Graphene for Electronics
Funding
Conflicts of Interest
References
- Kralj, M.; Krivacic, S.; Ivanisevi, I.; Zubak, M.; Supina, A.; Marcius, M.; Halasz, I.; Kassal, P. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. Nanomaterials 2022, 12, 2936. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yeung, K.K.; Li, J.; Sun, H.; Alam, M.M.; Gao, Z. Graphene-Based Ion-Selective Field-Effect Transistor for Sodium Sensing. Nanomaterials 2022, 12, 2620. [Google Scholar] [CrossRef] [PubMed]
- Sinner, A.; Tkachov, G. Quantum Diffusion in the Lowest Landau Level of Disordered Graphene. Nanomaterials 2022, 12, 1675. [Google Scholar] [CrossRef] [PubMed]
- Berman, O.L.; Gumbs, G.; Martins, G.P.; Fekete, P. Superfluidity of Dipolar Excitons in a Double Layer of α—T3 with a Mass Term. Nanomaterials 2022, 12, 1437. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, J.; Lee, C.-J.; Kang, J.; Yun, J.; Noh, H.; Park, M.; Lee, J.; Park, Y.; Park, J.; et al. Simultaneous Extraction of the Grain Size, Single-Crystalline Grain Sheet Resistance, and Grain Boundary Resistivity of Polycrystalline Monolayer Graphene. Nanomaterials 2022, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-C.; Chung, H.-H.; Lin, S.-H. Improvement of Temperature and Optical Power of an LED by Using Microfluidic Circulating System of Graphene Solution. Nanomaterials 2021, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Silkin, V.M.; Kogan, E.; Gumbs, G. Screening in Graphene: Response to External Static Electric Field and an Image-Potential Problem. Nanomaterials 2021, 11, 1561. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Li, J.; Zhang, Y.; Zhang, S.-H.; Zhu, J.-J. Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene. Nanomaterials 2021, 11, 1462. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Chang, S.-L.; Chiang, C.-R.; Li, W.-B.; Liu, H.-Y.; Lin, M.-F. Feature-Rich Geometric and Electronic Properties of Carbon Nanoscrolls. Nanomaterials 2021, 11, 1372. [Google Scholar] [CrossRef] [PubMed]
- Krasovskii, E. Ab Initio Theory of Photoemission from Graphene. Nanomaterials 2021, 11, 1212. [Google Scholar] [CrossRef] [PubMed]
- Do, T.-N.; Huang, D.; Shih, P.-H.; Lin, H.; Gumbs, G. Atomistic Band-Structure Computation for Investigating Coulomb Dephasing and Impurity Scattering Rates of Electrons in Graphene. Nanomaterials 2021, 11, 1194. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogan, E. Graphene for Electronics. Nanomaterials 2022, 12, 4359. https://doi.org/10.3390/nano12244359
Kogan E. Graphene for Electronics. Nanomaterials. 2022; 12(24):4359. https://doi.org/10.3390/nano12244359
Chicago/Turabian StyleKogan, Eugene. 2022. "Graphene for Electronics" Nanomaterials 12, no. 24: 4359. https://doi.org/10.3390/nano12244359
APA StyleKogan, E. (2022). Graphene for Electronics. Nanomaterials, 12(24), 4359. https://doi.org/10.3390/nano12244359