPs-Coated Urinary Catheters

Gram-positive bacteria
Enterococcus faecalis ATCC 29212 - a 10.7 ± 0.3 b

Staphylococcus aureus ATCC 25923 - 10.6 ± 0.1
Staphylococcus epidermidis ATCC 35984 - 9.0 ± 0.4
Staphylococcus saprophyticus NPRCoE 192201 - 9.7 ± 0.7

Gram-negative bacteria
Escherichia coli ATCC 25922 - 8.0 ± 0.6
Klebsiella pneumoniae ATCC 700603 - 12.3 ± 0.9
Proteus mirabilis NPRCoE 192201 - 7.5 ± 0.4
Pseudomonas aeruginosa ATCC 27853 - 13.3 ± 0.2

Fungi
Candida albicans ATCC 90028 - 8.8 ± 0.1

a no zone; b the results were means ± SD from three independent experiments performed in triplicate.

3.3. Antimicrobial Adhesion

To simulate the biological conditions, the antimicrobial adhesion of AgNPs-coated uri-
nary catheter was performed in culture media supplemented with pooled human urine
against important pathogens causing CAUTIs. Following 24 h of incubation, the coated
catheters significantly reduced the adhesion of all the tested microorganisms by approxi-
mately 3 log CFU/mL, compared with the uncoated urinary catheters (p < 0.05) (Figure 4).
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The emergence and rapid spread of multidrug-resistant microorganisms have become a
worldwide public health problem, particularly for medical device-associated infections, as
the materials used to support patient life are also promoting microbial adhesion and biofilm
formation. Pathogens within biofilms are troublesome to treat because the biofilm matrix
can protect microorganisms from antimicrobials and host defense mechanisms. Indwelling
medical devices with antimicrobial adhesion have been presented as an alternative preventive
strategy to reduce the risk of infections. Silver nanoparticles have emerged as a suitable
antimicrobial compound since they are able to overcome multidrug-resistant organisms. The
nanoparticles provide potential advantages over conventional antibiotics for the treatment
of bacterial infections by demonstrating a multi-target mode of action against bacterial cells
causing difficulty in the adaptation of bacteria to develop resistance to AgNPs [15].
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The AgNPs-coated Foley catheter demonstrated pronounced antimicrobial activity
by preventing bacterial and fungi attachment to the surface. The results were achieved by
the action of both AgNPs and Ag+. Silver nanoparticles could release Ag+ to bind with the
thiol group at an active site of some proteins, resulting in inhibition of enzyme activity [16].
Silver ions inhibit activities of several enzymes involved in various important metabolic
pathways of bacteria including the glycolysis pathway, oxidative stress homeostasis, and
the pentose phosphate pathway, resulting in cell death [15]. In addition to the killing
activity of Ag+ releasing from AgNPs, the coated catheter could prevent bacterial adhesion
by repulsive forces of the AgNPs. The eucalyptus-mediated synthesized AgNPs used in
this study presented an overall negative charge on their surfaces [4]. Meanwhile, most
microbial cells possess a negative charge on their cell wall. The similarity of the presence of
a net negative electrostatic charge of both the coated catheter and microorganisms resulted
in antibacterial adhesion of the AgNPs-coated urinary catheter.

3.4. Antibiofilm Formation

The urine of healthy individuals is normally less favorable for bacterial growth because
of a limitation of nutrients, low pH, high concentration of urea, and the presence of
some proteins that act as antimicrobials such as Tamm–Horsfall glycoprotein [17] and
siderocalin [18]. Changes in the urinary composition from various conditions including
diabetes [19], diet [20], and inflammation [21] can facilitate bacterial growth and may affect
the susceptibility of patients to infections. In addition, some pathogens are able to adapt
themselves to survive in the hostile condition of urine. E. coli produces enterobactin and
aerobactin for iron utilization in order to promote growth in iron-limited human urine [22].
A nickel transporter (Nik) of S. aureus is necessary for nickel uptake and nickel-dependent
urease. The Nik component has been proposed as an important virulence factor for S.
aureus during urinary tract infections [23]. A morphological change of C. albicans from yeast
to hyphae was observed during growth in a catheterized environment [24].

Therefore, the antibiofilm activity of AgNPs-coated Foley catheters was investigated
in media supplemented with pooled human urine against representative microorganisms.
After co-incubation for 24 h, the cell viability in biofilms of the tested microorganisms on the
coated catheters was reduced by up to 85%, compared with the uncoated urinary catheters
(Figure 5). Visualization of biofilms after co-incubation was observed under CLSM, as
shown in Figure 5B. The photographs illustrate the reduction in biofilms on AgNPs-coated
urinary catheters of all the tested organisms including S. aureus, E. coli, P. aeruginosa, and C.
albicans. Dense viable cells in biofilm within the biofilm thickness were clearly observed on
the uncoated catheters, while less green fluorescence was apparent on the coated catheters
with regard to both microorganisms. The results confirmed that AgNPs-coated catheters
could potentially prevent the formation of biofilm with regard to the tested pathogens.

3.5. Antimicrobial Migration

Catheter-associated urinary tract infections are usually identified as polymicrobial
infections because of the presence of biofilms on material surfaces. P. mirabilis was chosen
for this investigation as they are the most common bacteria isolated from polymicrobial
CAUTIs and mostly found in long-term catheterized patients [25]. The ability of the
swarming motility of this pathogen has been noted as a unique and important virulence
factor that can facilitate the migration across, and the colonization on Foley catheters of
other nonmotile microorganisms. [26].

The catheter bridge model was constructed with regard to investigating the antibacte-
rial migration of AgNPs-coated urinary catheters. The results are demonstrated in Figure 6.
After incubation for 24 h, P. mirabilis could migrate through the uncoated catheters. The dis-
tance area and colony size were gradually increased throughout the test period. In contrast,
the organisms could not migrate through the coated catheters. This could be explained
by the presence of AgNPs on the material surface, which could block microorganisms
from traveling from one side to another. However, the model might not exactly mimic
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real conditions during infections since the catheters were attached between solid agar
without a flow of fluid over the material surfaces. To mimic the environment of CAUTIs,
the antimicrobial migration of the coated catheters was further investigated in a modified
in vitro bladder model [11]. After incubation for 7 days, a significant difference in microbial
cells between AgNPs-coated and uncoated urinary catheters was observed (p < 0.05). The
highest numbers of the tested microorganisms at the infection site were observed on both
the coated and uncoated urinary catheter surfaces. However, a significant reduction in the
E. coli and P. mirabilis migration on the coated catheters was determined at 2 and 3 cm from
the infection site, respectively, compared with the uncoated catheters (Figure 7).
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Figure 5. Effects of AgNPs-coated urinary catheter on biofilm formation of Staphylococcus aureus
ATCC 25923 and Escherichia coli ATCC 25922 following incubation for 24 h. (A) Cell viability in
biofilms was determined using MTT assay. The values indicate mean ± SD from three independent
experiments performed in triplicate, p < 0.05. (B) Biofilms were observed under confocal laser
scanning microscopy after staining with LIVE/DEAD® viability fluorescent dye. A representative
photograph was from one of the three independent examinations.

Catheter-associated urinary tract infections can be caused by intraluminal or extralumi-
nal infections. The catheter bridge model was constructed to mimic intraluminal infection,
while the in vitro bladder model could represent both intraluminal and extraluminal in-
fections. The occurrence of an intraluminal infection may be due to the contamination of
the urine collection bag and subsequent ascension to the urinary bladder. Microorganisms
in the environment and the normal flora of patients can colonize and form a biofilm on
the surface of the Foley catheter and then move along the catheter, entering the bladder
and causing an extraluminal infection [27]. The AgNPs-coated urinary catheters demon-
strated the potential effects of inhibiting the bacterial migration of both intraluminal and
extraluminal models of infection.
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3.6. Cytotoxicity

Cytotoxic effects of antimicrobial agents released from anti-infective medical devices
possess a major concern for novel biomaterials. The biocompatibility of AgNPs-coated
catheters was investigated against a mammalian cell line using a metabolic activity assay.
HeLa cells were incubated with the extraction medium obtained from the coated catheter
after 24, 48, and 72 h of incubation. The AgNPs-coated catheter was highly biocompatible
on HeLa cells, but the percentage of cell viability remained at 100%, compared with the
untreated control (Figure 8). The results indicated that the silver ions released from the
AgNPs-coated urinary catheter were not toxic for the mammalian cells.
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mean ± SD from three independent experiments performed in triplicate, p < 0.05. A representative
photograph was from one of the three independent examinations.
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Figure 8. Cytotoxicity of AgNPs-coated urinary catheter on human cervical cancer (HeLa) cells. Cells
were treated with extracted medium from AgNPs-coated urinary catheter after 24, 48, and 72 h. The
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4. Conclusions

Eucalyptus-mediated synthesized AgNPs-coated Foley urinary catheters provided
nano-rough surfaces. The biosynthesized AgNPs were found both on the catheter surfaces
and inside the material substrate. AgNPs-coated Foley catheters exhibited broad-spectrum
antimicrobial activity against important pathogens causing CAUTIs. The coated catheter
demonstrated as being effective in the culture medium supplemented with human urine.
There were no cytotoxic effects of the coated catheters on HeLa cells. In vitro models mim-
icking the pathogenesis of CAUTIs revealed that the coated urinary catheters were able
to inhibit bacterial migration from the contaminated sites. The promising results demon-
strated that AgNPs-coated urinary catheters could be applied to catheterized patients to
prevent microbial adhesion, a vital step for developing infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12224059/s1, Figure S1: EDX elemental color mapping
images of surface (A), cross-sectional outer (B), and inner surface (C) of AgNPs coated urinary
catheters. Ag = silver, S = sulphur, C = carbon, Cl = chlorine, O = oxygen.
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