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Abstract: In this paper, Cu nanocolumnar structure electrodes are synthetized using a clean and
easy-to-scale-up direct-current magnetron sputtering (DC-MS) technique for non-enzymatic glucose
sensing. The nanocolumnar structure increases the active surface area of the deposit, with the
nanocolumns showing a mean size diameter of 121.0 nm ± 27.2 and a length of 2.52 µm ± 0.23.
A scanning transmission electron (STEM) analysis shows the presence of Cu and a small amount
of Cu2O. The behavior of the electrodes in alkaline environments and the electrochemical affinity
of the Cu nanocolumns (CuNCs) towards the electro-oxidation of glucose are investigated using
cyclic voltammetry (CV). After performing CV in NaOH solution, the columnar structures present
corrosion products containing Cu2O, as revealed by STEM and X-ray diffraction (XRD) analyses.
The amperometric responses of the CuNCs to the successive addition of glucose show a linear range
up to 2 mM and a limit of detection of 5.2 µM. Furthermore, the electrodes are free from chloride
poisoning, and they are insensitive to dopamine, uric acid, ascorbic acid, and acetaminophen at their
physiological concentrations.

Keywords: direct-current magnetron sputtering; Cu nanocolumns; non-enzymatic; glucose sensing

1. Introduction

Glucose determination is crucial in various fields, such as clinical medicine, wastewater
treatment, and the food industry. In 2019, over 1.5 million deaths were directly cause by
diabetes, as established by the World Health Organization [1]. The accurate monitoring of
glucose in blood is essential in the diagnosis and treatment of diabetes. Therefore, over the
past few decades, a significant effort has been made to develop reliable, fast, and economic
glucose sensors [2]. The first glucose biosensor was reported by Clark and Lyons in 1962,
based on the glucose oxidase (Gox) enzyme [3]. However, the use of enzymatic sensors is
problematic since the activity of Gox is susceptible to pH values and humidity, it is sensitive
to temperature variation and toxic chemicals, in addition to the high cost of the enzyme
and the difficulty of immobilizing it [4]. To overcome these disadvantages, non-enzymatic
biosensors have been explored.

Metallic nano- and micro-structures have been used in enzyme-free glucose detection.
Copper has attracted considerable attention due to its electrocatalytic activity towards
glucose oxidation, low cost, and high electrical conductivity. In addition, it does not suffer
from chloride poisoning, abundant in human blood, as compared to noble metals [5]. One-
dimensional copper nanostructures are of great interest since they offer efficient electron
transfer along the 1D direction and good mechanical strength [5]. Various non-enzymatic
glucose sensors based on copper 1D nanostructures have been reported. Zhang [6] and
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Mihai [7] prepared copper nanowires (CuNWs) using a soft template made out of polycar-
bonate. Even though the morphology of the nanowires was controlled by the template, the
main drawback was related to the template removal. Other authors synthetized CuNWs
by using wet chemical methods [8]. Zhang et al. prepared copper nanowires (CuNWs)
using a reduction method with CuNO3 as a precursor, toxic hydrazine as a strong reducing
agent, and ethylenimine as a capping agent [5]. Wonjoo Na and co-authors also synthetized
CuNWs using a reduction method, utilizing glucose and hexadecylamine [9]. However,
the glucose-assisted route requires long reaction times. The authors reported 12 h for
the stirring of copper chloride, glucose, and hexadecylamine, in addition to another 24 h
for autoclaving at 120 ◦C. Furthermore, Cu nanobelts [10], CuO nanofibers [11], CuO
nanoroads [12], CuO nanowires [2,13], and other 1D copper composite nanostructures
(such as CuNW–carbon nanotubes [14] and CuNW-reduced graphene oxide [15–17]) have
been reported as potential glucose sensors. Generally, wet chemistry is used in their synthe-
sis, most often involving hazardous chemicals and elevated temperatures, which are not
suitable for large-scale preparation. Plus, after the nanomaterial is synthetized, commonly,
it is further immobilized on the electrode surface, introducing an extra step in the glucose
sensor fabrication process. Therefore, it is still challenging to develop a cost-effective, re-
producible, and environmentally friendly method that produces the copper nanostructure
directly on the electrode surface for glucose sensing.

To overcome the above-mentioned drawbacks, magnetron sputtering (MS) is a robust
method used to prepare copper nanocolumns directly on the surface of electrodes without
byproducts, and it is easy to scale up [18,19]. Direct-current magnetron sputtering (DC-MS)
is a one-step physical fabrication process consisting of a target material that is bombarded
with ionized gas molecules causing the atoms from the target to be sputtered onto the
substrate [20]. Several parameters, such as surface roughness, surface temperature, and
adatom surface mobility and geometry, influence the film grown [21]. The morphology
of the sputter-deposited film is described using the structural zone model proposed by
Thornton depending on the substrate temperature and the pressure of the inert gas [22].
The columnar grain structure of thin films has been observed for several metals obtained
via sputtering, Cu being among them [23]. Craig and Harding reported the effects of
the argon pressure and glass substrate temperature of sputtered copper film [24]. A
well-defined columnar morphology of the film was observed via sputtering at a high
pressure (9.7·10−1 mbar) and a low substrate temperature (T/Tm = 0.23). This columnar
morphology helps to increase the surface area of the coating, making it suitable for glucose
detection. Recently, Siampour et al. investigated the use of Cu nanocolumns, obtained via
glancing angle deposition (GLAD) using a thermal evaporation system on FTO substrate,
as non-enzymatic glucose sensors [25]. However, in general, the films obtained via thermal
evaporation exhibit poor uniformity, a high level of impurities, and limited scalability.

Herein, we report, for the first time, the use of copper nanocolumns (CuNCs) obtained
using DC-MS for non-enzymatic glucose determination. The CuNCs were prepared at a
fixed argon pressure of 4.0 × 10−2 mbar and room temperature on glassy carbon substrate
(GC). The deposits were characterized using scanning electron microscopy (SEM) and scan-
ning transmission electron microscopy (STEM). Their activity towards glucose detection
was investigated in 50 mM NaOH solution using cyclic voltammetry (CV) and chronoam-
perometry. Additionally, the anti-interference properties of the sensor were determined for
different compounds usually found in human blood.

2. Materials and Methods
2.1. Reagents

Sodium hydroxide (Sigma-Aldrich, Steinheim, Germany), potassium hexacyanoferrate
(II) trihydrate (≥99%, Sigma-Aldrich, Steinheim, Germany), potassium hexacyanoferrate
(III) (≥99%, Sigma-Aldrich, Steinheim, Germany) and anhydrous D-(+)-Glucose (99%, Alfa
Aesar, Kandel, Germany) were used as received. For interference tests, sodium chloride
(lach:ner, Késmárk, Budapest), dopamine (99%), uric acid (99%), ascorbic acid (99.7%),



Nanomaterials 2022, 12, 4144 3 of 15

and acetaminophen (98%) were purchased from Acros Organics (Geel, Belgium), and
sucrose (≥99.5%) and fructose (≥99%) were from Sigma-Aldrich (Steinheim, Germany).
All solutions were prepared using deionized water with a conductivity of 0.5 µS/cm.

2.2. Preparation of the Non-Enzymatic Glucose Electrodes

Prior to the deposition of the metals, glassy carbon electrodes (5 mm in diameter,
Metrohm) were polished with a 1 µm diamond paste (Buehler) and a 0.3 µm alumina sus-
pension solution, followed by deionized water and ethanol. On the same electrodes, copper
was sputtered using a direct-current magnetron sputtering machine (Mantis Deposition
Ltd., Thame, UK). The copper target has a purity of 99.99% and was used as a received
from Kurt J. Lesker company (Dresden, Germany). The substrate was not heated; however,
it was rotated at 7 rpm, and the distance between the copper target and the substrate
was fixed at 23 cm. The chamber was firstly evacuated to a pressure of 4 × 10−5 mbar
and then filled with a constant flux of argon (Linde 5.0, ≤2 O2 vpm) until a pressure of
4 × 10−2 mbar was established. The sputtering was performed at a power of ~90 W, and
the average deposition rate was 0.06 nm/s. The thickness of the deposit was monitored
using a quartz balance. The copper was DC-sputtered for three hours.

In order to improve the adherence of the DC-sputtered copper to the glassy carbon
substrate in alkaline environments, a thin layer of gold was deposited on it. Gold was
evaporated using the e-beam evaporation technique on an M-EV mini e-beam Evaporator
(Mantis Deposition Ltd., Thame, UK) system. The deposition was performed under vacuum
at a pressure of 4 × 10−5 mbar and a power of 44 W with an average deposition rate of
0.02 nm/s until 30 nm was reached. The same quartz balance was used to monitor the
thickness of the film.

2.3. Characterization of the Non-Enzymatic Glucose Electrodes

The surface morphology of the electrodes was characterized using a Hitachi SU
8230 (Hitachi High-Tech Corporation, Tokyo, Japan) scanning electron microscope (SEM),
equipped with an energy-dispersive X-ray detector from Oxford Instruments (Oxford, UK).
Furthermore, the SEM images were analyzed using “Image J” software (LOCI, University of
Wisconsin) in order to determine the length and diameter distribution of the columns. Over
500 columns were measured, and the corresponding histograms were fit with a normal
distribution. High-resolution scanning transmission electron (HR-STEM) micrographs
were acquired for the same location at the same magnification using three different types
of detectors, namely, a surface electron detector (SEM), a high-angle annular dark-field
detector for atomic mass phase contrast (ZC-phase contrast), and a bright-field detector
for transmission electron imaging (TEM), and all of them were obtained using a Hitachi
HD-2700 system (Hitachi High-Tech Corporation, Tokyo, Japan) operating at 200 kV. The
X-ray diffraction spectra were recorded in a Rigaku SmartLab (Tokyo, Japan) using Cu Kα

radiation (λ = 0.15406 nm) at 45 kV in a 2θ range of 5◦–90◦.

2.4. Electrochemical Investigations

To investigate the applicability of the electrodes for glucose detection, cyclic voltammo-
grams (CVs) and chronoamperometric measurements were performed on a three-electrode
cell with a platinum plate as a counter electrode (Metrohm, Herisau, Switzerland), Ag/AgCl
(Metrohm, Herisau, Switzerland) as a reference, and glassy carbon (or a copper strip for
comparison) covered with the deposited materials as a working electrode (5 mm diameter,
s = 0.196 cm2, Metrohm, Herisau, Switzerland). The cyclic voltammograms were recorded
starting at the open-circuit potential (OCP) in the −1 to +1 V range. The chronoamperome-
try experiments were performed at a constant potential of +0.7 V in 5 mL of 50 mM NaOH
solution. The electrode potential was stabilized over 500 s in the electrolyte prior to the
successive addition of glucose. Furthermore, at least three replicates were performed for
each experiment using the PARSTAT 4000 system (Ametek, Berwyn, PA, USA) controlled
with VersaStudio software (2.1 version, Ametek, Berwyn, PA, USA).
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3. Results and Discussion
3.1. Characterization of Cu Nanocolumns

The SEM images displayed in Figure 1 present the copper obtained via DC magnetron
sputtering on a glassy carbon (GC) substrate under an argon atmosphere at a pressure of
4.0 × 10−2 mbar. It can be observed from the top-view SEM analysis that the resultant
deposit presents a nodular morphology. On the cross-section, a well-defined columnar
morphology is observed. According to the Thornton classification, this morphology can
be assigned to Zone I of the theoretical model (T/Tm = 0.22 and 30 mTorr), which is
characterized by open boundaries defining columnar grains [22,26]. A morphology similar
to that shown here has also been reported in the literature for magnetron-sputtered copper
deposits [24,26,27]. The substrate temperature and the argon pressure strongly affect the
morphology of copper deposits. For a similar T/Tm value, Craig and Harding reported
that increasing the argon pressure results in a more defined columnar morphology [24].
Another parameter that has an influence on the copper grain is the sputtering power. At
higher sputtering powers, larger grains form as reported by Sun et al. [27]. For the applied
preparation conditions, the copper columns obtained have a length of 2.52 µm ± 0.23, and
the mean size diameter is 121.0 nm ± 27.2, as shown in the histogram in Figure 1D,E. A top-
view analysis of the size of the copper columns was also performed (see Supplementary
Materials Figure S1), showing that the sizes of the diameters analyzed in the top-view SEM
images are correlated with the dimensions of the columns measured in the cross-section.
As determined using the SEM analysis, the diameters of the columns synthetized via
DC magnetron sputtering at a pressure of 4.0 × 10−2 mbar are in the nanometer scale.
This nanocolumnar structure increases the active surface area of the deposit, making it
suitable for sensing applications [26]. The EDX analysis carried out on the cross-section
(see Figure 1C) revealed the presence of copper and oxygen, the latter having a content
below 7 at.%. A maximum of 8% content of oxygen in the columnar copper layer has also
been reported by Borisevich et al. [28].
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Figure 1. SEM images of CuNCs: (A) top-view; (B) cross-section; (C) elemental analysis; (D,E) their
corresponding diameter and length distribution.

To further analyze the fabricated material, HR-STEM images were recorded, as shown
in Figure 2. The columnar structures were crystalline, and the interplanar distances of
0.21 and 0.25 nm were attributed to the (111) planes of Cu and Cu2O, respectively [29].
It is worth mentioning that the content of oxygen was low, i.e., 6.33 at.%, indicating that
the NCs presented a small degree of oxidation. The columns were prepared under an
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argon atmosphere with an oxygen content below 2 vpm. However, this low content of
oxygen may induce the formation of Cu2O, or it could be formed during the early period of
exposure to oxygen after the deposition experiment is finished [30]. The elemental analysis
indicated a uniform distribution of oxygen among the NCs. The HR-STEM analysis showed
that the columnar structures were not made out of single crystal grains.

 

2 

 

Figure 2. HR-STEM micrographs on CuNCs: (A) EDX elemental analysis; (B) SEM, TEM, and ZC
investigations; and (C) interplanar spacing of 0.21 and 0.25 nm assigned to Cu and Cu2O, respectively.

As mentioned in the Introduction Section, DC magnetron sputtering represents a
simple, economical way to prepare copper with a nanocolumnar structure [18]. This
method is highly reproductible, and in a few hours, it allows for the preparation of a large
amount of electrodes covered with this nanomaterial. Copper-based nanostructures have
found a variety of applications [31,32], and in this work, we focused on their use as glucose
sensors. As presented above, the copper columnar structures present a small degree of
oxidation as Cu2O, which could be beneficial for glucose sensing, since several authors
have reported non-enzymatic glucose sensors based on copper oxide species [2,12,33].

3.2. Electro-Oxidation of Glucose on Cu Nanocolumns

For the electrochemical measurements, in order to improve the adherence of the
Cu-NCs to the glassy carbon substrate (GC) in alkaline environments (see Supplementary
Materials Figure S2), a nanometric-sized (~30 nm) layer of gold was deposited using e-beam
evaporation prior to the fabrication of the copper via DC sputtering (Au-CuNC). The layer
of gold is evidenced in the EDX mapping presented in Figure 3.

Prior to the sensing experiments, the behavior of the Au-CuNC was investigated in
alkaline environments using cyclic voltammetry. Alkaline environments were selected
because, in these types of media, the response of glucose is enhanced [6]. The experiments
were performed in 50 mM NaOH solutions, and the results of the 1st and 10th cyclic
voltammograms recorded at 5 mV/s are shown in Figure 4. As can be seen, within the
investigated potential range, no electrochemical process occurred for the bare electrode or
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the one covered with only a layer of gold, which was expected for these inert surfaces. For
the Au-CuNC, when scanning the potential in the anodic direction, three successive peaks
appeared, with the first being T, assigned to the oxidation of metallic copper, Cu(0), to Cu(I)
(at −0.33 V), and the peak at −0.004 V corresponding to the transitions of Cu(0)/Cu(II)
and Cu(I)/Cu(II) [6,14]. The broad oxidation peak at around 0.25 V was considered to be
related to the formation of Cu(III)-soluble species, such as CuOOH and Cu(OH)4

−, which
are further involved in the electro-oxidation of glucose [15]. In the cathodic scan, the peaks
at 0.60 V, −0.59, and −0.91 V correspond to the reduction of Cu(III) to Cu(II), Cu(II) to
Cu(I), and Cu(I) to Cu(0), respectively [14]. After multiple cyclic voltammograms, all the
peaks exhibited a gradual decrease in the current.
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Figure 4. Cyclic voltammograms of GC electrode, GC electrode covered with a layer of gold, and the
Au-CuNC electrode at 5 mV/s representing the 1st and 10th cycles in in 50 mM NaOH.

The HR-STEM micrographs (see Figure 5) of the electrode exposed to ten cyclic voltam-
mograms in 50 mM NaOH show that the CuNCs are covered by corrosion products [34].
The content of oxygen in the EDX analysis increases from 7 to 26 at.%. The film observed
is crystalline, with an interplanar distance of 0.25 nm, assigned to the (111) orientation
of Cu2O.
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Figure 5. HR-STEM micrographs in (A) SEM, (B) TEM, and (C) ZC mode; (D) EDX analysis and
(E) interplanar space determination.

In addition, the XRD pattern (Figure 6) also confirms the formation of Cu2O due to the
presence of the peak at 35 deg., attributed to the (111) plane with an interplanar distance,
0.25 nm, identical to the one determined using HR-STEM. Furthermore, apart from Cu2O,
metallic copper is identified. The peak ascribed to metallic copper, 43.3 deg., still exhibits
the highest intensity in the X-ray diffraction spectrum, suggesting partial oxidation of the
copper nanocolumns. After cyclic voltammetry is performed, the surface of the electrode is
modified in an irreversible way with spongy-like corrosion products. Therefore, it can no
longer be used in further investigations.

The Au-CuNC electrodes were characterized using cyclic voltammetry in a solu-
tion of Fe(CN)6

4−/3− (see Supplementary Materials Figure S3) in order to determine the
electroactive area (Aea), the roughness factor (ρ), the well-known kinetic parameter, the
heterogeneous electron transfer constant (k0), and the standard heterogeneous rate con-
stant (ks), which are reported in Supplementary Materials Table S1 and Figure S3. For
comparison, an analogous analysis was performed on a Cu strip.
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In the presence of 0.1 mM of glucose, the cyclic voltammogram shows several differ-
ences from that displayed in Figure 4. For instance, the broad peak associated with the
formation of soluble Cu(III) species disappears, while the peak assigned to the electro-
oxidation of glucose to gluconolactone appears at ~0.68 V [15,16,35]. Even though the
mechanism behind the glucose oxidation process has not been clearly established, it is
commonly believed that it occurs in the process of forming Cu(III) from Cu(II), where
the Cu(III) species act as an electron delivery carrier [9,14]. The positions of the other
peaks remain nearly unchanged. Moreover, as observed in Figure 7, the presence of the
gold layer on the glassy carbon electrode does not influence the glucose oxidation process.
The CV obtained for the copper strip in the presence of 0.1 mM glucose is presented in
Supplementary Materials Figure S4, where it can be observed that the signal for glucose
oxidation is lower for the copper strip than for the Au-CuNC electrode.

1 

 

 Figure 7. Cyclic voltammogram of the Au-CuNC without glucose and the GC electrode covered with
Au and Au-CuNC in the presence of 0.1 mM glucose in 50 mM NaOH solution at 5 mV/s scan rate.
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The response of the Au-CuNC electrode to the further increase in the concentration
of glucose up to 0.3 mM led to an increase in the oxidation peak of glucose and its slight
shift to more positive values from 0.68 V to 0.72 V, as can be seen in Figure 8A. The electron
transfer coefficient of the electro-oxidation process (α) was calculated from the slope of
log Ip vs. Ep in the presence of 0.1 mM of glucose at a scan rate of 5 mV/s in 50 mM NaOH,
as shown in Figure 8B. The value of α was found to be 0.85 [36].
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Figure 8. (A) Cyclic voltammograms of the Au-CuNC electrodes in the presence of 0.1, 0.2, and
0.3 mM glucose in 50 mM NaOH solution at 5 mV/s scan rate. (B) Tafel plot derived from the rinsing
part of the CV obtained for glucose oxidation in 0.1 mM glucose in 50 mM NaOH solution at 5 mV/s.

Furthermore, in slightly alkaline environments, i.e., 5 mM NaOH, the electrochemical
processes associated with glucose oxidation were not observed using cyclic voltammetry
(see Supplementary Materials Figure S5). Therefore, 50 mM NaOH solution was selected for
glucose testing. However, as previously shown in 50 mM NaOH solution, after performing
CV on the electrode, its surface was covered with corrosion products, containing mainly
Cu2O. Cyclic voltammetry in the presence of 0.1 mM glucose was performed on the elec-
trode after it was exposed to 10 CV cycles, as seen in Supplementary Materials Figure S6,
and no signal for glucose oxidation was observed. Therefore, the electrodes can no longer
be used for glucose detection after performing CVs.

3.3. Amperometric Response to Glucose

Double-step chronoamperograms were recorded on the Au-CuNC electrode in the ab-
sence and presence of different concentrations of glucose, from 0.5 to 5 mM, at two potential
steps, namely, +0.7 V (value selected based on the previous cyclic voltammogram analysis),
where the electro-oxidation process of glucose occurs, and at +0.25 V (see Figure 9A). When
+0.25 V was applied, the value of the current was negligible. The diffusion coefficient of
glucose was determined according to the Cottrell Equation (1):

I = nFACD1/2 π−1/2 t−1/2 (1)

where n is the number of transferred electrons, F is the faraday number, A is the area of the
electrode, C is the concentration of the glucose, and D is the diffusion coefficient. From the
slope of the resulting plots of I vs. t−1/2 (see Figure 9B) at different glucose concentrations,
the average diffusion coefficient was calculated to be 4.25 × 10−4 cm2 s−1 [37].
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Figure 9. (A) Double-step chronoamperograms of Au-CuNC electrode in 50 mM NaOH for different
glucose concentrations: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0 mM (step potentials: +0.7 V and +0.25 V
vs. Ag/AgCl); (B) dependency of I on t −1/2; and (C) dependency of Icat/IL on t1/2.

Additionally, the catalytic rate constant was evaluated from the chronoamperometry
experiments according to the following Equation (2):

Icat

IL
= π

1/2 (kcatCt)1/2 (2)

where Icat are the currents in the presence of glucose, and IL are the ones in the absence of
glucose. C is the bulk concentration of glucose, and kcat represents the catalytic rate constant.
The mean value of kcat was determined from the slope of Icat/IL vs. t1/2 (see Figure 9C) at
different glucose concentrations. kcat was calculated to be 3.83 × 104 cm3 mol−1 s−1 [38].

The amperometric response of the Au-CuNC electrode for non-enzymatic glucose
sensing was investigated using successive injections of glucose, from 62.3 µM to 9.4 mM,
into 50 mM NaOH solution. The current–time dependences were recorded (see Figure 10A)
when imposing the potential of +0.7 V, a value selected based on the previous cyclic voltam-
mogram analysis. As the glucose concentration increased, the response current increased
until the saturation value was reached at higher concentrations of glucose. In the calibration
curve shown in Figure 10B, it can be seen that the sensor exhibits a linear range of up to
2 mM glucose, with R2 = 0.9979, a sensitivity of 21.02 µA/mM·cm−2, and a limit of detec-
tion (LOD) of 5.2 µM, values calculated based on the 3σ/slope equation, where σ represents
the standard deviation of the blank. Actually, the LOD reported in this work is lower than
that of other copper-based glucose sensors, such as Cu(II)/rGO/SPCE (65 µM) [17], Cu
nanobelts (10 µM) [10], Cu-DA (20 µM) [39], Cu2O/PtE (26 µM) [40], Cu2O/Cu microstruc-
tures (37 µM) [33], CuNOx thin films (94.21 µM) [41], CuO nanowires (10 µM) [2], CuO
nanorods/Nafion/GCE (23 µM) [12], and CuO nanoplatelets/Nafion/GCE (29 µM) [12].
Copper-based glucose sensors with an LOD lower than 5.2 µM have been reported in other
works [9,15,35]; however, more often, their synthesis involves laborious processes and the
use of hazardous products or elevated temperatures, not suitable for mass production,
compared to DC sputtering, which is a clean and easy-to-scale-up method. Therefore, the
prepared Au-CuNC electrode displayed a low LOD, and, in addition to its preparation
advantages, it is promising for application in commercial glucose sensors. Finally, after
performing amperometric investigations on Au-CuNC, no corrosion products were ob-
served on the electrodes since, during this analysis, the potential was fixed at + 0.7 V and
not varied as in CV.
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Figure 10. (A) Amperometric response of Au-CuNC in 50 mM NaOH to the successful addition of
glucose from 62.3 uM to 9.4 mM at the applied potential of +0.7 V vs. Ag/AgCl; (B) the corresponding
calibration curve.

3.4. Selectivity towards Glucose

In physiological samples, glucose coexists with other species, such as chloride ions,
dopamine (DA), uric acid (UA), ascorbic acid (AA), and acetaminophen (AP). Therefore, the
selectivity of the sensor towards glucose is important. Chloride ions, abundant in human
blood, are considered one of the major poisoning species for non-enzymatic metallic-based
glucose sensors [42]. The anti-interference properties of Au-CuNC sensors were exam-
ined using an orderly injection of normal physiological concentrations of NaCl (0.1 M),
DA (0.1 mM), UA (0.3 mM), AA (0.1 mM), AP (0.1 mM), and 5 mM glucose to 50 mM NaOH
solution at + 0.7 V. Neither the addition of NaCl nor the addition of other compounds
presented a significant current response compared to glucose, as seen in Figure 11A. Fur-
thermore, the presence of other sugars, such as fructose (8 µM) and sucrose (74 µM), at their
physiological levels did not interfere in the glucose detection (Figure 11B). Consequently,
Au-CuNC electrodes can be used in physiological glucose detection.
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Figure 11. Amperometric responses of Au-CuNC to (A) 0.1 M sodium chloride, 0.1 mM dopamine,
0.3 mM uric acid, 0.1 Mm ascorbic acid, 0.1 mM acetaminophen, and 5 mM glucose in 50 mM NaOH
and (B) 8 µM fructose, 74 µM sucrose, and 5 mM glucose in 50 mM NaOH.

4. Conclusions

In this work, a clean and scalable technique, DC-MS, was presented for the preparation
of copper nanocolumnar electrodes for non-enzymatic glucose sensing. The nanocolumnar
features exhibited a mean size diameter of 121.0 nm ± 27.2 and a length of 2.52 µm ± 0.23.
HR-STEM images show the formation of (111) Cu and Cu2O with interplanar distances of
0.21 and 0.25 nm, respectively. The behavior of the electrodes in 50 mM NaOH solution
was investigated. After performing cyclic voltammetry (CV), it was observed that the
surfaces of the electrodes were modified by the formation of corrosion products assigned to
Cu2O, as revealed by the HR-STEM and XRD analyses. The electrocatalytic activity of the
electrodes towards glucose oxidation was demonstrated by CV and chronoamperometry
in alkaline environments. In CV, with an increase in the glucose concentration from 0.1 to
0.3 mM, the peak associated with glucose oxidation increased. The diffusion coefficient
of glucose and the catalytic rate constant were calculated to be 4.25 × 10−4 cm2 s−1 and
3.83 × 104 cm3 mol−1s−1, respectively, based on the chronoamperometric study. The am-
perometric responses of the electrodes were assessed by successively adding glucose at a
fixed potential of +0.7 V vs. Ag/AgCl reference. A linear range of up to 2 mM and a limit of
detection of 5.2 µM were achieved. The electrodes showed good selectivity towards glucose
since an insignificant response was shown when physiological concentrations of dopamine,
uric acid, ascorbic acid, and acetaminophen were added. In addition, the electrodes did not
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exhibit chloride poisoning. Furthermore, with their preparation advantages, the Au-CuNC
electrodes displayed low LOD values, indicating that they are a promising option for
commercial glucose sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12234144/s1, Figure S1: Top-view diameter distribution;
Figure S2: Images of electrodes after exposure to 50 mM alkaline environment: (a) Cu-NC on GC
electrode; (b) Au-Cu-NC on GC electrode; Figure S3: (A) CV on Au-CuNC (red) and Cu strip
electrodes (blue) at 50 mV/s in 5 mM [Fe(CN)6]3−/4−, 50 mM NaOH (inset Ipa vs. v1/2 for both
electrodes); (B) plot of Ψ vs. 32.8 V−1/2 in 5 mM [Fe(CN)6]3−/4−, 50 mM NaOH. The factor 32.8 in
the abscissa represents the quantity (π DnF/(RT)]−1/2. The inset presents the plots of Ψ values vs.
∆Ep for both electrodes, Figure S4: Cyclic voltammogram of Au-CuNC (blue) and Cu strip (red) in
the presence of 0.1 mM glucose in 50 mM NaOH solution at 5 mV/s scan rate, Figure S5: Cyclic
voltammetry of 0.1 mM of glucose on Au-CuNC in different alkaline environments, 5 mM and 50 Mm
NaOH solutions, Figure S6: 10th cycle of CV of Au-CuNC electrode in 50 mM NaOH at 5 mV/s
(red) and Au-CuNC electrode after 10th cycle in the presence of 0.1 mM glucose in 50 mM NaOH at
5 mV/s (blue). Table S1: Electrochemical parameters of electroactive area (Aeas), roughness factor (ρ),
heterogenous electron transfer constant (K0), and the standard heterogeneous rate constant (Ks) for
Au-CuNC and Cu strip electrodes in 5 mM [Fe(CN)6]3−/4− in 50 mM NaOH.
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