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Abstract: LEDs for plant lighting have attracted wide attention and phosphors with good stability and
deep-red emission are urgently needed. Novel Cr3+ and Dy3+ co-doped Gd3Al4GaO12 garnet (GAGG)
phosphors were successfully prepared through a conventional solid-state reaction. Using blue LEDs, a
broadband deep-red emission at 650–850 nm was obtained due to the Cr3+ 4T2→ 4A2 transition. When
the Cr3+ concentration was fixed to 0.1 mol, the crystal structure did not change with an increase in
the Dy3+ doping concentration. The luminous intensity of the optimized GAGG:0.1Cr3+, 0.01Dy3+

was 1.4 times that of the single-doped GAGG:0.1Cr3+. Due to the energy transfer from Dy3+ to
Cr3+, the internal quantum efficiency reached 86.7%. The energy transfer from Dy3+ to Cr3+ can be
demonstrated through luminescence spectra and fluorescence decay. The excellent properties of the
synthesized phosphor indicate promising applications in the agricultural industry.

Keywords: Gd3Al4GaO12:Cr3+, Dy3+; phosphors; energy transfer; LEDs

1. Introduction

Lighting is one important factors affecting plant growth. Photopigment PR and PFR
mainly absorb deep-red light at 660–730 nm. PR and PFR play vital roles at all stages of plant
growth and development, such as promoting seed germination, desiccating, stem growth,
leaf expansion, shading and inducing effects, etc. [1–4]. However, traditional light sources,
such as incandescent lamps, metal halide lamps, fluorescent lamps, and high-pressure
sodium lamps, have the disadvantages of high costs and short lives. At present, the white
LEDs existing in the market mainly cover the yellow-green wavelength range [5,6], and
the near-infrared LEDs do not match well with the chlorophyll absorption band of plants
because of their narrow luminous wavelength and low luminous intensity [7–9]. Therefore,
broad, deep-red lighting devices suitable for plant growth have become the focus [10].
At present, phosphor-converted light-emitting diodes (pcLEDs) based on blue chips, are
among the most effective lighting means [11–14].

They are energy efficient, ensure environmental protection, and a have long service
life, a small size, and low costs. Red emission phosphors, such as (Sr, Ca)AlSiN3:Eu2+ [15],
and K2TiF6:Mn4+ [16], have become commercially available to improve the color quality
of white LEDs. However, their emission wavelengths cannot be tuned to the deep-red
band and the strongest emission cannot be effectively absorbed by plants. In addition,
the nitride synthesis conditions are harsh, rare-earth materials are expensive, and the
mining/purification process of Eu2+ is harmful to the environment, making it expensive
and less stable [17]. Further K2TiF6:Mn4+ phosphor cannot provide an effective absorption
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band of red light covered plants with broad spectra. Thus, how to achieve broad, deep-red
phosphors that can be efficiently excited by blue light is a more important challenge [7].

Recently, materials doped with the transition-metal ion Cr3+ have been considered to
be ideal red phosphors. Its 3d electrons are located in the outer layer and are very sensitive
to the crystal environment [18–22]. Therefore, the selection of different matrices allows for
tunable emission for Cr3+ from deep-red to NIR light by adjusting the surrounding crystal
field environment. The Gd3Al4GaO12 garnet (GAGG) is a stable material for scintillators
and phosphors that have a lower synthesis temperature compared to the commonly used
garnets [23]. Karolina Elzbieciak and Lukasz Marciniak reported the strategy for modulat-
ing the relative sensitivity of Cr3+-based luminescent thermometers through substituting
Al3+ ions with Ga3+ in Gd3Al5−xGaxO12:Cr3+, Nd3+ and caused the gradual decline of the
crystal field strength from Dq/B = 2.69 to Dq/B = 2.18, respectively, for Gd3Al5O12:Cr3+,
Nd3+ and Gd3Ga5O12:Cr3+, Nd3+ [24]. Zhang et al. reported on broad-band near-infrared
Ca2LuZr2Al3O12:Cr3+ garnet phosphor, which was used in combination with a 460 nm
LED chip to fabricate pc-LED devices. Its photoelectric efficiency was 4.1%, which was
better than that of tungsten lamps (2.9%) in the 750–820 nm spectrum range [25]. Cr3+ had
the advantage of high efficiency and matching with blue LED chips compared to other NIR
phosphors. However, the luminous efficiency needs further improvement.

Cr3+ luminescence can suffer from impurities and oxidation into Cr4+ when the mate-
rials are sintered in the air. As a result, the luminous efficiency of Cr3+ doped substrates
reported so far has not been very high because of impurities. For instance, the external
quantum efficiency (EQE) of Ca3Sc2Si3O12 (CSSG) was 12.8% [26]. The external quantum
efficiency was increased to 21.5% by adding flux and sintering in a CO-reducing atmo-
sphere [7]. In addition, rare-earth/Cr3+ co-doping appears to be a very promising method
of improving luminous efficiency. For instance, a Ca2LuHf2Al3O12:Ce3+, Cr3+ sample
synthesized using a conventional high-temperature solid-phase method is three times
brighter than a single-doped Cr3+. Therefore, rare-earth/Cr3+ co-doping appears to be a
very promising method of improving luminous efficiency [27].

In this paper, GAGG:Cr3+, Dy3+ samples were synthesized using a conventional high-
temperature solid-phase method to obtain phosphors with high brightness and deep-red
luminescence. The synthesis method is environment-friendly, simple, and cheap and leads
to a pure Gd3Al4GaO12 phase. In GAGG:Cr3+, the absorption of Cr3+ comes from the d-d
forbidden transition, its excitation efficiency is low. In order to obtain higher luminescence
intensity, the sensitized ion Dy3+ was introduced into the GAGG:Cr3+ material. The
energy transfer process between Cr3+ and Dy3+ in the GAGG is addressed. To the best of
our knowledge, this is the first report detailing an energy transfer and the luminescent
properties of a Cr3+-Dy3+ co-doped GAGG host. Moreover, this work represents an advance
in the development and application of plant growth lighting.

2. Experimental Section

A conventional high-temperature solid-phase method was used to synthesize GAGG:Cr3+,
Dy3+ samples. The stoichiometries were Gd3−yAl4−xGaO12:xCr3+, yDy3+ with x = 0, 0.08,
0.1, 0.15, 0.2 and y = 0, 0.002, 0.006, 0.01, 0.014, 0.018. Gd2O3 (Aladdin, 99.99%) (Shanghai,
China), Al2O3 (Aladdin, 99.9%), Ga2O3 (Aladdin, 99.99%), Cr2O3 (Aladdin, 99.99%), and
Dy2O3 (Aladdin, 99.99%) were used as starting materials, and 0.07 mol of H3BO3 (Aladdin,
99.9%) was added as the flux. The above materials were weighed according to the stoi-
chiometric ratio, grounded evenly in an agate mortar, mixed into corundum crucibles, and
annealed at 1650 ◦C for 6 h in a box-type resistance furnace using a rate of 10 ◦C/min. The
samples were protected by 5% H2/N2 gas flow during the whole sintering process. The
calcined sample is naturally cooled to room temperature and grounded evenly to obtain a
series of phosphor powders.

Powder X-ray diffraction was measured at room temperature using a PANalytical
heaven II diffractometer employing CuKα radiation. The scanning step was 0.02◦ in the
range of 10–90◦ with 4 s per step integration. A scanning electron microscope (SEM,
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Hitachi S-3400-N, Homewood, AL, USA) was used to observe the product morphology. A
fluorescence spectrophotometer (FS5, Edinburgh, Livingston, UK) equipped with a 450 W
xenon lamp, was used to record the excitation and emission spectra of the samples and
explore their luminescence performances. The thermal quenching test was completed
using the FLS980 steady state transient fluorescence/phosphorescence spectrometer. The
corresponding temperature-dependent emission properties of as-synthesized phosphors
were measured on the FS5 fluorescence spectrometer. The temperature of the samples was
controlled through an externally connected temperature controller (Orient KOJI, Hongkong,
China). The samples were heated from 25 to 200 ◦C at a constant rate of 5 ◦C/min. The
(EVERFINE) analysis system was used to test the packaged sample device.

3. Results and Discussion
3.1. Phase Identification and Crystal Structure

The XRD patterns of GAGG, GAGG:0.1Cr3+, and GAGG:0.1Cr3+, 0.01Dy3+ are shown
in Figure 1a. These samples were basically consistent with the standard card (PDF # 46-0447).
After Dy3+ doping, the XRD patterns shown in Figure 1b shifted toward smaller angles,
which proved the successful doping of Dy3+. The shift was less pronounced after co-doping
with Cr3+, indicating that the single Cr3+ doping or Cr3+ and Dy3+ co-doping had little effect
on the matrix lattice parameters. The ionic radius of Cr3+ was 0.615 Å (CN = 6), Al3+ was
0.540 Å (CN = 6), Dy3+ was 0.912 Å (CN = 8) and Gd3+ was 0.938 Å (CN = 8); therefore, it
is most likely that Dy3+ fits in the Gd3+ sites. Cr3+ is expected to emit near-infrared light
in an octahedral rather than a tetrahedral environment, so Cr3+ prefers to replace Al3+

in an octahedral environment rather than Ga3+ in a tetrahedral environment [28–30]. All
diffraction peaks were well indexed to GAGG, as shown in Figure 1a,c, and calculated
using the Rietveld structure refinement method. Additionally, no extra peak appeared in
the patterns, indicating that pure phase GAGG:Cr3+, Dy3+ phosphors had been achieved.
Figure 1d shows the dodecahedral, octahedral, and tetrahedral positions. In the GAGG
structure, the dodecahedral lattice (24c lattice) was occupied by Gd3+, and Al3+ and Ga3+

occupied octahedral and tetrahedral positions. However, when Cr3+ ions were doped into
the system, they gave preference to octahedral coordination and then entered the tetrahedra.

Figure 2a,b presents SEM images of GAGG:0.1Cr3+ and GAGG:0.1Cr3+, 0.01Dy3+. EDX
scanning was performed at 15 keV and 10 k magnification. Since the samples were ground,
they showed an almost identical irregular morphology. Figure 2c,d shows the EDS energy
spectra of GAGG: 0.1Cr3+ and GAGG:0.1Cr3+,0.01Dy3+. The EDS analysis confirmed that
the samples contained Gd3+, Ga3+, O2-, Al3+, Cr3+ and Dy3+ as trace elements. XRD and
SEM/EDS results, therefore, confirmed that Cr3+ and Dy3+ ions were successfully doped
into the GAGG matrix.

3.2. Luminescence Properties

The excitation and emission spectra of GAGG:Cr3+ are shown in Figure 3a. There are
two excitation bands at 350–500 nm and 500–650 nm, which belong to the 4A2→ 4T1 and the
4A2 → 4T2 transitions of Cr3+, respectively. Under the 450 nm excitation, the characteristic
Cr3+ emission composed of narrow peaks at 693 and 713 nm in the range of 650–850 nm,
was observed. The emission from 650 to 850 nm originates from the 4T2 → 4A2 transition.
The peak at 693 nm originates from the zero phonon line of the 2E→ 4A2 spin forbidden
transition (the R line) [31–33].

Typically, the Cr3+ sample shows a sharp line normally attributed to the spin-forbidden
leap 2E→ 4A2 [29]. The excitation spectra of GAGG:Cr3+ were mainly located in the blue
light region, indicating that the GAGG:Cr3+ phosphor matches well with the emission of
blue LED chips. The emission of GAGG:Cr3+ is located in the deep-red region and has a
good overlap with the absorption spectrum of photosensitive pigments PR and PFR. LEDs
constructed using the GAGG:Cr3+ phosphor and blue chips could be ideal lighting devices
for plant lighting.
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Figure 1. (a) XRD of GAGG, GAGG:Cr3+, GAGG:Dy3+ and GAGG:Cr3+, Dy3+; (b) magnified XRD
patterns in the 30–40◦ range; (c) XRD refinements of GAGG; (d) crystal structure of GAGG viewed
along the a-axis.
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The PLE (blue line) and PL (red line) spectra of GAGG:0.01Dy3+ are shown in Figure 3b.
A wavelength of 575 nm was selected to detect the PLE spectrum, and a 450 nm wavelength
was used to excite the sample. The excitation peaks at 352, 366, 387, 427, 452, and 476 nm
were attributed to the Dy3+ transition from 6H15/2 to 6p7/2, 6p5/2, 4p7/2, 4G11/2, 4I15/2, and
4F9/2, respectively [34,35]. The emission peaks at 479 and 575 nm were attributed to the
4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively [36,37]. The PLE spectra show
that both Cr3+ and Dy3+ can be excited by blue light at 450 nm. It is also found that the
emission peak of Dy3+ overlapped with the excitation peak of Cr3+; thus, energy transfers
in the Cr3+-Dy3+ co-doped sample were possible.

The luminescence properties of Cr3+ and Dy3+ co-doped GAGG were further inves-
tigated, as shown in Figure 4. The content of Cr3+ was fixed at 0.1 mol, and the Dy3+

ion doping concentration changed from 0.002 to 0.18. For GAGG:0.1 Cr3+,0.01Dy3+, the
luminescence intensity was the highest and the luminescence intensity was 1.4 times that
of the Cr3+ single doped sample. At the same time, the internal quantum efficiency of
GAGG:0.1 Cr3+,0.01Dy3+ reached the maximum of 86.65%. Even more interestingly, only
the emission of Cr3+ was produced in GAGG:Cr3+,0.01Dy3+. Concentration quenching
started to occur when the concentration of Dy3+ was greater than 0.01. This was probably
caused by a total energy transfer from 4F7/2 toward 4T2 levels and to the Eg level that led to
deep-red emission [25]. There was an energy transfer between Dy3+ and Cr3+. In addition,
it was found that the addition of Dy3+ did not affect the luminescence peak position and
waveform of Cr3+. Since the radius of Dy3+ (0.912 Å, CN = 8) was almost equal to that of
Gd3+ (0.938 Å CN = 8), Dy3+ entered the lattice and only occupied the position of Gd3+,
and the formed REO8 (RE = Gd, Dy) hardly affected the crystal field of the neighboring of
CrO6 (GaO6) octahedrons [38].

3.3. Energy Transfer in GAGG: Cr3+, Dy3+

In order to further study the energy transfer between Dy3+ and Cr3+, the fluorescent
decays of Dy3+ were measured, as shown in Figure 5a. The fluorescence attenuation curves
of GAGG: xCr3+, 0.01Dy3+ (x = 0, 0.08, 0.1, 0.15, 0.2) were measured under the 450 nm
excitation and the 575 nm detection. The fluorescence attenuation curve was fitted using a
second-order exponential attenuation model, with the formula as follows [39].

I = I0 + A1 exp(−t/τ1) + A2 exp(−t/τ2) (1)
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A1 and A2 are the fitting constants, I is the intensity of fluorescence at time t, τ1
and τ2 are the fluorescence lifetime; The average attenuation-times are also fitted with a
second-order index, as shown in Formula (2) [40].

τ =
(

A1τ
2
1 + A2τ

2
2

)
/(A1τ1 + A2τ2) (2)

The fluorescence lifetime decreased from 0.84 to 0.458 ms with increasing Cr3+ con-
centration from 0 to 0.2 respectively. This result proves that energy transfers from Dy3+ to
Cr3+ existed in these samples. We note a somewhat similar phenomenon in the Ca14(Al,
Ga)10Zn6O35 matrix to what was reported by Zhou et al. [41].

The following equation can be used to calculate the energy transfer efficiency (ηET) [42].

ηET = 1− τs/τs0 (3)

where τ and τ0 are the lifetimes of Dy3+ with and without Cr3+. On the basis of the formula,
the energy transfer efficiency increased from 23.9% to 45.48%.

To describe the energy change in GAGG:0.1Cr3+,0.01Dy3+ phosphor, the excitation,
emission and energy transfer processes are shown in Figure 5b. Under the irradiation of
450 nm light, electrons are excited from the Dy3+ 6H15/2 energy level to the excited state,
such as 6p7/2, 6p5/2, 4p7/2, 4G11/2, 4I15/2, and 4F9/2, and then relax to 6H13/2 and 6H15/2
from 4F9/2 with blue and orange emission. Meanwhile, electrons can also be excited into the
Cr3+ 4T1 and then relax to the 4T2 and 2E energy levels, thus providing deep-red emission
when relaxing to the 4A2 state. In this process, the energy transfer occurs from the excited
state 4F9/2 of Dy3+ to the excited states 4T2 and 2E of Cr3+.



Nanomaterials 2022, 12, 4183 7 of 9

3.4. Temperature-Dependent Emission Spectra

The normalized emission intensity, as a function of temperature is shown in Figure 6a.
When the temperature is 440 K, the light intensities at 693 and 712 nm are 73.4% and 81.6%,
respectively, of those at 300 K. Figure 6b illustrates the emission spectra of GAGG:0.1Cr3+,
0.01Dy3+ excited at 450 nm in the temperature range of 300–470 K. The profiles of the PL
spectra do not experience major changes at different temperatures, while the intensity de-
creases with increasing temperatures owing to the thermal quenching effect [32]. Figure 6c
shows the projection of the emission spectrum with increasing temperature, which shows
the change of luminous intensity with increasing temperature. The increase in temperature
leads to the intensification of lattice vibrations and an increase in the probability of non-
radiative relaxations. The particles of each metastable state relax back to the ground state
without radiation, and finally, the excitation energy is dissipated in the matrix lattice in the
form of thermal energy. Compared with the spin-allowed transition from 4T2 (4F) to 4A2,
the lattice vibration has a greater influence on the spin-forbidden 2E→ 4A2 transition of
Cr3+ [25,42].
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3.5. LED Packages

In order to demonstrate the applicability of the synthetic GAGG:0.1Cr3+, 0.01Dy3+

for indoor plant growth, LED devices were fabricated with the GAGG:0.1Cr3+, 0.01Dy3+

phosphor and a 450 nm blue chip. Figure 7 shows the resultant CIE coordinates of this
LED device, which were found at (0.6387, 0.2873). It appears as a milky white light in the
LED device and provides a bright purplish-red emission driven by a current of 20 mA. It
gives a strong red emission and yields a luminous efficacy of 27.8 lmW−1. The results show
that the new GAGG:0.1Cr3+,0.01Dy3+ phosphor can be excited by 450 nm of blue light
and its red emission has a good overlap with the red light absorption of chlorophyll [8],
demonstrating its potential for plant growth lighting and white LED lighting.
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4. Conclusions

To sum up, Dy3+ and Cr3+ co-doped GAGG phosphors were successfully synthesized
using a conventional high-temperature solid-state method. Dy3+ ions fit into Gd3+ sites and
played the role of sensitizing the luminescence center for Cr3+. The luminescence intensity
in deep-red light (650–850 nm) was enhanced by Dy3+/Cr3+ co-doping. The luminous
intensity of optimized GAGG:Cr3+,0.01Dy3+ was 1.4 times that of the Cr3+ single-doped
sample and its quantum efficiency was up to 86.65%. Many results point toward an energy
transfer from Dy3+ to Cr3+ in GAGG:0.1Cr3+, 0.01Dy3+ phosphors. Finally, LED devices
made from GAGG:0.1Cr3+, 0.01Dy3+ phosphors have good properties. This indicates
potential applications of the phosphor in agriculture.
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