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Abstract: Nanostructures with appropriate sizes can limit light-matter interaction and support
electromagnetic multipole resonance. The interaction between light and nanostructures is intimately
related to manipulating the direction of scattered light in the far field as well as the electromagnetic
field in the near field. In this paper, we demonstrate dual-wavelength directional forward-scattering
enhancement in an individual open-hole silicon nanoblock (OH-SiNB) and simultaneously achieve
bulk and surface electromagnetic field localization. The second harmonic generation is enhanced
using electromagnetic field localization on the square hole surface. Numerical simulations reveal that
the resonance modes, at λ1 = 800 nm and λ2 = 1190 nm, approximately satisfy the Kerker condition.
In the near field, the magnetic dipole modes at dual wavelength all satisfy the boundary condition
that the normal component of the electric displacement is continuous on the square holes surface,
thus obtaining the surface electromagnetic field localization. Moreover, highly efficient second
harmonic generation can be achieved at dual wavelengths using the surface electromagnetic field
localization and the increased surface area of the square holes. Our results provide a new strategy for
the integration of nanoantennas and nonlinear optoelectronic devices in optical chips.

Keywords: open-hole silicon nanoblock; electromagnetic multipole resonance; directional forward-
scattering enhancement; second harmonic generation enhancement

1. Introduction

Silicon is one of the most promising materials for developing advanced optoelectronic
devices due to the significant advantages of low cost and mass production [1,2]. Silicon-
based optoelectronic devices are critical components in the fields of all-optical switching,
generation of entangled photons, optical waveguides, sensing and detection [3–8]. With the
rapid development of nanofabrication technology, researchers have discovered that unique
optical responses and interesting optical phenomena are generated by changing the shape
and size of silicon nanostructures [9–13]. These findings have practical applications in the
area of magneto-optics generation and the design of nanoantenna devices [14,15]. The main
reason for the wide interest in silicon is its relatively high refractive index, high thermal
resistance, low absorption and optical losses in the visible to near-infrared region compared
to metallic materials [16,17]. Because of the high refractive index and low absorption proper-
ties of silicon, nanostructures can support electromagnetic multipole resonances when light
interacts with them. Electric dipole (ED) resonance, magnetic dipole (MD) resonance and
other higher-order resonances, such as electric quadrupole (EQ) and magnetic quadrupole
(MQ), can be simultaneously observed in a single nanostructure [13,18,19]. The interference
between these multipole resonances is of great interest in the design of directional nanoan-
tennas. Kerker et al. found that the ED and MD resonances of equal amplitude can achieve
zero backscattering when the phase difference is π [20]. In addition, the generalized Kerker
condition for the interaction of dipole modes with higher-order modes, such as quadrupole
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modes, can also lead to directional far-field radiation [21,22]. Therefore, the interference
between the resonance modes injects new dynamics into the radiative manipulation of
light in the far field. In recent years, a remarkable amount of progress has been made
in the manipulation of optical fields in the far field. For instance, narrow-band, single-
wavelength directional scattering of gold-silicon spherical heterodimers in the infrared
band was investigated [23]. Furthermore, the directional forward scattering of broadband
in the visible light band by a single silicon nanocube as well as forward-scattering en-
hancement and backward-scattering suppression by a single silicon nanodisk or Si/SiO2
core-shell structure have also been successfully performed [11,12,24]. However, studies on
the multi-wavelength enhanced directional forward scattering of silicon nanostructures in
the infrared band have been rarely reported.

Electromagnetic multipole resonance can also manipulate near-field enhancement [25–27].
The localization of strong electromagnetic fields generated by electromagnetic multipole
resonance creates conditions in which nanostructures can enhance nonlinear optical re-
sponses [28,29]. Due to the strong localized electromagnetic field properties of silicon nanos-
tructures, they have unique manipulation capabilities in nonlinear regions [30]. In the near-
infrared band, the researchers have effectively enhanced the third harmonic generation in
silicon nanostructures utilizing the electromagnetic field localization generated by electromag-
netic multipole resonance [31]. However, although silicon has a strong third-order nonlinear
response, it is a centrosymmetric crystal that lacks the bulk second-order nonlinear optical
responses. Thus, the second-order nonlinear signal is very weak relative to the third-order
nonlinear signal. The broken centrosymmetry is allowed at surface or interface, making it
possible to achieve silicon-based second-order nonlinear responses [32,33]. Unfortunately,
most of the electromagnetic fields generated by electromagnetic multipole resonances are
bulk-localized and the ineffective light-matter interaction in the body cannot achieve effective
second-harmonic generation (SHG) enhancement [34]. Therefore, it is necessary to design
appropriate nanostructures to achieve SHG enhancement in centrosymmetric crystals.

In this paper, we propose directional forward-scattering enhancement that can be
realized by interference between electromagnetic multipole resonance modes in the OH-
SiNB through numerical simulation. At λ1 = 800 nm, the interaction of the MD1 and
TED modes with the EQ mode results in directional forward-scattering enhancement
due to the satisfaction of the generalized Kerker condition, and the presence of the EQ
mode produces a small backscatter. At λ2 = 1190 nm, a conventional MD mode and
the TED mode interference that approximately meets the first Kerker condition result in
near-zero backscattering. Since both the MD1 mode and the MD mode generated by the
electromagnetic multipole resonance in the near field satisfy the continuity condition of the
normal component of the electric displacement, a localized electromagnetic field on the
surface of the square holes of the silicon nanoblock is obtained. The electromagnetic field
localization on the surface of the square holes and the increased surface area of the square
holes effectively realizes the SHG enhancement at dual-wavelength in the OH-SiNB.

2. Materials and Methods

We calculated the various components of the electromagnetic multipole resonance
theory in the OH-SiNB and studied its scattering properties in free space (εd = 1) using the
commercial software COMSOL Multiphysics 6.0 (https://cn.comsol.com/). The dielectric
constants of the crystalline silicon were taken from Palik [35]. Figure 1 shows the schematic
diagram of the designed nanostructure. The geometric parameters of the OH-SiNB were
different in three dimensions with Lx = 420 nm, Ly = 240 nm and h = 185 nm. The length
of the square holes was a = 25 nm. The distance from the left boundary of the square hole
to the left boundary of the silicon nanoblock was b = 122.5 nm, and the two square holes
in the middle were symmetrically distributed around the z-axis. The wave vector of the
excitation plane wave was along the z-direction and the polarization was along the x-axis.
The scattered power spectra of the forward and backward hemispheres in free space are
shown in Figure 2, where the forward direction is along the incident light and the backward
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direction is the opposite of this. We neglected the presence of the substrate since it had no
effect on the scattering spectral properties of a given nanostructure and only redshifted its
resonant wavelengths [36].
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Figure 2. (a) Power spectrum of forward scattering (Qf), power spectrum of backward scattering
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erties for (b) λ1 = 800 nm and (c) λ2 = 1190 nm. Angular plots of far-field radiation (xoz plane) at
(d) λ1 = 800 nm and (e) λ2 = 1190 nm.
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We used the Cartesian multipole decomposition theory to analyze the electromagnetic
multipole resonance modes in the OH-SiNB [18]. The multipole moment comes from
the polarization P(r) = εd (εp − ε0) E(r) generated by the incident light, where E(r) is the
total electric fields of the scatterer. ε0, εp, εd are the free-space permittivity, the relative
permittivity of the nanoblock and the relative permittivity of the surrounding medium,
respectively. The multipole is located at the origin of the Cartesian coordinate system
according to the center of mass of the scatterer.

The ED moment can be expressed as:

→
P =

∫
V

P
(
r′
)
dr′ (1)

where V is the volume of the scatterer and r’ is the vector radius of the internal volume
element of the scatterer.

The toroidal dipole (TD) is a toroidal multipole characterized by the vortex distribution
of the magnetic dipole and TD polar moment is a higher order term of electric dipole. The
TD moment can be expressed as follows:

→
T =

iω
10

∫
V

{
2r′2P

(
r′
)
−
[
r′·P

(
r′
)]

r′
}

dr′ (2)

The MD moment of the scatterer can be described as:

→
m = − iω

2

∫
V

{
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(
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)}

dr′ (3)

The EQ, MQ tensor can be written as:
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∫
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(
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)]}
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The total electric dipole (TED) moment is written as:

→
D =

→
P +

ik0

c
εd
→
T (6)

Finally, the total far-field scattering power Psca for a single OHSiNB is given consider-
ing the above multipole moments.

Psca ∼=
k4

0
12πε2

0vdµ0

∣∣∣p + ikd
vd

T
∣∣∣2 + k4

0εd
12πε2

0vd
|m|2

+
k6

0εd
1440πε2

0vdµ0
∑αβ

∣∣Qαβ

∣∣2 + k6
0εd

160πε2
0vd

∑αβ

∣∣Mαβ

∣∣2 (7)

In the above equation, α = x, y, z, β = x, y, z and µ0 is the vacuum permeability. vd is
the speed of light propagation in the medium. k0 and kd represent the wave numbers in the
vacuum and in the same surrounding medium, respectively.

3. Results and Discussion
3.1. Dual-Wavelength Forward-Enhanced Directional Scattering Effect

The scattered power spectra of the OH-SiNB excited by the linearly polarized plane
wave are shown in Figure 2. The forward-scattering spectra (black curve) and backward-
scattering spectra (red curve) are shown in Figure 2a, along with the ratio of forward to
backward (blue curve) calculated from the forward- and backward-scattering spectra. In
the near infrared band, the forward scattering of the OH-SiNB dominated, and there are two
distinct maxima in the forward scattering curve, which are the wavelengths λ1 = 800 nm
and λ2 = 1190 nm, corresponding to the vertical gray dashed lines. This behavior suggests
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that the OH-SiNB can achieve directional forward-scattering enhancement in the near-
infrared band of our study. The forward-to-backward ratio at the peak λ1 is lower than that
at λ2, which indicates that there is relatively strong backward-direction-scattered light at λ1,
as shown in Figure 2a. It is worth noting that the peaks of Qf/Qb cannot coincide with those
of Qf. The main reasons for this are that the electric and magnetic resonances are usually
spectrally separated from each other and that the phase difference of the resonance modes
cannot be strictly equal to π, as well as the electric and magnetic resonance modes not being
fully coupled. As a result, the forward-directional scattering Qf peak cannot be generated
at the Qf/Qb peak [37]. We can observe that in the far-field emissions pattern at λ1 given
in Figure 2b, the scattered light is clearly concentrated in the front hemisphere and there
is also a certain amount of scattered light in the back hemisphere. The far-field radiation
pattern at λ2 better satisfies the first Kerker condition and achieves near-zero backscattering.
Additionally, we compared the two-dimensional far-field radiation distribution in the xoz
plane of Figure 2d,e. The two-dimensional radiation distribution shows that although there
is undesired backward-scattered light at λ1, the radiation-direction angle is smaller at λ1
compared to the angle at λ2.

In order to reveal the difference between the far-field radiation modes and the in-
ternal resonance modes at the peak positions of the two forward-scattering maxima, we
demonstrate the decomposition results of the electromagnetic multipole resonance of the
OH-SiNB. There is good agreement between the sum of contributions from each multipole
moment shown above (the black solid line in Figure 3a) and the spectrum dominated by
forward scattering (the black solid line in Figure 2a). Hence, the higher-order multipole
modes are negligible. The scattering intensity of each component in the electromagnetic
multipole resonance decomposition corresponds to the four terms in Equation (7). The
contribution of each electromagnetic multipole moment is significantly different to the
two scattering resonance peaks as the electromagnetic multipole resonance unfolds. In
Figure 3b, the phase difference between TED and MD can be found by using the real and
imaginary parts of the dipole moment, and the phase difference is as follows:

Φ = tan−1
(

Im(Dx)

Re(Dx)

)
− tan−1

(
Im
(
my
)

Re
(
my
) ) (8)
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The phase difference (Φ2 ≈ 18.6◦) at λ2 dominated by the overlap of TED and MD
resonances with nearly equal amplitudes approximately satisfies the first Kerker condition,
leading to enhanced directional forward scattering and near-zero backscattering along the
z-direction [20]. However, while there are TED and MD resonances with amplitudes and
moderate phase differences (Φ1 ≈ 24.3◦) at λ1, there is also a strong EQ resonance. It is
worth noting that the electric and magnetic dipole moments shown here interact with the
electric quadrupole to satisfy the generalized Kerker condition. The interactions between
the three modes provide a new property of multimode directional scattering. Although
EQ produces a small amount of undesired backscattered light, it greatly improves the
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directionality of forward-scattered light. This optical scattering property with a small
radiation-direction angle in the far field enhances the application potential of the structure
in nanoantennas.

To further illustrate the internal resonance modes of the OH-SiNB at the two peaks,
we plotted the near-field electric field distributions at λ1 and λ2, as shown in Figure 4. The
optical resonant response in rectangular nanostructures is influenced by the size ratios
of the different sides of the structure, which can decompose the electric and magnetic
fields into the Fabry–Perot mode induced in a high-impedance cavity. The side boundary
conditions of the rectangular dielectric structure determine the eigenfrequencies in the
dielectric cavity, which can produce TMnml modes in the xoz plane under the scattering
conditions of the incident wave propagating along the z-axis [38]. Figure 4a shows the two
magnetic dipole resonance modes influenced by the TM301 mode in the OH-SiNB cavity
under scattering conditions at λ1 = 800 nm. The electric-field distribution in Figure 4c
is the Fabry–Perot mode in the x and y directions, superimposed with the TED mode
with electric vector polarization in the x direction and the MD mode in the y direction
to form the novel magnetic dipole mode MD1. In addition, Figure 4a shows the MD1

mode consisting of two identical magnetic dipole moments
→
m. When the MD1 mode

satisfies the condition of px = 2c/my (c is the speed of light), the first Kerker condition
is satisfied. Therefore, the interaction of the MD1 and TED modes with the EQ mode
satisfies the generalized Kerker condition and realizes the new feature of multimode
forward-scattering enhancement [39]. A significantly enhanced electromagnetic field is
located at the middle two holes shown in Figure 4e. The mode can be observed as TED
mode through the surface current vector distribution distributed in this section and it is
also influenced by the Fabry–Perot mode. The novel magnetic dipole mode influenced
by the Fabry–Perot mode, as shown by the current vector distribution in the tangential
plane Figure 4c, is two magnetic dipole moments with symmetrical distributions along
the y direction and with a certain spatial distance d. Combined with the electromagnetic
multipole resonance decomposition in Figure 3a, we further show that the enhancement
of far-field directional forward-scattering enhancement results from the interference of
the TED mode with the MD1 mode at λ1 = 800 nm. The EQ mode only produces a small
amount of backscattered light in far-field. We observed that the electric-field distribution
at λ2 = 1190 nm is dominated by an approximately equal amplitude in TED and MD
in Figure 4d,f. The current vector in the tangent plane in Figure 4b,d indicates that this
dipole is a typical conventional MD mode located at the center of the OH-SiNB. The dipole
mode of Figure 4f is similar to that of Figure 4e. Hence, the TED and MD modes in the
far-field radiation interfere constructively in the forward direction and destructively in the
backward direction.

From the above analysis, it is clear that the unique patterns in the far field at the
two peaks of the OH-SiNB support the enhancement of directional forward scattering.
In near field, the local electric field at the position of the square holes shown in Figure 4
is significantly stronger than the local electric field in the silicon bulk. It is well known
that there is almost no second-order optical nonlinearity contribution within the bulk of
silicon [33], but OH-SiNB can be beneficial for the SHG enhancement of the centrosymmetric
bulk materials. Two main reasons exist for the localization of strong surface electromagnetic
fields in OH-SiNB. On the one hand, we make full use of the toroidal displacement currents
formed by the novel magnetic dipole MD1 and the conventional magnetic dipole MD
modes in the xoz plane. Therefore, a strong electric field localization on the surface occurs at
λ1 = 800 nm and λ2 = 1190 nm in the square holes distributed along the x-axis and the z-axis,
as shown in Figure 4a,c. This is mainly attributed to the continuous condition of the normal
component of the electric displacement at the interface of square holes in the SiNB, i.e., the
boundary condition ε0Eair = εdESilicon is satisfied [40]. On the other hand, the high refractive
index property of silicon can better confine the electromagnetic field at the interface. Field
enhancement can be impacted by the various contributions of the Fabry–Perot modes
and the electromagnetic multipole resonance modes at dual wavelengths. Therefore, the
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square holes not only increase the surface area of the SiNB, but also effectively enhance
the localization of the electromagnetic field on the surface of the square holes. The strong
surface electromagnetic field locally promotes the interaction of light with atomic layers on
the silicon surface, creating conditions for the enhancement of SHG.
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3.2. Dual-Wavelength Second Harmonic Enhancement

The SHG of centrosymmetric materials is closely related to the local electromagnetic
field on the surface [34]. Thus, we investigate its performance in SHG enhancement
to further demonstrate the optical property of strong electromagnetic field localization
on the surface of OH-SiNB. Since silicon is a centrosymmetric material, we describe the
nonlinear optical response of the system using the nonlinear source polarization for the
centrosymmetric medium and interface [34]. This response is the superposition of the
surface dipole contribution and the bulk quadrupole contribution [33,41,42].

P(2ω)(r) = P(2ω)
sur f ace + P(2ω)

bulk =
↔
χ
(2)
s : E(ω)(r)E(ω)(r)δ(r− a) +

↔
χ
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b : E(ω)(r)∇E(ω)(r), (9)
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χ
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P(2ω)
bulk = βE(ω)

in

(
∇·E(ω)

in

)
+ γ∇

(
E(ω)

in ·E
(ω)
in

)
+ δ′

(
E(ω)

in ·∇
)

E(ω)
in (11)

In the above equation,
↔
χ
(2)
s and

↔
χ
(2)
b represent the second-order surface polarizability

and the bulk polarizability, respectively. E(ω) is the electric field vector at the fundamental
wave and δ is the selection function that defines the surface of the OH-SiNB. χ

(2ω)
s,⊥⊥⊥,

χ
(2ω)
s,⊥‖‖ and χ

(2ω)
s,‖⊥‖ are the surface nonlinear polarizability component, ⊥ and ‖ correspond

to the components of the perpendicular and parallel surfaces. The β, γ, and δ′ are the
bulk polarizability component. Since the divergence of the electric field is zero in a
homogeneous medium, the β term disappears. According to [41], at λ = 800 nm, we take
χ
(2ω)
s,⊥⊥⊥ = 65× 10−19 m2/V, χ

(2ω)
s,⊥‖‖ = 3.5× 10−19 m2/V. χ

(2ω)
s,‖⊥‖, γ, δ′, are 1× 10−19 m2/V. We

performed the numerical simulations of the SHG with COMSOL Multiphysics, following
the methods described in references [31,42,43]. Our numerical simulation method supports
the simulation results in [33,44] well.

Because the second-order polarizability dispersion relation of silicon has not been well
established, we use Miller’s law [45] to express the full-wave nonlinear polarizabilities. The
relation is as in Equation (12).

χ(2)(Ω, ω)

χ(1)(Ω)
[
χ(1)(Ω, ω)

]2 = C (12)

where χ(2)(Ω,ω) and χ(1)(Ω) are the nonlinear and linear polarizabilities, respectively, and
C is a constant. Hence, second-order nonlinear polarizability χ(2) at any frequency can
be calculated when the constant C is known at a particular wavelength. We used the
second-order nonlinear polarizabilities of silicon at λ = 800 nm to obtain the dispersion
functions of χ

(2ω)
s,⊥⊥⊥, χ

(2ω)
s,⊥‖‖, χ

(2ω)
s,‖⊥‖, γ and δ′, as shown in Figure 5. It should be noted that

because the dispersion curves of the other second-order nonlinear polarizabilities of the
silicon only differ in amplitude, in Figure 5 we only show the second-order nonlinear
polarizability of δ′.
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With the above dispersion relation for second-order polarizabilities, the SHG of the OH-
SiNB is shown in Figure 6. Of concern are the two peaks of the forward scattering spectra
(λSHG1 = 400 nm and λSHG2 = 595 nm), i.e., the relationship between the fundamental
wavelengths (λ1 = 800 nm and λ2 = 1190 nm) and SHG. The peak of the fundamental field
in Figure 2a agrees well with the peak of SHG shown in Figure 6a, which indicates that
the electromagnetic field enhancement at the fundamental wavelength plays an important
role in the enhancement effect of the SHG. The intensity of the SHG at λSHG1 is about
four times stronger than that at λSHG2. The main reason for the stronger SHG intensity at
λSHG1 can be attributed to the surface electromagnetic field localization. The fundamental
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electromagnetic field distribution (Figure 4) shows that field enhancement is significantly
stronger at λ1 = 800 nm than at λ2 = 1190 nm. This proves that the novel magnetic dipole
mode influenced by the Fabry–Perot mode is effective in realizing the surface localization
of the electromagnetic field and obtains strong effective coupling between light and matter.
Another reason is that each second-order polarizability component at λ1 = 800 nm is higher
than that at λ2 = 1190 nm. As shown in Figure 5, the second-order polarizability of silicon
in our investigated band decreased with increasing wavelength. In addition, the intensity
and efficiency of SHG enhancement were also affected by the spatial overlap ratio of
the fundamental and second harmonic [46]. In Figure 6b,c, the near-field electric field
distributions of SHG in the xoz plane at λSHG1 = 400 nm and λSHG2 = 595 nm are as shown.
We observed significant SHG in the holes. This behavior also indicates the effectiveness of
the holes. The far-field SH responses of the OH-SiNB are shown in Figure 6d,e. Different
far-field modes can be observed by the excitation of incident light of different frequencies
and polarization directions. For incident light polarized along the x-axis direction, the
four-lobe pattern and a two-lobe pattern were observed in the yoz plane at λSHG1 = 400 nm
and λSHG2 = 595 nm, respectively. It is noted that the far-field radiation-direction angles
of λSHG1 and λSHG2 SH radiation correspond to different radiation patterns, especially
at λSHG2, which has a significant radiation asymmetry. As the small nanoparticles, the
SH far-field radiation modes correspond to different higher-order multipole resonances.
The SHG radiation pattern can be controlled by a fourth-order response, while for larger
nanostructures with delay effects, it is necessary that octupole terms or higher-order terms
should be considered [47]. The SHG radiation patterns are always closely related to
multipole mode emissions [48]. Thus, there are some differences in the radiation patterns
at dual wavelengths.
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4. Conclusions

In summary, we demonstrated the directional forward-scattering enhancement and
SHG enhancement at dual wavelengths in an OH-SiNB nanostructure by numerical sim-
ulations. We show the TED, MD, EQ, MQ and MD1 resonance modes as well as their
interactions at dual wavelength by exploiting electromagnetic multipole decomposition.
At λ1 = 800 nm, the directional forward-scattering enhancement effect is produced by the
interaction of the MD1 and TED modes with the EQ mode, where the MD1 mode is a novel
magnetic dipole influenced by the Fabry–Perot mode. The interaction of these three poles
satisfies the generalized Kerker condition. At λ2 = 1190 nm, the conventional MD and
TED mode interference, which approximately satisfies the first Kerker condition, results
in near-zero backscattering. Comparing the radiation-direction angles at λ1 and λ2 in the
xoz plane, there is a smaller directional angle of radiation at λ1 because of the EQ mode.
The surface electromagnetic field of the square holes is significantly enhanced attributing
to the effects of the Fabry–Perot mode and the magnetic dipole toroidal displacement
current. The strong electromagnetic field located on the surface of the square holes and the
increased surface area of the square holes efficiently achieved SHG enhancement at dual
wavelength. The demonstrated SHG intensity at λ1 was four times higher than at λ2. The
results show that our method provides a new strategy for designing nanoantennas and
applying centrosymmetric materials to second-order nonlinear optoelectronic devices.
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