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Abstract: During the laser application process, laser energy is usually converted into heat energy,
causing high temperature, which affects the (high-speed) aircraft in routine flight. A completely novel
photochemical method was investigated to potentially minimize the energy effect of the laser beam.
Ag nanoparticles/C3N4 were synthesized by an ultra-low temperature reduced deposit method with
Ag mean diameters of 5–25 nm for photofixation of N2. The absorption performance of laser can
be improved by using appropriate charge density and small size Ag metal particles. The energy
absorption rate was 7.1% over Ag/C3N4 (−40) at 5 mJ/cm2 of laser energy.

Keywords: aircrafts; laser; N2 photofxation; Ag NPs

1. Introduction

The photocatalytic N2 reduction reaction (NRR) generating NH3 owing to milder
conditions has attracted much attention in the field of fixation of N2 [1,2]. It is not only
performed with high reactivity but also could be achieved under room conditions [3,4].
More importantly, the NRR photocatalyst has been improved in terms of low temperature
resistance. In other words, the key to efficient N2 photofixation (energy transfer) is the
selection of stable and high-performance catalysts, especially those prepared at low temper-
atures [5]. A graphitic carbon nitride (CN) supported Ag nanoparticle (NPs) catalyst is a
stable photocatalyst in the range of −60 ◦C to 25 ◦C [6]. The mechanism of N2 photofixation
reaction is shown in Figure 1. Under the light source, electrons were transferred from CN
to Ag. The aggravated electron on the surface of metal NPs could promote the N2, and
then the promoted N2 could be reacted with H2 to gain NH3.

Proven to be the frontier of aerospace applications, high speed aircraft (HSA) for
space and civilian use have increased significantly over the decades [7,8]. This results in
significant interest in making safe and sustainable high-speed aircraft. However, HSA
usually flies with a subsonic or supersonic speed while facing surveillance systems in
most flight trajectories, such as infrared irradiation, radar wave, and laser beam risk [9].
Among them, the laser beam risk is attributed to its high energy density and high mobility,
causing damage to precision navigation equipment to some extent [10]. In addition, aircraft
illumination by handheld lasers, whose output ranges from 1–5 milli Watts (m W) to 5 Watts,
was also a potential danger to the eyes of the pilot in the cockpit [11].

The photocatalytic reaction is usually considered to convert optical energy into stored
chemical energy [12,13]. Gondal et al. [14] recently reported a chemical method for
laser energy absorption using the removal of sulfur compounds from diesel. Dimethyl-
dibenzothiophene (DMDBT) in diesel was deeply removed under an oxygen environment
where oxidative reactions can take place by laser irradiation. Similarly and potentially,
N2 photofixation may be another way to determine the energy of laser absorption by
exploring the driving force of space charge separation between Ag and CN provided by
cryogenic synthesis.
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Figure 1. XRD of pure CN, Ag/C3N4 (−40) and Ag/C3N4 (room).

Additionally, in our recent work, we found that the relation between the interfacial
contact area of Ag (NPs)/CN and photocatalytic performance shows a typical volcano
curve [15]. Hence, the connection of metal and the support has a significant effect on the
transfer of light energy.

This paper reports a photocatalytic chemical reaction method for the synthesis of
uniformly dispersed Ag decorated on CN by reducing laser energy. Compared with the
Ag/CN (25 ◦C), the Ag/CN prepared at low temperature shows better activity, stability,
and absorptive capacity under the laser condition for N2 photofixation. As an implemented
application of this paper, Ag/CN film could be a bridge between photochemical method
and laser absorption to air our views. Thus, the high energy laser could be partly absorbed
by releasing chemical product over Ag/CN (film) to protect the pilot and the precision
navigation equipment.

2. Experimental
2.1. Catalyst Preparation

The preparation of catalysts of Ag/CN was followed as presented in the earlier
report [15]. The typical synthesis was as follows: (1) For CN nanosheets, 0.5 g CN powder
was added to 70 mL deionized water, stirred for 30 min, transferred to a Teflon-lined steel
autoclave (Newton II–III, Shanghai LABE Instrument Co., Ltd. Shanghai, China), and
heated at 180 ◦C (12 h). Then, the CN nanosheets were obtained after centrifugation and
drying. (2) For Ag/CN (room), C3N4 (1.0 g) was dispersed in methanol (50 mL) (named
Solution A). The dispersed AgNO3 solution (1 mol/L) was prepared by an ultra-low-
temperature process at different temperatures (named Solution B). After cooling, solution
B was added to solution A for 30 min and reacted entirely for another 3 h. The obtained
mixture was centrifuged and dried at 30 ◦C for 8 h. The Ag/CN photocatalysts were
labeled as Ag/CN(X), X stands for the reduced temperature (−40 ◦C and 25 ◦C (RT)) (see
the synthesis in Scheme 1 and Picture S1).

2.2. Characterization

The materials were characterized by XRD, SEM, TEM, etc. The descriptions of the
characterization are in the Characterization part of the Supplementary Material.
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Scheme 1. Schematic diagram of Ag/C3N4 catalysts at room temperature.

2.3. Electrochemical Measurements and Computational Details

Electrochemical measurements were performed on a CHI 660D electrochemical worksta-
tion. Spin polarization calculations were performed using VASP (Vienna ab initio simulation
package) code on DFT (density functional theory). See Supplementary Materials.

2.4. Photocatalytic Performance with Laser

A method and a setup based on a chemical reaction have been developed to absorb
synthetic ammonia under laser irradiation. The reactor (Scheme 2) consists of a double-
walled quartz photocatalytic vessel of 500 mL volume with another quartz window for
transmission of the laser beams. A total of 0.1 g of photo-catalyst mixed with 200 mL
solution (ammonia absorption) of 5% alcohols was irradiated by a laser lamp (ArF laser).
The laser energy range studied was between 50 and 200 mJ/cm2 [16]. A specific volume
of the upper solution was periodically sampled by pipette. The concentration of product
NH3 was measured by Nessler’s reagent spectrophotometry method (Cary-50, Varian Co.,
Shanghai, China) [16].
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3. Results and Discussion
3.1. XRD

All samples exhibited two diffraction peaks located at nearly 13◦ and 27.5◦, as seen
in Figure 1. These peaks at 13◦ and 27.5◦ are denoted as the melon structure and crystal
plane (100) of CN, respectively [17]. The intensity of the CN diffraction peaks at 13◦ and
27.5◦ obviously decreased with the addition of Ag at different temperatures for preparation.
Diffraction peaks of Ag were located at 38◦, 44◦, 64.5◦, and 77.5◦. The oxide state could not
be determined.

3.2. The Morphology of Ag/CN (−40)

Figure 2 displays the TEM images and elements distribution of N, C, and Ag of
Ag/C3N4(−40). Facet Ag (111) can be observed clearly on the surface of g-C3N4 and can
be proved by HAADF and SAED images. The uniform distribution of Ag nanoparticles
(NPs) with a uniform size range can be observed in Figure S1 (with an average size of
13 nm). The detailed microstructure of Ag/CN (−40) was further investigated by the three
elements distribution mapping [8,18,19]. The results are shown in Figure 2E–G; the Ag
NPs were finely loaded not only onto the outer surface but also onto the inner surface of
CN. According to the element distribution mapping, the ratio of Ag surface area and the
surface area of support was near 1:10 (yellow dots:(green dots + red dots)), that can be used
to estimate the area ratio of Ag NPs to the BET surface area of Ag/C3N4 (−40).
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Figure 2. TEM images and its element distribution for Ag/C3N4 (−40). (A–C) TEM images, (D)
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3.3. Energy Absorption Calculation
3.3.1. Analysis of the Energy Gaps of Ag/CN

When incident light irradiated on the CN (Ag/CN) and the band gap energy could be
exceeded, photo-generate e− in VB could jump to reach CB. At the same time, h+ is left
on VB with strong activity. The Ag species are usually considered as an electron sink. e−

generated in CB of CN would be transferred to VB by the Ag species. Energy is transferred
with the charge transfer. Then N2 could be reduced by the accepted e− to be the NH3
product. The reaction mechanism for N2 photofixation over Ag/CN is shown in Figure 3.
The flat band potentials of Ag/CN (room) and Ag/CN (−40) are −1.05 and −1.01 eV.
The energy gap between VB and CB of the two catalysts is −2.60 and −2.58 eV (see the
calculated band gap energy in Supplementary Material) [8].
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3.3.2. Analysis of the Charge Density

In Figure 4A–C, the adsorption configurations of CN, Ag1/CN, and Ag5/CN are
simulated by DFT [20–23]. Ag1 and Ag5 both exist as stable with the adsorption energies of
−1.57 and −0.60 eV for each Ag atom, respectively. The results of Figure 4D–F show that
the electron transfer pathway should be described by charge around the Ag atom (all of
the Ag atoms showed cyan, which means the account was depleted by transfer). The dark
cyan in Figure 4F of the Ag atom displayed abundant electron transfer. Ag5 supplies more
electron transfer than CN and Ag1. The density of states (DOS) of Ag5–CN to simulate
the electron transfer to N2 measured in Figure S2. Ag5 NPs were considered as the most
efficient energy transfer dot in this photocatalyst.
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3.3.3. Activity

The activity of the N2 photofixation was displayed in Figure 5. The Ag/CN (room)
catalyst can achieve N2-fixation rate (NH4

+ concentration) of 1.02 mmol/L/h/g. In contrast,
this value is almost half that of Ag/CN (−40). The N2 fixation rate of Ag/CN (−40) was
0, 1.00, and 2.02 mmol/L/h/g at 0 min, 30 min, and 60 min, respectively. The better N2
photofixation effect were performed over Ag/C3N4 (−40) photocatalyst.
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3.4. Relation between Lifetime, Charge Density, and Energy Absorption

Table 1 shows the electronic properties of Ag/C3N4 for Ag particle size, lifetime, and
charge density. The particle size of Ag increases significantly (from 13.2 nm to 33.2 nm) with
the temperature changing to 25 ◦C. The photoelectron lifetime (τ) of Ag/CN is calculated by
1/(2πfpeak) [24–26]. fpeak (the maximum frequency peak) explains that the charge density
Ag5 is more than Ag1 for the opportunity of increased charge recombination. There is
reasonable concordance between the Ag adsorption configuration over CN (in Figure 4)
and lifetime. The laser energy absorption rate is also calculated using the formula below
(Table 1). N2 photofixation energy was calculated by the formula in Scheme S1. The
corresponding energy absorption rate was 7.1% over Ag/C3N4(−40) [19]. It should also be
noted that the minimum energy value to excite the photoelectrons is equal to the value of
the energy gap between VB and CB of the catalysts. The photo fixation energy transferred
from the laser, which could be simulated with each Ag NP, is probably higher.
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Table 1. The properties of Ag/C3N4.

Sample Ag Particle Size
(nm)

Life Time [15]
(τ, ms) Charge Density BET Surface

Area (m2/g)

Energy a

Absorption
Rate (%)

Ag/C3N4 (−40) ~13.0 0.29 Ag5 12 7.1
Ag/C3N4 (room) ~33.2 0.20 Ag1 13 1.2

a: energy absorbed by N2 photofixation/ energy of the laser.

Based on the above discussion, considering the better performance over Ag/CN (−40)
for N2 photofixation, Ag5 NPs were proven as the most efficient energy transfer dots in the
charge density model. The laser energy absorption through the photocatalytic way can be
explained by two points: (1) The enhanced photocatalytic activities over Ag/C3N4 can be
driven by the laser energy. The driving energy of N2 photofixation is transferred by the
Ag NPs as a photo-generated charge. (2) The particle size affected the Ag NPs of Ag/C3N4
to contact closely, and Ag5 can improve the charge-separation and transfer efficiently.

4. Conclusions

In summary, as an efficient N2 photofixation light source, the laser beam energy was ab-
sorbed and consumed through this chemical reaction. The excited photo-generated charge
by laser energy was transferred by Ag5 with high charge density to produce NH3. The
Ag/CN (−40) exhibits remarkable activity with an NH3 conversion of 2.02 mmol/L/h/g
(gas products at room conditions, which could be the result of simple separation with the
HSA), which is about double the improvement compared to that of Ag/CN (room). It also
shows a favorable energy absorption rate during this photochemical method for the laser
absorption process.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12244384/s1, Picture S1 Constant Temperature Water-bathing
(EYELA PSL-1810). Figure S1: TEM image (A) and its corresponding particle size distribution (B) for
Ag/C3N4 (−40); Figure S2. DOS of (A) free N2 (B) N2-Ag/CN and (C) N2-Ag5/CN.; Figure S3. EIS
changes for the samples; Table S1: The effect of Ag nanoparticle size for electronic properties; Scheme
S1: Calculation method.
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