Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of ZnO Nanowire Arrays
2.2. Lateral Force Calibration
2.3. Bending Test
3. Results and Discussion
3.1. ZnO Nanowire Arrays
3.2. Lateral Force Calibration
3.3. Nanowire Scanning at Constant Tip Height
3.4. Calculation of the Bending Modulus
3.5. Fracture Test of ZnO NWs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, S.; Ren, P.; Song, R.; Liu, Y.; Huang, Q.; Dong, J.; O’Connor, B.T.; Zhu, Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Adv. Mater. 2020, 32, 1902343. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhai, J.; Wang, Z.L. Piezotronics and Piezo-Phototronics of Third Generation Semiconductor Nanowires. Chem. Rev. 2019, 119, 9303–9359. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.E.; Modi, G.; Agarwal, R.; Bhaskaran, H. Real-Time Nanomechanical Property Modulation as a Framework for Tunable NEMS. Nat. Commun. 2022, 13, 1464. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, Y. Mechanical Properties of Nanowires. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2022; p. B9780128224250001000. ISBN 978-0-12-803581-8. [Google Scholar]
- Gyulai, Z. Festigkeits- und Plastizitatseigenschaften von NaCl-Nadelkristallen. Z. Physik. 1954, 138, 317–321. [Google Scholar] [CrossRef]
- Webb, W.W.; Forgeng, W.D. Mechanical Behavior of Microcrystals. Acta Metall. 1958, 6, 462–469. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Zhu, Y. Mechanics of Crystalline Nanowires: An Experimental Perspective. Appl. Mech. Rev. 2017, 69, 010802. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Chang, M.; Li, X.; Deka, J.R. Measurement of Mechanical Properties of Boron Nanowire Using Nano-Manipulation System. In Proceedings of the 35th International MATADOR Conference; Hinduja, S., Fan, K.-C., Eds.; Springer: London, UK, 2007; pp. 275–278, ISBN 978-1-84628-987-3. [Google Scholar]
- Naraghi, M.; Chasiotis, I.; Kahn, H.; Wen, Y.; Dzenis, Y. Novel Method for Mechanical Characterization of Polymeric Nanofibers. Rev. Sci. Instrum. 2007, 78, 085108. [Google Scholar] [CrossRef]
- Naraghi, M.; Ozkan, T.; Chasiotis, I.; Hazra, S.S.; de Boer, M.P. MEMS Platform for On-Chip Nanomechanical Experiments with Strong and Highly Ductile Nanofibers. J. Micromech. Microeng. 2010, 20, 125022. [Google Scholar] [CrossRef]
- Zhu, Y.; Espinosa, H.D. An Electromechanical Material Testing System for in Situ Electron Microscopy and Applications. Proc. Natl. Acad. Sci. USA 2005, 102, 14503–14508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Heidelberg, A.; Boland, J.J. Mechanical Properties of Ultrahigh-Strength Gold Nanowires. Nat. Mater. 2005, 4, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Celik, E.; Guven, I.; Madenci, E. Mechanical Characterization of Nickel Nanowires by Using a Customized Atomic Force Microscope. Nanotechnology 2011, 22, 155702. [Google Scholar] [CrossRef]
- Qin, Q.; Xu, F.; Cao, Y.; Ro, P.I.; Zhu, Y. Measuring True Young’s Modulus of a Cantilevered Nanowire: Effect of Clamping on Resonance Frequency. Small 2012, 8, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.F.; Chen, L.Y.; Gianola, D.S. Effect of Organometallic Clamp Properties on the Apparent Diversity of Tensile Response of Nanowires. Nanotechnology 2013, 24, 235704. [Google Scholar] [CrossRef]
- Erdélyi, R.; Hannibal Madsen, M.; Sáfrán, G.; Hajnal, Z.; Endre Lukács, I.; Fülöp, G.; Csonka, S.; Nygård, J.; Volk, J. In-Situ Mechanical Characterization of Wurtzite InAs Nanowires. Solid State Commun. 2012, 152, 1829–1833. [Google Scholar] [CrossRef]
- Hoffmann, S.; Ostlund, F.; Michler, J.; Fan, H.-J.; Zacharias, M.; Christiansen, S.H.; Ballif, C. Fracture Strength and Young’s Modulus of ZnO Nanowires. Nanotechnology 2007, 18, 205503. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Nagata, T.; Wakayama, Y.; Sekiguchi, T.; Erdélyi, R.; Volk, J. Band-Gap Deformation Potential and Elasticity Limit of Semiconductor Free-Standing Nanorods Characterized in Situ by Scanning Electron Microscope–Cathodoluminescence Nanospectroscopy. ACS Nano 2015, 9, 2989–3001. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Wang, X.; Riedo, E.; Wang, Z.L. Elastic Property of Vertically Aligned Nanowires. Nano Lett. 2005, 5, 1954–1958. [Google Scholar] [CrossRef]
- Bian, K.; Gerber, C.; Heinrich, A.J.; Müller, D.J.; Scheuring, S.; Jiang, Y. Scanning Probe Microscopy. Nat. Rev. Methods Primers 2021, 1, 36. [Google Scholar] [CrossRef]
- Liu, E.; Blanpain, B.; Celis, J.P. Calibration Procedures for Frictional Measurements with a Lateral Force Microscope. Wear 1996, 192, 141–150. [Google Scholar] [CrossRef]
- Cain, R.G.; Biggs, S.; Page, N.W. Force Calibration in Lateral Force Microscopy. J. Colloid Interface Sci. 2000, 227, 55–65. [Google Scholar] [CrossRef]
- Ecke, S.; Raiteri, R.; Bonaccurso, E.; Reiner, C.; Deiseroth, H.-J.; Butt, H.-J. Measuring Normal and Friction Forces Acting on Individual Fine Particles. Rev. Sci. Instrum. 2001, 72, 4164–4170. [Google Scholar] [CrossRef]
- Ogletree, D.F.; Carpick, R.W.; Salmeron, M. Calibration of Frictional Forces in Atomic Force Microscopy. Rev. Sci. Instrum. 1996, 67, 3298–3306. [Google Scholar] [CrossRef] [Green Version]
- Varenberg, M.; Etsion, I.; Halperin, G. An Improved Wedge Calibration Method for Lateral Force in Atomic Force Microscopy. Rev. Sci. Instrum. 2003, 74, 3362–3367. [Google Scholar] [CrossRef]
- Green, C.P.; Lioe, H.; Cleveland, J.P.; Proksch, R.; Mulvaney, P.; Sader, J.E. Normal and Torsional Spring Constants of Atomic Force Microscope Cantilevers. Rev. Sci. Instrum. 2004, 75, 1988–1996. [Google Scholar] [CrossRef] [Green Version]
- Cannara, R.J.; Eglin, M.; Carpick, R.W. Lateral Force Calibration in Atomic Force Microscopy: A New Lateral Force Calibration Method and General Guidelines for Optimization. Rev. Sci. Instrum. 2006, 77, 053701. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kim, K.-S.; Rydberg, A. Lateral Force Calibration of an Atomic Force Microscope with a Diamagnetic Levitation Spring System. Rev. Sci. Instrum. 2006, 77, 065105. [Google Scholar] [CrossRef]
- Xu, F.; Qin, Q.; Mishra, A.; Gu, Y.; Zhu, Y. Mechanical Properties of ZnO Nanowires under Different Loading Modes. Nano Res. 2010, 3, 271. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Peng, B.; Gdoutos, E.E.; Espinosa, H.D. Elasticity Size Effects in ZnO Nanowires—A Combined Experimental-Computational Approach. Nano Lett. 2008, 8, 3668. [Google Scholar] [CrossRef]
- Chen, C.Q.; Shi, Y.; Zhang, Y.S.; Zhu, J.; Yan, Y.J. Size Dependence of Young’s Modulus in ZnO Nanowires. Phys. Rev. Lett. 2006, 96, 075505. [Google Scholar] [CrossRef]
- Volk, J.; Nagata, T.; Erdélyi, R.; Bársony, I.; Tóth, A.L.; Lukács, I.E.; Czigány, Z.; Tomimoto, H.; Shingaya, Y.; Chikyow, T. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics. Nanoscale Res. Lett. 2009, 4, 699. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, R.; Nagata, T.; Rogers, D.J.; Teherani, F.H.; Horváth, Z.E.; Lábadi, Z.; Baji, Z.; Wakayama, Y.; Volk, J. Investigations into the Impact of the Template Layer on ZnO Nanowire Arrays Made Using Low Temperature Wet Chemical Growth. Cryst. Growth Des. 2011, 11, 2515–2519. [Google Scholar] [CrossRef]
- Baji, Z.; Lábadi, Z.; Horváth, Z.E.; Molnár, G.; Volk, J.; Bársony, I.; Barna, P. Nucleation and Growth Modes of ALD ZnO. Cryst. Growth Des. 2012, 12, 5615–5620. [Google Scholar] [CrossRef]
- Kobiakov, I.B. Elastic, Piezoelectric and Dielectric Properties of ZnO and CdS Single Crystals in a Wide Range of Temperatures. Solid State Commun. 1980, 35, 305–310. [Google Scholar] [CrossRef]
- Lu, C.; Danzer, R.; Fischer, F.D. Fracture Statistics of Brittle Materials: Weibull or Normal Distribution. Phys. Rev. E 2002, 65, 067102. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liao, X. Mechanical Behaviors of Semiconductor Nanowires. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2016; Volume 94, pp. 109–158. ISBN 978-0-12-804016-4. [Google Scholar]
- Černohorský, O.; Grym, J.; Faitová, H.; Bašinová, N.; Kučerová, Š.; Yatskiv, R.; Veselý, J. Modeling of Solution Growth of ZnO Hexagonal Nanorod Arrays in Batch Reactors. Cryst. Growth Des. 2020, 20, 3347–3357. [Google Scholar] [CrossRef]
NW [#] STD | r1 [nm] ±3 | r2 [nm] ±3 | a1 [nm] ±3 | a2 [nm] ±3 | L1 [nm] ±20 | L2 [nm] ±20 | L [nm] | Flat [nN] ±10 | Y [nm] ±3 | y [nm] ±5 | EBM [GPa] |
---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 80 | 69 | 90 | 58 | 326 | 1200 | 1526 | 343 | 12.0 | 146 | 120 ± 12 |
B2 | 82 | 63 | 98 | 62 | 318 | 1230 | 1548 | 249 | 8.7 | 130 | 93 ± 11 |
B3 | 79 | 62 | 94 | 65 | 326 | 1228 | 1554 | 238 | 8.3 | 123 | 107 ± 12 |
B4 | 87 | 71 | 103 | 64 | 341 | 1207 | 1548 | 445 | 15.5 | 166 | 100 ± 10 |
B5 | 83 | 69 | 88 | 62 | 304 | 1199 | 1503 | 488 | 17.0 | 183 | 124 ± 12 |
B6 | 82 | 67 | 88 | 60 | 326 | 1155 | 1481 | 233 | 8.1 | 142 | 78 ± 9 |
B7 | 82 | 65 | 104 | 62 | 303 | 1213 | 1516 | 270 | 9.4 | 137 | 82 ± 9 |
B8 | 85 | 63 | 96 | 60 | 311 | 1207 | 1518 | 238 | 8.3 | 115 | 94 ± 11 |
B9 | 87 | 67 | 90 | 62 | 333 | 1185 | 1518 | 416 | 14.5 | 166 | 113 ± 11 |
B10 | 78 | 66 | 92 | 59 | 313 | 1203 | 1516 | 346 | 12.0 | 134 | 132 ± 14 |
B11 | 79 | 62 | 91 | 58 | 303 | 1235 | 1538 | 300 | 10.5 | 136 | 129 ± 14 |
B12 | 87 | 68 | 84 | 58 | 307 | 1173 | 1480 | 283 | 9.8 | 133 | 102 ± 11 |
B13 | 87 | 65 | 88 | 65 | 324 | 1112 | 1436 | 392 | 13.6 | 144 | 105 ± 11 |
B14 | 79 | 64 | 91 | 60 | 324 | 1181 | 1505 | 345 | 12.0 | 138 | 129 ± 14 |
Average | 82 | 65 | 93 | 61 | 319 | 1195 | 1514 | 327 | 11.4 | 142 | 108 + 17 |
NW [#] | Flat [nN] | y [nN] | [%] | [GPa] | [%] | [GPa] |
---|---|---|---|---|---|---|
F1 | 569 | 242 | 1.82 | 1.96 | 2.86 | 3.09 |
F2 | 570 | 211 | 1.82 | 1.96 | 2.87 | 3.10 |
F3 | 635 | 221 | 2.02 | 2.19 | 3.19 | 3.45 |
F4 | 561 | 200 | 1.79 | 1.93 | 2.82 | 3.05 |
F5 | 703 | 277 | 2.24 | 2.42 | 3.53 | 3.82 |
Average | 608 ± 61 | 230 ± 30 | 1.94 ± 0.19 | 2.09 ± 0.21 | 3.06 ± 0.31 | 3.30 ± 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volk, J.; Radó, J.; Baji, Z.; Erdélyi, R. Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy. Nanomaterials 2022, 12, 4120. https://doi.org/10.3390/nano12234120
Volk J, Radó J, Baji Z, Erdélyi R. Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy. Nanomaterials. 2022; 12(23):4120. https://doi.org/10.3390/nano12234120
Chicago/Turabian StyleVolk, János, János Radó, Zsófia Baji, and Róbert Erdélyi. 2022. "Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy" Nanomaterials 12, no. 23: 4120. https://doi.org/10.3390/nano12234120
APA StyleVolk, J., Radó, J., Baji, Z., & Erdélyi, R. (2022). Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy. Nanomaterials, 12(23), 4120. https://doi.org/10.3390/nano12234120