Momordica Grosvenori Shell-Derived Porous Carbon Materials for High-Efficiency Symmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Preparation of Porous Carbon Materials
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aslyamov, T.; Sinkov, K.; Akhatov, I. Relation between charging times and storage properties of nanoporous supercapacitors. Nanomaterials 2022, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; He, P.; Ding, S.; Zhang, G.; He, M.; Dong, F.; Wen, J.; Du, L.; Liu, M. Oxygen-doped activated carbons derived from three kinds of biomass: Preparation, characterization and performance as electrode materials for supercapacitors. RSC Adv. 2016, 6, 5949–5956. [Google Scholar] [CrossRef]
- Peng, M.; Wang, L.; Li, L.; Peng, Z.; Tang, X.; Hu, T.; Yuan, K.; Chen, Y. Molecular crowding agent engineering of bio-inspired electrolytes toward high-voltage aqueous supercapacitors. eScience 2021, 1, 83–90. [Google Scholar] [CrossRef]
- Lao, J.; Lu, Y.; Fang, S.; Xu, F.; Sun, L.; Wang, Y.; Zhou, T.; Liao, L.; Guan, Y.; Wei, X.; et al. Organic crosslinked polymer-derived N/O-doped porous carbons for high-performance supercapacitor. Nanomaterials 2022, 12, 2186. [Google Scholar] [CrossRef]
- Song, Z.; Duan, H.; Miao, L.; Ruhlmann, L.; Lv, Y.; Xiong, W.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon 2020, 168, 499–507. [Google Scholar] [CrossRef]
- Shang, M.; Zhang, J.; Liu, X.; Liu, Y.; Guo, S.; Yu, S.; Filatov, S.; Yi, X. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Appl. Surf. Sci. 2021, 542, 148697. [Google Scholar] [CrossRef]
- Jain, A.; Ghosh, M.; Krajewski, M.; Kurungot, S.; Michalska, M. Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. J. Energy Storag. 2021, 34, 102178. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor. J. Ind. Eng. Chem. 2018, 68, 257–266. [Google Scholar] [CrossRef]
- Rybarczyk, M.K.; Cysewska, K.; Yuksel, R.; Lieder, M. Microporous N-doped carbon obtained from salt melt pyrolysis of chitosan toward supercapacitor and oxygen reduction catalysts. Nanomaterials 2022, 12, 1162. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhou, Y.; Yan, W.; Wu, X.; Wang, S.; Zhao, W. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochim. Acta 2020, 360, 137010. [Google Scholar] [CrossRef]
- Pang, X.; Cao, M.; Qin, J.; Li, X.; Yang, X. Synthesis of bamboo-derived porous carbon: Exploring structure change, pore formation and supercapacitor application. J. Porous Mat. 2022, 29, 559–569. [Google Scholar] [CrossRef]
- Wu, G.; Shao, C.; Cui, B.; Chu, H.; Qiu, S.; Zou, Y.; Xu, F.; Sun, L. Honeycomb-like Fe/Fe3C-doped porous carbon with more Fe-Nx active sites for promoting the electrocatalytic activity of oxygen reduction. Sustain. Energy Fuels 2021, 5, 5295–5304. [Google Scholar] [CrossRef]
- Velueta, D.A.P.; Ramírez, S.J.F.; Sierra, J.M.; Escobar, B.; Ucán, C.A.A.; Rosas, G. Copper nanoparticles supported on biocarbon film from Sargassum spp. and its electrochemical activity in reducing CO2. Carbon Lett. 2022, 31, 667–676. [Google Scholar] [CrossRef]
- Lima, R.M.A.P.; dos Reis, G.S.; Thyrel, M.; Alcaraz-Espinoza, J.J.; Larsson, S.H.; de Oliveira, H.P. Facile synthesis of sustainable biomass-derived porous biochars as promising electrode materials for high-performance supercapacitor applications. Nanomaterials 2022, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, G.; Zhang, M. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors. Front. Mater. Sci. 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Zhang, F.; Xiao, X.; Gandla, D.; Liu, Z.; Tan, D.Q.; Ein-Eli, Y. Bio-derived carbon with tailored hierarchical pore structures and ultra-high specific surface area for superior and advanced supercapacitors. Nanomaterials 2022, 12, 27. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.; Ramyea, R.; Maruthu, A.; Kandasamy, K.; Michalska, M.; Kandasamy, S.K. Synthesis methods of carbonaceous materials from different bio-wastes as electrodes for supercapacitor and its electrochemistry—A review. Bioresour. Technol. Rep. 2022, 19, 101187. [Google Scholar] [CrossRef]
- Gulfam, N.; Khisroon, M.; Zahoor, M.; Khan, F.A. Development of highly porous carbon nanocomposites derived from coconut shell and its in vitro efficacy of ochratoxin A detoxification. Desalin. Water Treat. 2018, 105, 216–225. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, Z.; Zhou, S.; Wang, H.; Tang, Y.; Sun, D.; Wang, H. Renewable waste biomass-derived carbon materials for energy storage. J. Phys. D Appl. Phys. 2022, 55, 313002. [Google Scholar] [CrossRef]
- Ma, G.; Yang, Q.; Sun, K.; Peng, H.; Ran, F.; Zhao, X.; Lei, Z. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour. Technol. 2015, 197, 137–142. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.; Li, Y.; Yao, Y.; Xing, B.; Jia, J.; Chen, L.; Zhang, C. Nitrogen-oxygen co-doped porous carbons prepared by mild potassium hydroxide activation of cicada slough for high-performance supercapacitors. J. Energy Storag. 2020, 29, 101433. [Google Scholar] [CrossRef]
- Fu, G.; Li, Q.; Ye, J.; Han, J.; Wang, J.; Zhai, L.; Zhu, Y. Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci.: Mater. Electron. 2018, 29, 7707–7717. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, P.; Luo, D.; Xiao, W.; Deng, L.; Qiao, F. Direct production of porous carbon nanosheets/particle composites from wasted litchi shell for supercapacitors. J. Alloys Compd. 2019, 788, 677–684. [Google Scholar] [CrossRef]
- Yu, P.; Liang, Y.; Dong, H.; Hu, H.; Liu, S.; Peng, L.; Zheng, M.; Xiao, Y.; Liu, Y. Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application. ACS Sustainable Chem. Eng. 2018, 6, 15325–15332. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, C.; Qiu, S.; Zhu, Y.; Qin, M.; Meng, Y.; Wang, Y.; Chu, H.; Zou, Y.; Xiang, C.; et al. Nitrogen-doped porous carbon derived from ginkgo leaves with remarkable supercapacitance performance. Diamond Relat. Mater. 2019, 98, 107475. [Google Scholar] [CrossRef]
- Kumar, T.R.; Senthil, R.A.; Pan, Z.; Pan, J.; Sun, Y. A tubular-like porous carbon derived from waste American poplar fruit as advanced electrode material for high-performance supercapacitor. J. Energy Storag. 2020, 32, 101903. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Wang, C.-A. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials. Front. Mater. Sci. 2018, 12, 354–360. [Google Scholar] [CrossRef]
- Shao, C.; Wu, L.; Zhang, H.; Jiang, Q.; Xu, X.; Wang, Y.; Zhuang, S.; Chu, H.; Sun, L.; Ye, J.; et al. A versatile approach to boost oxygen reduction of Fe-N4 sites by controllably incorporating sulfur functionality. Adv. Funct. Mater. 2021, 31, 2100833. [Google Scholar] [CrossRef]
- Song, M.; Zhou, Y.; Ren, X.; Wan, J.; Du, Y.; Wu, G.; Ma, F. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. J. Colloid Interface Sci. 2019, 535, 276–286. [Google Scholar] [CrossRef]
- Shao, C.; Wang, Z.; Wang, E.; Qiu, S.; Chu, H.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Self-assembly synthesis of nitrogen-doped mesoporous carbons used as high-performance electrode materials in lithium-ion batteries and supercapacitors. New J. Chem. 2017, 41, 12901–12909. [Google Scholar] [CrossRef]
- Jiang, J.H.; Zhang, L.; Wang, X.Y.; Holm, N.; Rajagopalan, K.; Chen, F.L.; Ma, S.G. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta 2013, 113, 481–489. [Google Scholar] [CrossRef]
- Yu, J.F.; Tang, L.; Pang, Y.; Zeng, G.M.; Wang, J.J.; Deng, Y.C.; Liu, Y.N.; Feng, H.P.; Chen, S.; Ren, X.Y. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 2019, 364, 146–159. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Cao, M. Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. J. CO2 Util. 2018, 27, 204–216. [Google Scholar] [CrossRef]
- Duan, D.; Hu, F.; Ma, J.; Peng, H.; Zhang, K.; Huang, P.; Chu, H.; Lin, X.; Qiu, S.; Wei, S.; et al. A facile one-pot method to prepare nitrogen and fluorine co-doped three-dimensional graphene-like materials for supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 19505–19512. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Zhang, H.; Liu, Q.; Li, R.; Li, B.; Wang, J. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. J. Solid State Chem. 2018, 257, 64–71. [Google Scholar] [CrossRef]
- Hou, L.; Hu, Z.; Wang, X.; Qiang, L.; Zhou, Y.; Lv, L.; Li, S. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J. Colloid Interface Sci. 2019, 540, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Qiu, S.; Wu, G.; Cui, B.; Chu, H.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Rambutan-like hierarchically porous carbon microsphere as electrode material for high-performance supercapacitors. Carbon Energy 2021, 3, 361–374. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Peng, H.; Dai, X.; Liu, X.; Ma, G.; Lei, Z. Three-dimensional honeycomb-like porous carbon derived from tamarisk roots via a green fabrication process for high-performance supercapacitors. Ionics 2019, 25, 4315–4323. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, R.; Lv, Y.; Deng, Y.; Elzatahrya, A.A.; Zhao, D. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 2015, 84, 335–346. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Xian, T.; Di, L.; Sun, X.; Li, H.; Zhou, Y.; Yang, H. Photo-fenton degradation of AO7 and photocatalytic reduction of Cr(VI) over CQD-decorated BiFeO3 nanoparticles under visible and NIR light irradiation. Nanoscale Res. Lett. 2019, 14, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Feng, M.; Zhan, H. Generation of nitrogen-doped photoluminescent carbonaceous nanodots via the hydrothermal treatment of fish scales for the detection of hypochlorite. RSC Adv. 2015, 5, 44636–44641. [Google Scholar] [CrossRef]
- Muthuchamy, N.; Atchudan, R.; Edison, T.; Perumal, S.; Lee, Y.R. High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. J. Electroanal. Chem. 2018, 816, 195–204. [Google Scholar] [CrossRef]
- Punon, M.; Jarernboon, W.; Laokul, P. Electrochemical performance of Palmyra palm shell activated carbon prepared by carbonization followed by microwave reflux treatment. Mater. Res. Express 2022, 9, 065603. [Google Scholar] [CrossRef]
- Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, T.; Hua, J.; Qiu, S.; Chu, H.; Zou, Y.; Xiang, C.; Huang, P.; Zhang, K.; Lin, X.; et al. Biomass-derived porous carbon prepared from egg white for high-performance supercapacitor electrode materials. ChemistrySelect 2019, 4, 7358–7365. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Chu, H.; Qiu, S.; Zou, Y.; Xiang, C.; Zhang, H.; Zhang, K.; Yan, E.; Li, B.; et al. Porous carbons derived from ginkgo shell used for high-performance supercapacitors. Nanoarchitectonics 2020, 2, 115–127. [Google Scholar] [CrossRef]
- Li, J.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L.; Li, B.; Zhang, J. Osmanthus fragrans-derived N-doped porous carbon for supercapacitor applications. J. Energy Storage 2021, 42, 103017. [Google Scholar] [CrossRef]
- Xu, C.; Xu, F.; Sun, L.; Cao, L.; Yu, F.; Zhang, H.; Yan, E.; Peng, H.; Chu, H.; Zou, Y. A high-performance supercapacitor based on nitrogen-doped porous carbon derived from cycas leaves. Int. J. Electrochem. Sci. 2019, 14, 1782–1793. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, F.; Sun, L.; Wu, Y.; Xia, Y.; Cai, X.; Zhong, N.; Zhang, H.; Li, B.; Chu, H. Facile method for preparation of porous carbon derived from biomass for high performance supercapacitors. Int. J. Electrochem. Sci. 2019, 14, 11199–11211. [Google Scholar] [CrossRef]
- Li, Q.; Chen, D.; Hu, R.; Qi, J.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y.; Zhao, Y.; et al. Formation of hierarchical 3D cross-linked porous carbon with small addition of graphene for supercapacitors. Int. J. Hydrogen Energy 2020, 45, 27471–27481. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Micropore Volume (cm3·g−1) | ID/IG | |||
---|---|---|---|---|---|---|
Total | Micro | Meso | Ratio a | |||
MGCs-0 | 1.07 | 0.57 | 0.50 | 1.14 | 0.0002 | 1.048 |
MGCs-1 | 1150 | 1042 | 108 | 9.64 | 0.473 | 1.047 |
MGCs-2 | 3996 | 2890 | 1105 | 2.61 | 1.276 | 1.076 |
MGCs-3 | 2251 | 947 | 1304 | 0.72 | 0.398 | 1.046 |
Precursor | Electrolyte | Current Density | Specific Capacitance | Capacitance Retention after 10,000 Cycles | Reference |
---|---|---|---|---|---|
Egg white | 6 M KOH | 0.5 A·g−1 | 335 F·g−1 | 80% | [46] |
Ginkgo shell | 6 M KOH | 0.5 A·g−1 | 345 F·g−1 | 83% | [47] |
Osmanthus fragrans | 3 M KOH | 0.5 A·g−1 | 351 F·g−1 | 93% | [48] |
Cycas leaves | 6 M KOH | 0.5 A·g−1 | 373 F·g−1 | 85% | [49] |
Fish seed | 6 M KOH | 0.5 A·g−1 | 350 F·g−1 | 94% | [50] |
Momordica grosvenori shell | 6 M KOH | 0.5 A·g−1 | 367 F·g−1 | 96% | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Hua, X.; Cui, Y.; Wu, G.; Qiu, S.; Xia, Y.; Luo, Y.; Xu, F.; Sun, L.; Chu, H. Momordica Grosvenori Shell-Derived Porous Carbon Materials for High-Efficiency Symmetric Supercapacitors. Nanomaterials 2022, 12, 4204. https://doi.org/10.3390/nano12234204
You Y, Hua X, Cui Y, Wu G, Qiu S, Xia Y, Luo Y, Xu F, Sun L, Chu H. Momordica Grosvenori Shell-Derived Porous Carbon Materials for High-Efficiency Symmetric Supercapacitors. Nanomaterials. 2022; 12(23):4204. https://doi.org/10.3390/nano12234204
Chicago/Turabian StyleYou, Yunmeng, Xianhao Hua, Yuanying Cui, Guiming Wu, Shujun Qiu, Yongpeng Xia, Yumei Luo, Fen Xu, Lixian Sun, and Hailiang Chu. 2022. "Momordica Grosvenori Shell-Derived Porous Carbon Materials for High-Efficiency Symmetric Supercapacitors" Nanomaterials 12, no. 23: 4204. https://doi.org/10.3390/nano12234204
APA StyleYou, Y., Hua, X., Cui, Y., Wu, G., Qiu, S., Xia, Y., Luo, Y., Xu, F., Sun, L., & Chu, H. (2022). Momordica Grosvenori Shell-Derived Porous Carbon Materials for High-Efficiency Symmetric Supercapacitors. Nanomaterials, 12(23), 4204. https://doi.org/10.3390/nano12234204