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Abstract: A series of novel MnxFey@SiO2 (x,y = 1–20%) nanocomposites were synthesized for the first
time via the sol-gel/combustion method with different content of precursors (Mn and Fe acetate salts).
The effect of precursor content and ratio on physicochemical properties were observed by various
characterization methods. Moreover, Rhodamine B (RhB) was chosen as the target pollutant to test
the performance of these nanocomposites under a photocatalytic Fenton-like reaction. The results
showed that the nanocomposite morphology improved by increasing Fe and Mn content. In this
study, interesting behavior was observed in BET results which were different from the fact that
increasing metal content can decrease the surface area. This study revealed that one metal could
be more critical in controlling the properties than another. Moreover, the precursor ratio appears
to have a more tangible effect on the surface area than the effect of precursor content. Among all
synthesized nanocomposites, Mn1Fe5@SiO2 showed the highest surface area of 654.95 m2/g. At
optimum batch conditions (temp = 25 ◦C, catalyst dosage = 1 g L−1, H2O2 = 75 mmolL−1, and initial
RhB concentration = 50 mg L−1), complete removal (simultaneous adsorption/degradation) occurred
using Mn1Fe5@SiO2 at neutral pH. This study showed that the designed nanomaterial could be used
as a dual functional adsorbent/photocatalyst in different environmental applications.

Keywords: Fenton-like reaction; silica-based catalyst; organic pollutants; photocatalysis; neutral pH

1. Introduction

Dyes are considered organic pollutants, which are known for their harmful effects
on the environment and ecosystem. According to the annual worldwide dye production
database, over 10,000 types (over 700,000 tones) of dyes are manufactured every year [1].
Dyes have considerable applications in several industries, including printing, pulp mill,
textile, electroplating, and cosmetics, which cause severe water contamination. Most com-
mon carcinogenic products, such as benzidine, are present in organic dyes that must be
removed before they discharge into wastewater and other water sources [2]. Nowadays, the
removal of organic pollutants like dyes has become a concern for environmental scientists.
Various treatment techniques have been established, such as coagulation or flocculation,
ultra-filtration, reverse osmosis, and biodegradation. However, most of these conven-
tional approaches have faced several drawbacks. Therefore, it is essential to find new
methods to remove organic pollutants [3]. Rhodamine B(RhB) is an amphoteric dye em-
ployed in food and fabric dyeing industries and belongs to the xanthene dyes class. RhB
is one of the most challenging organic pollutants to degrade and control. According to
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IUPAC nomenclature, Rhodamine B is called N-[9-(ortho-carboxyphenyl)-6-(diethylamino)-
3H-xanthen-3-yli-dene] diethyl ammonium chloride and has a high molecular weight of
479.02 g mol−1 [4].

Catalytic oxidation/reduction is one of the most useful methods to degrade organic dyes where
catalysts such as biocatalysis, COF (covalent organic framework), MOF(metal-organic framework),
TiO2, carbon nanotubes, zeolites, etc., have been reported in the literature [5–7]. However,
due to their complicated synthesis, low thermal stability, high energy consumption, and ex-
pensive precursors, applying them on a real scale is an unpractical approach. Furthermore,
most photocatalysts can be utilized only in the acidic pH, which requires pre and post-
treatment to fulfill environmental regulations. Gao Y. et al., 2017 prepared MIL-53(Fe) by
solvothermal method and used it for the removal of clofibric acid and carbamazepine from
water. MIL-53(Fe)/H2O2/vis exhibited high photocatalytic activity at pH 3, and the photo-
catalytic activity decreased noticeably at neutral pH [8]. Farrokhi A. et al., 2019 synthesized
Phosphonate-based MOF materials, namely STA-12 (Fe), and tested them for the degrada-
tion of methylene blue (MB) and methyl Orange (MO) in the aqueous solution. The effect of
solution pH on the removal efficiency of dyes over STA-12 (Fe)/sunlight/H2O2 system was
examined at 30 ◦C. The efficiency was highest in the acidic condition, and the degradation
decreased significantly with the increase of pH, and, at pH 10, the reaction stopped [9].

In this regard, nanocomposites have gained extensive attention due to widespread
usage in different fields, such as water and wastewater treatment, energy storage de-
vices, the pharmaceutical industry, solar cell manufacturers, semiconductor industries,
and hydrogen production [10]. Nanocomposites are multiphase solid materials improv-
ing performance in a wide range of pH. For this purpose, heterostructure nanocompos-
ites like polymer-metal matrix nanocomposites, carbon-supported metal oxide nanocom-
posites, metal matrix nanocomposites, and modified metal matrix nanocomposites have
been reported. CuO–ZnO [11], NiO–Al2O3 [12], FeNi3/SiO2/CuS [13], C/NiO–ZnO [14],
Chitosan-graphene oxide iron oxide [15], PANi/Bi2WO6 [16], metal oxide loaded on
activated carbon [17], and Rectorite-supported Fe3O4 composite [18] are examples of
these nanocomposites.

Li. X. et al., 2017 fabricated g-C3N4/NH2-MIL-88B (Fe) heterojunction for visible
light-induced Fenton-like excitation of H2O2 for methylene blue (MB) degradation. The
results showed that this nanocomposite could successfully degrade MB after 120 min in
pH7 [19]. Arghavan F. et al., 2021 prepared nickel ferrite/chitosan/bismuth(III) oxyiodide
nanocomposite for metronidazole degradation. The results showed that metronidazole
was completely removed at neutral pH and a reaction time of 200 min [20].

Among all the nanocomposites, SiO2 based nanomaterials have gained much interest
due to the abundance of precursors, simple and fast synthesis methods, and high porosity.
Additionally, SiO2 has the advantage of good thermal stability, which makes it an ideal
support material [21]. Having a high surface area can give adsorbent characteristics to
the nanomaterial. However, adding metal compounds to the structure is necessary to
have catalytic properties. Solution Combustion Synthesis (SCS) is a redox-based reaction
that occurs in an aqueous environment in the presence of oxidizing (e.g., metal nitrates,
acetates, carbonates) and reducing agents (organic fuels such as hydrazine, EDTA, glycine).
The reaction occurs through the oxidation of fuels to pore-making gases such as CO2, N2,
and H2O. The liberated gases can crack large particles and form porous nanomaterials,
further improving the active phase distribution and the catalyst structural and thermal
stability. Fuels can connect with metal ions to start stable chelate complex compounds,
which allows for attaining a more homogeneous mixture and avoids segregations, which is
very advantageous for designing multi-component oxides [22].

Considering the above advantages and disadvantages, this study reported a simple
and economical synthesis of heterostructure MnxFey@SiO2 (x,y = 1–20%) nanocomposite us-
ing the sol-gel/combustion methodology. To the best of our knowledge, this nanomaterial
has never been reported before. Detail physicochemical characterization techniques such as
field emission scanning electron microscopy (FE-SEM), High-resolution transmission elec-
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tron microscope (HR-TEM), Thermogravimetric analysis (TGA), N2 adsorption-desorption
isotherm, X-ray diffractometer (XRD), Fourier-transform infrared (FTIR), Ultraviolet-visible
light-diffuse reflectance spectroscopy (UV–Vis DRS), X-ray photoelectron spectroscopic
(XPS), and electron spin resonance (ESR) were carried out. The application of this material
was tested by the degradation of Rhodamine B (RhB) under a photocatalytic Fenton-like
reaction. The influence of various experimental parameters such as catalyst dosage, initial
concentration of RhB, UV power, and H2O2 concentration on the degradation process was
also investigated.

2. Materials and Methods
2.1. Chemicals and Reagents

Manganese(II) acetate (>98%), Iron(II) acetate(98%), Cetyltrimethylammonium chloride
(CTAC) solution (25 wt.%), and Rhodamine B (RhB) were supplied by Sigma Aldrich,
Darmstadt, Germany. Glycine was procured by Yakuri Pure Chemicals Co. Ltd., Kyoto,
Japan. Hydrogen peroxide (28% H2O2) solution was procured from Daejung Chemicals
and Metals Co. Ltd., Siheung, Korea. Tetraethyl Orthosilicate 95% (TEOS) was purchased
from the Samchun Company, Seoul, South Korea. All the chemicals were used without any
further purification.

2.2. Synthesis of MnxFeyS photocatalysts

A series of novel MnxFey@SiO2 (x,y = 1–20%) nanocomposites were synthesized for
the first time via the sol-gel/combustion method with different content of precursors
(Mn and Fe salts). The MnxFey@SiO2 nanocomposites were fabricated according to our
previously published method with modifications in precursors and conditions [23,24].
Iron-Manganese containing amorphous silica (MnxFey@SiO2) was synthesized using the
sol-gel/combustion technique at room temperature. Different percentage of Manganese(II)
acetate and Iron(II) acetate was dissolved in 60 mL of CTAC solution and mixed for 15 min.
After gaining a homogenous solution, 1 g of glycine was added to the mixture and stirred
for 30 min. Next, 60 mL of TEOS solution was added to the solution and mixed for another
30 min. The solution was transferred to the incubator and stirred at 25 ◦C and 200 rpm for
24 h to form a gel. The gels were dried at 70 ◦C for 4 h in an oven. Finally, MnxFey@SiO2
was obtained by calcination at 550 ◦C for 6 h under air. It should be noted that depending
on the precursor content, the gel showed different colors (Table 1).

Table 1. The synthesized nanocomposites.

Catalyst Content Color of Formed Gel

Mn1Fe1@SiO2 Lowest metal content (Mn:1%, Fe:1%) Yellow

Mn1Fe5@SiO2 Higher Fe content (Mn:1%, Fe:5%) Light brown

Mn5Fe1@SiO2 Higher Mn content (Mn:5%, Fe:1%) Yellow

Mn5Fe5@SiO2 Medium metal content (Mn:5%, Fe:5%) Light brown

Mn20Fe20@SiO2 Highest metal content (Mn:20%, Fe:20%) Dark brown

2.3. Instruments

All the instruments used in this study are mentioned in Supplementary Data.

2.4. Experimental Procedure

The utilized photoreactor in this experiment consisted of one quartz tube in the middle
and four UV-C lamps around it. The UV lamps were low-pressure mercury lamps with
a power of 8 W and an intensity of 0.5 W/m2. A variable voltage transformer was used
to adjust the UV light intensity of the UV lamps. In order to prevent the effect of heat in
the removal experiment, the solution temperature was kept constant (25 ◦C) using cooling
fans installed at the bottom of the photoreactor. It should be noted that it was designed in
black to minimize the influence of other light sources in the experiments. The prepared
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nanocomposites were examined for their ability to degrade RhB under photocatalytic
Fenton-like reactions. In a typical experiment, 1g L−1 of the nanocomposites was added to
a 200 mL RhB solution with (50 mg L–1) concentration. Then, 75 mmol L–1 of 28% H2O2
was poured into the previous solution. At desired time intervals, 4 mL of the RhB solution
was taken to analyze the removal performance using UV-Vis spectroscopy (LAMBDA
365 UV/Vis Spectrophotometer, Perkin Elmer).

3. Results and Discussion
3.1. Physicochemical Characteristic of Nanocomposites

XRD: The composition of the MnxFey@SiO2 nanocomposites was identified using the
XRD technique (Figure 1). The indicated peaks can be indexed to Mn2O3-Fe2O3 @ SiO2. A
broad diffraction peak at 2θ of 21.63◦ represents amorphous silica [25]. The nanocomposites
with lower Fe and Mn content (Mn1Fe1@SiO2, Mn1Fe5@SiO2, and Mn5Fe1@SiO2) showed
low-intensity peaks with a smaller number of peaks; while, for the samples with higher
content of metal (Mn5Fe5@SiO2 and Mn20Fe20@SiO2), peaks were visible with higher
intensities. Nine diffraction peaks at 2θ = 24.15◦, 33.16◦, 35.67◦, 40.92◦, 49.42◦, 54.29◦,
57.40◦, 62.52◦, and 64.0◦ were assigned to the structure of α-Fe2O3 (JCPDS No. 33-0664)
with their miller indices plane of 012, 104, 110, 113, 024, 116, 018, 214, and 300, reflections,
respectively. Five diffraction peaks at 2θ = 32.33◦, 36.1º, 44.38º, 54.04º, and 65.78º were
assigned to the structure of α-Mn2O3 (JCPDS No. 24–508) with their miller indices plane of
222, 400, 332, 440, and 622 reflections, respectively [26]. Furthermore, in the sample with
higher Mn content, Mn3O4 was also observed [27].
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Figure 1. XRD patterns of MxFy@SiO2 nanocomposites.

Textural properties: The configuration and microstructure of the MnxFey@SiO2 nanocom-
posites were analyzed by field emission scanning electron microscopy (FE-SEM) and high-resolution
transmission electron microscope (HR-TEM) images (Supplementary Figures S1 and S2). Spherical-
like particles were observed in all the images, and by the increasing Fe and Mn concentra-
tions, the spherical structure improved and became more uniform (Supplementary Figure S1).
The HR-TEM image of nanocomposites has been illustrated in Supplementary Figure S2.
The Fe2O3/Mn2O3 nanoparticles could be observed in the silica.

FTIR: The FTIR analysis was carried out to identify the functional groups on the
surface of MnxFey@SiO2 nanocomposites (Figure 2). Peaks at 464 cm–1, 810 cm–1, 967 cm−1,
1086 cm–1, 1641 cm–1, and 3433 cm–1 are observed in the transmission spectra of all
nanocomposites. The absorption band at 1086 cm–1 was related to the antisymmetric
stretching of Si–O–Si. The symmetric mode of Si–O–Si appeared at 810 cm–1. Moreover, the
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stretching vibration of Si–OH (967 cm–1) and bending of Si–O (464 cm–1) are also observed.
The peak centered at 967 cm–1 confirms the presence of silanol groups on the silica surface
or pores in all the nanocomposites. The small peak at 1641 cm–1 and the broad peak at
3433 cm–1 are due to the stretching vibration of OH groups in absorbed physical water and
Si–OH, respectively. The Si–O band always appears around 461 cm–1, which here is covered
by stretching vibration of the metal-oxygen bond in the range of 469 cm–1~480 cm–1 [18,23].
Soubaihi R. et al., 2021 studied Pd/SiO2 Catalyst characteristics, and similar peaks for SiO2
have been reported [28].
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Figure 2. FTIR spectra of the synthesized nanocomposites.

TGA: The thermal stability of the nanocomposites is shown in Figure 3. The samples
were heated from 25 ◦C to 900 ◦C, and weight loss in the samples was reported. An
insignificant weight loss was observed at <100 ◦C in all nanocomposites due to the adsorbed
moisture on the nanoparticle surface. Moreover, the weight loss in higher temperatures was
also insignificant (2–4%), showing that the prepared nanocomposites were thermally stable.
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BET: Porosity characteristics of nanocomposites were tested by N2 adsorption-desorption
isotherm (Figure 4). Based on IUPAC classification, synthesized nanocomposites show N2
sorption isotherms of Langmuir type IV isotherm and are considered as a H2(b) type
hysteresis loop, which verifies their mesoporous nature [29]. The specific surface areas
(SBET) were calculated using the Barrett–Joyner-Halenda method. The results showed that
the sample showed a surface area in the range of 320.74 m2/g–654.95 m2/g. The fact that
surface area decreased with an increasing metal fraction is reported in many studies [30],
and the lowest surface area was expected to be M20Fe20@SiO2. However, in this study,
among all the nanocomposites, the lowest surface area (SBET = 320.74 m2/g) belonging to
the sample M5Fe1@SiO2, which has a high Mn and low Fe content, and the highest specific
surface area of 654.95 m2/g belonged to the sample with more Fe and less Mn content
(M1Fe5@SiO2). From these results, it can be concluded that increasing Mn has a more
substantial effect compared to Fe in decreasing the surface area. Moreover, the ratio of Mn
and Fe is more important than their content in nanocomposite.
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XPS: the oxidation state of elements in the prepared nanocomposite was analyzed
using XPS. The XPS spectra showed Si2p, O1s, Mn2p, and Fe2p, which demonstrated the
presence of these elements in the prepared samples. In this study, the Fe and Mn content is
low, and the related peaks were not visible in full spectra in Figure 5.

In the Si spectrum, a single peak appeared at binding energies (B.E.) of 103.62 eV
belonging to the O–Si–O bond related to the Silica network (Figure 6a). The Mn spectra
showed two distinguishable peaks observed at B.E. of 641.57 eV for Mn2p3/2 and 652.89 eV
for Mn2p1/2, which corresponded to the Mn (III) oxidation state (Figure 6b) [31]. Hazarika
K. et al. 2018 reported that the spin energy separation of the Mn3+ oxidation state is
11.7 eV. Similar results have been observed in this study, and the spin energy separation
of Mn3+ was found to be 11.3 eV [32]. Similarly, at the Fe 2p spectrum, two peaks at
711.45 eV for Fe 2p3/2 and 724.72 eV for Fe 2p1/2 were observed, which were a fingerprint
of Fe(III) in the nanocomposites (Figure 6c) [33]. The shakeup peaks observed at the
higher binding energy near the main peaks were assigned to the satellite peaks of Fe(III)
oxidation states, which are shown by blue arrows. For the HRXPS O 1s peaks were located
at B.E of 529.56 eV, 532.50 eV, 532.68 eV, and 534.88 eV, which could be attributed to the
Metal–Oxygen (Metal: Fe and Mn), silica–Oxygen(Si–O), surface hydroxyl (O–H), and
adsorbed H2O, respectively [34]. The evidence of Si–O–Si or M–O bonds formed in the
composite was confirmed by the FTIR shown in Figure 2.
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ESR: To further understand the elemental state of the nanocomposites, ESR analysis
was conducted at room temperature (Figure 7). The high-intensity signal at 332 mT was
assigned to be g = 1.98, which was attributed to the existence of the Fe3+ ions in all the
nanocomposites. The sextet was observed approximately at 306 mT, 314 mT, 323 mT,
344 mT, and 354 mT, which were attributed to g = 2.16, 2.1, 2.03, 1.91, and 1.86, respectively.
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Figure 7. ESR spectra recorded at 298 K.

Based on the catalyst composition, the presence of Mn(III) (Mn2O3) was expected.
However, Mn(III) is ESR silent, and the spectra do not appear as a sextet. Therefore, the
observed sextet shape of spectra could be due to the presence of the Mn(II) (Mn3O4) in a
mixture with Mn(III) (Mn2O3) [35,36]. These results are in accordance with the XRD result,
which showed the presence of mixed Mn valence (Mn2O3 and Mn3O4) in nanocomposites
with high Mn fractions. It should be noted that in the XRD spectra of the nanocomposites
with low Mn concentration, the Mn3O4 was not visible. However, ESR analysis showed the
structure with more detail and accuracy and proved that even nanocomposites with low
Mn contents Mn3O4 exist.
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UV–Vis DRS: The optical properties and bandgap of synthesized nanocomposites
were studied using UV–Vis DRS (Figure 8a,b). The spectrum showed that all the nanocom-
posites could absorb the whole spectrum of UV, visible, and IR. The observed multiple
peaks were related to the absorption bands of Mn2O3 and Fe2O3 in the SiO2.
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Region 1 (250–400 nm) mainly results from the ligand to metal charge-transfer transi-
tions, and Region 2 (400–600 nm) is considered to be the result of the pair excitation process
(6A1(6s) + 6A1(6s) to 4T1(4G) + 4T1(4G)). Region (600–750 nm) is assigned to the 6A1(6s) to
4T2(4G) transition at about 650 nm, and Region 4 (750–900 nm) is the 6A1(6s) to 4T1(4G)
transition at about 830 nm. Moreover, the band in the 375–440 nm range is attributed to the
d-d transitions of Mn3+ in Mn2O3 [37].

The optical bandgap can be calculated using the equation αhυ = A(hv − Eg)n, Where
hν is photon energy, α is absorption coefficient, and n represents 1/2 for a direct transition
semiconductor and 2 for an indirect transition semiconductor [38]. A and Eg represent
the constant light frequency and bandgap energy, respectively. The bandgap energy was
calculated from the plot of (αhν)2 versus hν plots. The bandgap energy of Mn1Fe1@SiO2,
Mn1Fe5@SiO2, Mn5Fe1@SiO2, Mn5Fe5@SiO2, and Mn20Fe20@SiO2 was 1.62, 1.49, 1.78, 1.57,
and 1.44 eV, respectively.

3.2. Dye Degradation Performance
3.2.1. Effect of Metal Content on Performance

All the synthesized nanocomposites were studied for their ability to degrade RhB dye
under a photocatalytic Fenton-like process, and the results are shown in Figure 9. The
graphs showed that Mn1Fe5@SiO2 had the highest removal performance (99.66%), and
Mn20Fe20@SiO2 showed the lowest removal (54.89 %). These results can be attributed to the
large surface area of Mn1Fe5@SiO2, which can provide more active sites, increasing the re-
moval efficiency. Based on these findings, experiments were continued using Mn1Fe5@SiO2,
and the influencing parameters, including RhB initial concentration, catalyst dosage, H2O2
concentration, and UV intensity, have been investigated.
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Figure 9. Comparison of synthesized nanocomposites for photocatalytic Fenton-like degradation of RhB.

3.2.2. Effect of Experimental Parameters

Catalyst dosage: Figure 10a illustrates the effect of catalyst dosage on the degradation
of RhB using Mn1Fe5@SiO2. In order to optimize the catalyst dosage, experiments were
performed with different dosages of Mn1Fe5@SiO2 in the range of 0.25 to 1.5 g L–1. The
removal efficiency was 43.2% and 99.8% for the 0.25 g L–1 and 1. 5 g L–1 catalysts, respec-
tively. Increasing the dosage of Mn1Fe5@SiO2 can increase the presence of active sites and
the hydroxyl radicals (•OH) formation, which finally enhances the removal performance.
When the catalyst increased from 1 g L–1 to 1.5 g L–1,, the change in degradation efficacy
was insignificant, and a dosage of 1 g L–1 was chosen to continue the experiments.

Initial concentration of RhB: The effect of the initial concentration of RhB on removal
efficiency of Mn1Fe5@SiO2 was evaluated with different RhB concentrations (10–100 mg L–1).
Low dye concentrations (10 mg L–1 and 25 mg L–1) could be removed completely in the first
30 min. However, removal of high concentrations of 50 mg L–1 and 100 mg L–1 could reach
98.2 % and 90.6%, respectively, after the solution was irradiated for 60 min (Figure 10b).
It can be seen that when the initial concentration of the RhB increased, it resulted in a
decrease in degradation performance, which can be attributed to two main reasons. First,
as the initial RhB concentration increases, more RhB molecules attach to the surface of the
catalyst, decreasing the accessibility of active sites and minimizing the generation of e−/h+

pairs and hydroxyl radicals. Second, very high concentration of RhB inhibits UV/catalyst
interactions because the dye can absorb the UV light and prevent it from being absorbed
by the catalyst, which can also hinder the generation of electron/hole (e−/h+) pairs [39,40].
In this work, 50 mg L−1 of RhB was chosen as the optimized parameter.

H2O2 concentration (electron acceptor): The efficiency of the photocatalytic reac-
tion increases by preventing electron/hole (e−/h+) recombination. Adding an electron
acceptor such as H2O2 can effectively decrease the recombination of e−/h+. The degrada-
tion of RhB over Mn1Fe5@SiO2 was investigated using different concentrations of H2O2
(5 mmol L−1–120 mmol L−1) (Figure 10c). With an increase in H2O2 concentration from
5 mmol L−1 to 75 mmol L−1, the removal efficiency increased from 65.68% to 100%. Increas-
ing the H2O2 concentration causes an increase in the removal performance because, under
UV irradiation, the O–O bonds hydrogen peroxide could be broken to create hydroxyl
radical (•OH). Therefore, more H2O2 concentrations can produce a higher number of (•OH)
radicals. However, precautions are needed because, when H2O2 exceeds a certain level,
it will act as a scavenger, decreasing dye degradation efficiency. In this study, by increas-
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ing the H2O2 concentration to 120 mmol L−1, the efficiency decreased to 88.2% [41,42].
Therefore, for subsequent experiments, 75 mmol L−1 of H2O2 was used.
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Figure 10. (a) Effect of catalyst dosage, (b) effect of initial concentration of RhB, (c) effect of
H2O2 concentration, (d) effect of UV power on photocatalytic Fenton-like degradation of RhB
using Mn1Fe5@SiO2.

UV power: The effect of UV power (8 W,16 W, 24 W, and 32 W) on RhB degradation
was tested using Mn1Fe5@SiO2 (Figure 10d). Results showed that the removal was 88.21%
for 8w UV power, which reached 100% as the UV power increased to 32 W. For higher
UV powers, more photons can be formed and absorbed by the surface of the catalyst,
which means more electron-hole (e–/h+) pairs can be generated. Consequently, the number
of hydroxyl radicals accelerates and improves the removal performance. Moreover, in
higher UV power, more hydroxyl radicals can be generated via H2O2 photodissociation,
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which means a greater number of •OH radicals can be generated and attack the organic
pollutants [43,44]. In this work, the power of 32 W was used as the optimized parameter.

pHzpc: The zero-point charge (pHzpc) value of photocatalysts was determined by
pH drift method, as shown in Figure 11. The pHzpc value was found to be 5.7, 5.68,
6.05, 6.08, and 6.11 for Mn1Fe1@SiO2, Mn1Fe5@SiO2, Mn5Fe1@SiO2, Mn5Fe5@SiO2, and
Mn20Fe20@SiO2, respectively. The surface of nanocomposites was positively charged
at pH below pHzpc, whereas it was negatively charged at pH above pHzpc. Since, in
this experiment, the solution pH was 6.96 (neutral), the nanocomposite surface was
negatively charged.
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3.2.3. Degradation Performance in the Optimum Condition

Mn1Fe5@SiO2 was studied for the degradation of RhB dyes in various removal meth-
ods. Figure 12 showed that, in the absence of the catalyst and using H2O2 or UV system,
only 7.2∼15.7% of the dye could be degraded. Results indicated that 47.89% of RhB was
adsorbed on Mn1Fe5@SiO2, indicating the catalyst capability in the adsorption, which is
related to high surface area and more active sites. Moreover, based on Figure 11 pHzpc of
Mn1Fe5@SiO2 is 5.68, and the pH of the RhB solution is 6.96; therefore, the surface charge
of Mn1Fe5@SiO2 is negative in pH higher than pHzpc. Thus, there will be an attractive
force between positive charge RhB and negative charge nanocomposite, which enhances
the removal of RhB due to simultaneous adsorption /degradation at neutral pH. Complete
removal of RhB was achieved under the heterogeneous photo-Fenton process. The results
of this study have been compared with similar studies in Table 2.
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Figure 12. Degradation performance of Mn1Fe5@SiO2 in different systems in optimized condition
[RhB] = 50 mg L–1, [Catalyst dosage] = 1 g L–1, [H2O2] = 75 mmol L–1, [UV intensity] = 32 W,
[pH] = Neutral.

Table 2. Comparison of the performance of the synthesized nanomaterial with other studies.

Adsorbent/Catalyst Pollutant Experimental Condition Removal References

TiO2
[ATL]0

10 mg L−1

pH3, Temperature = 25 ◦C,
[catalyst] = 250 mg L−1,

[H2O2] = 1.4 Mm,
Reactiontime = 2 h, UVA9W

(350 nm)

70% [45]

SBA-15 [IBU]0
25 ug L−1

pH5, Temperature=25 ◦C,
[catalyst] = 0.3g L−1, [H2O2] = 10

Mm, Reaction time = 12 h
93% [46]

Mn2O3
[MB]0

15 mg L−1

pH not mentioned, Temperature =
25 ◦C, [catalyst] = 1g L−1, [H2O2]
= 2 Ml (%30), Reaction time = 3 h

50% [47]

G0-TiO2 Methyl orange 20 mg L−1
pH6.2, Temperature = 25 ◦C,

[catalyst] = 0.5g L−1,
Reaction time = 2 h, UVC

53% [48]

Mn1Fe5@SiO2
[RhB]0

50 mg L−1

pH7,Temperature = 25 ◦C,
[catalyst] = 1 g L–1, [H2O2] = 75
mmol L–1, Reactiontime = 1 h,

UVC-32 W (254 nm)

100% This study

4. Conclusions

In this study, a series of novel metal oxide @silica nanocomposites (MnxFey@SiO2) were
synthesized for the first time via the sol-gel/combustion technique with different Mn and
Fe contents (x,y = 1–20%). The results showed that the nanocomposite with the highest
metal content (Mn20Fe20@SiO2) had better morphology (uniformed semi-spherical shape).
Interestingly, BET results revealed a different behavior compared to the literature, and
the lowest and highest surface area was expected to be M20Fe20@SiO2 and M1Fe1@SiO2,,
respectively. However, in this study, among all the nanocomposites, the lowest surface area
(SBET = 320.74 m2/g) belongs to M5Fe1@SiO2, which has a high Mn and low Fe content, and
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the highest specific surface area of 654.95 m2/g belongs to the sample with more Fe and
less Mn content (M1Fe5@SiO2). From these results, it could be concluded that increasing
Mn has a more substantial effect compared to Fe in decreasing the surface area. Moreover,
the ratio of Mn and Fe appears to have a more tangible effect on surface characteristics
compared to the effectiveness of Fe and Mn content. UV–Visible DRS data showed that all
the nanocomposites have strong absorbance in the entire UV–Visible range with bandgap
energy of 1.44–1.78 eV. XRD and ESR results indicated that Mn existed in a mixture valence
of Mn(III) (Mn2O3) and Mn(II) (Mn3O4) in all the nanocomposites.

The application of these nanocompo”Ite’ was demonstrated by the decolorization
of Rhodamine B (RhB) under a photocatalytic Fenton-like reaction. In the optimized
experimental conditions, the Mn1Fe5@SiO2 showed the highest dye removal due to a
higher number of active sites, which could increase dye degradation. Additionally, elec-
trostatic attraction between the surface of the nanocomposite with a negative charge and
positive charge RhB made the nanocomposite dual functional material where the adsorp-
tion/degradation could occur, simultaneously enhancing the removal performance. Thus,
this study recommends a promising method for fabricating an efficient nanomaterial with
potential applications to remove complex organic pollutants at neutral pH.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12234108/s1, Figure 1: SEM image of samples (a) Mn1Fe1@SiO2,
(b) Mn1Fe5@SiO2, (c) Mn5Fe1@SiO2, (d) Mn5Fe5@SiO2, (e) Mn20Fe20@SiO2; Figure 2: HRTEM image
of samples (a) Mn1Fe1@SiO2, (b) Mn1Fe5@SiO2, (c) Mn5Fe1@SiO2, (d) Mn5Fe5@SiO2, (e) Mn20Fe20@SiO2.
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