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Abstract: Two-dimensional molybdenum disulfide (MoS2) has been extensively investigated in the
field of optoelectronic devices. However, most reported MoS2 phototransistors are fabricated using
the mechanical exfoliation method to obtain micro-scale MoS2 flakes, which is laboratory- feasible
but not practical for the future industrial fabrication of large-scale pixel arrays. Recently, wafer-
scale MoS2 growth has been rapidly developed, but few results of uniform large-scale photoelectric
devices were reported. Here, we designed a 12 × 12 pixels pixel array image sensor fabricated on
a 2 cm × 2 cm monolayer MoS2 film grown by chemical vapor deposition (CVD). The photogating
effect induced by the formation of trap states ensures a high photoresponsivity of 364 AW−1, which
is considerably superior to traditional CMOS sensors (≈0.1 AW−1). Experimental results also show
highly uniform photoelectric properties in this array. Finally, the concatenated image obtained by
laser lighting stencil and photolithography mask demonstrates the promising potential of 2D MoS2

for future optoelectrical applications.

Keywords: molybdenum disulfide (MoS2); two-dimensional (2D) semiconductors; photo sensor

1. Introduction

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been developing
rapidly and have received considerable research attention in the field of photodetection be-
cause of their superior electrical and optical properties [1–4]. Tremendous efforts have been
dedicated to developing high-performance 2D TMDs-based photodetectors for potential
applications in optical imaging, neural network vision sensor, and bioinspired in-sensor
vision [5–9]. Molybdenum disulfide (MoS2), the most famous representative in the TMD
family, has been extensively investigated for electronic and optoelectronic device applica-
tions owing to its unique properties, including the layer-dependent bandgap (1.8~1.2 eV
from monolayer to bulk), relatively high electron mobility, and current on/off ratio (up to
109) [10–13]. Therefore, MoS2 has been considered a promising channel material for low-
power logic devices [14–16] and photodetectors in the visible range [17]. Most previously
reported results were based on isolated MoS2 flakes obtained via widely-used top-down
approaches such as mechanical exfoliation [18,19]. Such exfoliated single crystalline flakes
provide good performance for a single fabricated device, but their micro-scale flake sizes
and randomly distributed thicknesses also result in low yield and reproducibility, which
hinder practical device applications [18,20].

In recent years, the large-scale fabrication of MoS2 devices has become mainstream
since various wafer-scale bottom-up growth methods have been developed, such as CVD,
atomic layer deposition (ALD), and metal-organic CVD (MOCVD). For example, Peng et al.
presented CVD-grown MoS2 phototransistors with a high photoresponsivity of 6650 AW−1

and detectivity of 1.23 × 1012 [21]. Chu et al. produced a molybdenum-based photo-
transistor with an ultrasensitive detectivity of 9.8 × 1016 cm Hz1/2 W−1 [22]. Guo et al.
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reported the optoelectrical performances of stacked ML-MoS2 phototransistors [23]. In ad-
dition to the film fabrication, various device structures have been proposed to improve the
performance of MoS2 photodetectors. Chen et al. presented a bilayer MoS2/graphene het-
erostructure array with the photoresponsivity of 32 mAW−1 [24]. Jeong et al. demonstrated
a periodically arrayed nanopore structures for improving the efficiency of multilayered p-
WSe2/n-MoS2 phototransistors with a photoresponsivity of 1.7 × 104 AW−1 [25]. However,
none of the above focused on the homogeneity of large-scale 2D TMD photodetector arrays,
which is a key to realize a practical image sensor. Recently, several reported results tackled
the fabrication of pixel array MoS2 image sensors. Park et al. reported a 4 × 4 multilayer
MoS2 phototransistors array grown using a post-sulfurization process, which gives rise to
a high uniformity but at the cost of a relatively low photoresponsivity of 3.7 AW−1 [26].
Hong et al. designed an 8 × 8 active pixel image sensor array based on a bilayer MoS2 film
with a maximum photoresponsivity of 119.16 AW−1 [27]. In these works, how to maintain
a uniform high performance while increasing the scale of the pixel array still remains an
unsolved problem. In this study, we presented a 12 × 12 pixel array image sensor built on
a 2 cm × 2 cm monolayer MoS2 film. Compared with previous work, all 144 individual
pixels exhibit the desired optoelectrical properties (photoresponsivity of 364 AW−1, photo
detectivity of 2.13 × 1010) with a high uniformity. Moreover, the MoS2 image sensor, placed
under photolithography masks, was exposed to lights of visible-band wavelengths from a
laser emitter. By illumination with a different wavelength and different stencils, three sets
of photocurrent data were collected and converted to a visualization image, respectively.
Thus, this work introduces a new platform for optoelectronic application of wafer-scale
2D-TMDs such as ultra-thin image sensors, transparent image sensors, artificial intelligence
photo sensors, and selective light-detecting imagers.

2. Materials Synthesis and Characterizations

Our pixel array image sensor was formed using a 2 cm × 2 cm CVD-grown monolayer
MoS2 film, as shown in Figure 1a. This film was synthesized directly on a cleaned silicon
oxide (SiO2) substrate without any transfer processes [28]. Compared with the transferring
method, the CVD growing method does not use complex processes, implying a higher
productivity and lower cost. More details on the film growth are provided in the Supple-
mentary Materials. Prior to the device fabrication, multiple material characteristics, Raman
spectra, photoluminescence (PL) spectra, atomic transmission microscope (AFM), and SHG
were tested, and the corresponding results were given in Figure 1. In Figure 1b, the Raman
spectra under the irradiation of a 514 nm laser were obtained from five different locations
on the MoS2 film. The difference between two dominant peaks, i.e., the in-plane (E1

2g)
vibration mode at ~384.3 cm−1 and the out-of-plane (A1g) vibration mode at ~404.7 cm−1

was around 20 cm−1, which was consistent with previous work [18]. Moreover, the promi-
nent consistency and nonexistence of splitting of all Raman spectra curves indicated the
high uniformity of our CVD-grown MoS2 film. Figure 1c demonstrated the PL spectra
from five suspended samples excited with a solid-state laser at a wavelength of 514 nm. A
low laser power of 50 µW (on the sample) was used to avoid heating and PL saturation.
The peak value at ≈1.84 eV in the PL spectra was a signal from the MoS2 with silicon
substrate [28]. Furthermore, the near-identical peak positions of all curves validated the
wafer-scale uniformity of the film as well. The height profile of MoS2 film was measured
by AFM (Bruker Dimension Edge). The average height difference along the red line, as
shown in Figure 1e, was around 0.78 nm, which corresponded exactly to the thickness
of monolayer MoS2 film [11]. Since the information on domain size and boundaries was
missing through AFM, a second harmonic generation (SHG) technique was applied to
reveal more detailed morphology. As shown in Figure 1f, the domain size was about
10–20 µm in our monolayer, MoS2 and the grain boundaries could be clearly recognized
from SHG images. Such capability of direct visualization of the grain information in MoS2
is attributed to the suppressed SHG signal at the grain boundaries. The difference in crys-
tal orientations resulted in the destructive interference and annihilation of the nonlinear
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waves [29,30]. Above all, all the measurement results indicated the excellent uniformity of
our CVD-grown film, which is crucial for further MoS2 phototransistor device fabrication.
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Figure 1. Spectroscopic analysis of the CVD-grown monolayer MoS2 film and process of the device
structure. (a) Photograph of an as-fabricated centimeter scale MoS2 with FETs. (b) Raman spectra
curves of five randomly selected points from the film, (c) PL spectra curves of five points with the
same positions from the film, (e) thickness scan along the red line across the boundary of the film.
(d) AFM image of the monolayer MoS2 film. (f) SHG mapping in an area of 30 µm × 30 µm of the
film, scale bar: 5 µm. (g) Optical microscopy image of the as-fabricated 12 × 12 MoS2 phototransistors
array. The scale bar is 120 µm. (h) 3D schematic image of a single MoS2-based phototransistor.
(i–k) diagram for the fabrication process of MoS2 film to phototransistors devices employing back
metal gates device structure.

The mature back-gate phototransistor structure was adopted here, and the detailed
process is presented in Figure 1. The optical microscopic image of the pixel array photode-
tector with a large-area monolayer MoS2 film is demonstrated in Figure 1g. The device
was composed of 12 × 12 MoS2 phototransistors with the same geometric size. A more
detailed single device structure was illustrated in Figure 1h. Each phototransistor consists
of a MoS2 channel with W/L of 30 µm/20 µm and Au electrodes for source and drain
contacts. Figure 1i–k displays a schematic fabrication flow of our MoS2 pixelarray image
sensor. As described before, the monolayer MoS2 film was grown on a SiO2/Si substrate,
Au (35 nm), as the source/drain (S/D) electrodes were deposited using an electron-beam
evaporator and photolithography via a lift-off technique, and then the channel isolation
was realized by the CF4 reactive ion etching using a photoresist mask, and a MoS2 channel
was etched to the designated dimensions. Finally, Aluminum oxide (40 nm) was deposited
as the protective insulator via ALD. The details of the device fabrication are presented in
the Supplementary Information.

Compared with the top-gate phototransistor structure, the back gate structured photo-
transistor can absorb light more efficiently. Moreover, MoS2 is directly grown on a SiO2/Si
substrate without additional processing (e.g., transferring MoS2 onto a glass or flexible
substrate [31]), which also contributes to a higher uniformity and lower fabrication cost.
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3. Results and Discussion

Then, we tested the electrical properties of as-fabricated MoS2 phototransistors. The
typical transfer characteristics (ID-VBG) of a single MoS2 phototransistor was plotted in
Figure 2a. The current on/off ratio (Ion/Ioff) of ≈106 and the threshold voltage (VTH)
of −9.2 V at a drain voltage (VDS) of 1 V indicated the strong gate modulation of the
designed MoS2 device. Figure 2b displayed the output characteristics of a typical MoS2
phototransistor in the pixel array image sensor. The drain current (ID) was saturated at a
high drain bias (>20 V) because of pinch-off at the drain region. Due to a satisfied contact
formation between the monolayer MoS2 film and the S/D electrodes (Au), the output
characteristics, ID-VDS, in the insets of Figure 2b exhibited a linear behavior of ID at a low
drain bias [32]. Field-effect carrier mobility µeff could also be extracted from the linear
region of the transfer curve using the following equation µeff = gm

Lc
WcCoxVDS

, where gm is
the transconductance, Lc and Wc are the length and width of the channel, respectively, Cox
is the capacitance of the gate insulator, and VDS is the drain voltage [33].
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Figure 2. Electrical characteristics and statistical analysis of MoS2 phototransistors. (a) ID-VBG curves
of a typical MoS2 phototransistor at VDS from 0.5 to 3 V with the step of 0.5 V. (b) ID-VDS curves of
MoS2 at VBG from −10 to 10 V with the step of 2 V. Inset: ID-VDS curve acquired at a small range
of VDS. The Histograms of (c) field-effect mobility (average µeff = 6.07 cm2 V−1 s−1), (d) threshold
voltage (average VTH = −10.19 V), and (e) Ion/Ioff current ratio (average Ion/Ioff = 4.875 × 106) with
VDS = 1 V of all 12 × 12 MoS2 phototransistor pixels.

To further demonstrate the uniformity of our image sensor in terms of electrical prop-
erties, histogram and corresponding fitted Gaussian distribution were also calculated for
mobility (µeff), threshold voltage (VTH), and on/off current ratio (Ion/Ioff) measured from
all 12 × 12 phototransistors, as summarized in Figure 2c–e, respectively. The corresponding
fitted Gaussian curves (the red solid lines) were also plotted for each parameter. All the
phototransistors exhibited a satisfactory electrical performance with the following average
values: a µeff of 6.07 cm2 V−1 s−1, a VTH of −10.2 V, and an Ion/Ioff of 4.87 × 106. According
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the equation STD(D) =

√
∑144

i=1(Di−D)
2

144 /D, where D could be replaced by µeff, VTH and
Ion/Ioff. The standard deviations (STD) of carrier mobility µeff is 23%. The STD of threshold
voltage VTH and current ratio Ion/Ioff are 2.8% and 25.2%, respectively. Compared with
previous works [26,27], our image sensor exhibited better electrical performance and much
smaller pixel-level variation with a much greater number of phototransistors.

In addition to the electrical characteristics, the key opto-electric characteristics of a
single MoS2 phototransistor were measured in Figure 3. Figure 3a exhibited the photoin-
duced transfer characteristics ID-VBG for a typical MoS2 photodetector 550 nm illumination
wavelength at given incident power densities (Pin) ranging from 14.7 to 285.9 µW/cm2.
The photocurrent curve of Figure 3b was further extracted from Figure 3a by the following
equation: IPH = Iillumination − Idark. The photocurrent of the monolayer MoS2 phototransis-
tor gradually increased with increasing Pin according to the photocurrent value under light
with different power densities. Moreover, the photoinduced transfer characteristics and
photocurrent curve under light with changeable excitation wavelength are presented in
Figure 3d,e. Monolayer MoS2 is more sensitive to visible wavelength band (420–680 nm)
compared with near-infrared band (700–1200 nm). Figure 3c,f displayed the curve of the
calculated photoresponsivity RPH as a function of incident power density and excitation
wavelength, which were important figures of merit for phototransistors. The RPH was ex-
tracted from the transfer characteristics in Figure 3b,e using the equation of RPH = IPH/Pin
(unit: AW−1), where IPH and Pin are the photocurrent and incident power density, respec-
tively. The main mechanism for the high RPH of the monolayer MoS2 phototransistor is the
photogating (PG) effect by the formation of trap states near the valance band due to the
structural imperfection and defects of MoS2 [34–37].
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Figure 3. Photo-responsive characteristics of a monolayer MoS2 phototransistor in the image sensor
array. (a) Transfer curves of ID for dark and illumination conditions and (b) Photocurrent as the func-
tion of VBG when VDS = 1 V with varying lighting intensity, ranging from 14.7 to 285.9 µW/cm2 with
an average step of 17.87 µW/cm2. (c) Responsivity as a function of incident power when VBG = 60 V
and VDS = 1 V. (d) Transfer curves for illumination conditions with varying light wavelengths. (e) Pho-
tocurrent as a function of VBG when VDS = 1 V with different wavelengths, ranging from 1000 nm to
300 nm with a step of −100 nm. (f) Responsivity as a function of the light wavelength.

Finally, Figure 4 presents the photo-response speed and an overall uniformity of the
12 × 12 MoS2 array. Figure 4a showed its switching behaviors under pulsed RGB light
illumination. As it can be noticed, the photoresponsivity under 450 nm laser was much
larger but with a slower response than that of the 750 nm laser. The rise time and decay time
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increased as light wavelength decreases due to a more excited number of photogenerated
charge carriers [36,38]. Figure 4b showed a light intensity dependence, in which the IPH
and response time are all positively correlated to incident power, which is also attributed to
the photogating effect [17]. Figure 4c presents the photo-switching behavior of IPH under
different VDS values. The photoresponsivity increases at the expense of a longer response
time. The switching characteristics under different back-gate voltages (VBG) are displayed
in Figure S1. When VBG was over-high (>10 V) or over-low (<−10 V), the recovery time
would be longer for photo-excited carriers to detrap from the subgap state [27], whereas the
gate pulse method by changing back-gate voltage VBG would improve greatly the response
speed of our image sensor array. As shown in Figure 4d, when the illumination switched
from light to dark, the VBG was injected simultaneously with a short-time (≈1 s) pulse
voltage from 8 V to 15 V to suppress carriers as soon as possible. As a result, the falling
time decreased by 90% compared with Figure 4a–c. A more detailed gate pulse effect was
displayed in Figure S2 and Table S1. A short duration gate voltage pulse could reduce the
decay time significantly due to the detrapping of the trapped holes in subgap states, which
enables the high-speed operation of the MoS2 image sensor [27,39].
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Figure 4. (a) Time-trace of the photodetector under illumination with the same intensity
(Pin = 200 µW/cm2) and VDS = 1 V but at different wavelengths (λ = 450, 550 and 750 nm). (b) Same
measure for different light intensities (Pin = 285.9 µW/cm2 and 71.83 µW/cm2) with the wavelength
of 550 nm and VDS = 1 V. (c) Same measurement for different VDS values (0.5 and 1.0 V) under the
illumination of 285.9 µW/cm2 with 550 nm wavelength. (d) Photo-switching characteristics with
gate pulse. (e,f) Photo-responsivity and detectivity mapping of 144 MoS2 phototransistors under
the illumination of 285.9 µW/cm2 with 550 nm wavelength. (g) Measurement concept using the
light stencil projection for image detection of the image sensor array. The 12 × 12 monolayer MoS2

image sensor array is placed behind character masks and measured photoelectricity under RGB light
illumination (wavelength λ = 750, 550, and 450 nm). (h) Horizontal concatenated normalized image
with a resolution of 36 × 12 pixels.
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To demonstrate the overall uniformity of our image sensor, a statistical distribution
of the photoelectrical properties, i.e., responsivity and detectivity of 12 × 12 MoS2 photo-
transistors was confirmed in the mapping images that presented the current level of each
phototransistor under illumination with Pin of 285.9 µW/cm2 (Figure 4e,f), respectively,
where all currents were measured at a VDS of 1 V. The detectivity (D*) is obtained by the

equation of D∗ =
√

A
2qID

RPH, where A is the channel area, q is unit electric charge, ID is dark

current, and RPH is photoresponsivity. The average photoresponsivity was 364.00 AW−1

with a standard deviation of 99 AW−1. The detectivity was 2.16 × 1010 cm Hz1/2 W−1

with a standard deviation of 3.23 × 109 cm Hz1/2 W−1. The photocurrent maps under
illumination with different wavelengths (red: 750 nm, green: 550 nm, blue: 450 nm) are
demonstrated in Figure S3, which also proves the uniformity of our device.

Moreover, three sets of masks (each was 12 × 12 pixels) with different characters
(“F”, “D” and “U”) were prepared and patterned using a laser cutting system, as shown in
Figure 4g, to evaluate the image-sensing characteristics of the monolayer MoS2 image sensor
array. These character masks were sequentially placed on the image sensor array during
light projection (red: 750 nm, green: 550 nm, blue: 450 nm). The 2D photocurrent data,
collected under light stencil, was firstly normalized from float type to then concatenated
horizontally to form the final 36 × 12 image (total pixel: 576). Due to the uniform photo-
related properties of all 12 × 12 phototransistors, the photosensitivity mapping result
could display three characters clearly. Table 1 compared the fundamental properties with
former works.

Table 1. Comparison of photo-related properties of fabricated pixel array image sensors.

Indicator Park et al. [26] Hong et al. [27] Ours

Pixel size
(width × height) 4 × 4 8 × 8 12 × 12

Layer of MoS2 film 2 L Multilayer 1 L

Average responsivity
(Unit: A W−1) 0.503 119.16 364.00

Std responsivity
(Unit: percentage %) 15 – 27.2

Average detectivity
(Unit: cm Hz1/2 W−1) 1.4 × 104 4.66 × 106 2.13 × 1010

Std detectivity
(Unit: percentage %) 12 – 15

4. Conclusions

In this paper, a 12 × 12 phototransistor pixel array image sensor based on a wafer-
scale monolayer MoS2 film was fabricated to present the potential of the next generation
photodetector. The integrated pixel number is significantly increased without sacrificing
photodetector performance. The fabricated MoS2 devices showed high uniformity in electri-
cal properties, including carrier mobility (≈6.07 cm2 V−1 s−1), Ion/Ioff (≈4.875 × 106), and
threshold voltage VTH (≈−10.19 V). The measured photoresponsivity RPH (≈364 AW−1)
and detectivity (≈2.13 × 1010) were superior to traditional CMOS image sensors [40,41],
which were attributed to the predominant photogeneration mechanism of the PG effect
induced by the formation of trap states near the valance band due to the structural imper-
fection and defects of MoS2. These results provide a blueprint for the future development
of wafer-scale 2D TMD optoelectrical application and suggest further application scenarios
requiring a high dynamic range, such as with artificial retinas.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12234118/s1, Figure S1: Photoswitching characteristics of the
MoS2 phototransistor under temporal light illumination with varying back gate voltage VBG from
−30 V to 30 V with a step of 10 V. All switching curves were measured at VDS = 1 V with illumination
frequency of 0.05 Hz; Figure S2: A Time resolved photoresponsive characteristics of the monolayer
MoS2 phototransistor under temporal light illumination with λ = 550 nm without and with gate
voltage pulse. The fall time is improved from 7.59 s to 6.24 s; Figure S3: Photocurrent mapping of
12 × 12 MoS2 phototransistors at VDS = 1 V, VBG = −10 V under RGB light illumination (λ = 750, 550,
and 450 nm), indicating uniform photocurrent photoresponses; Table S1: The rise time and fall time
with different case. Reference [42] was cited in supplementary materials.
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